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Abstract

Motivation: Colocalization of structures in biomedical images can lead to insights into biological

behaviors. One class of colocalization problems is examining an annular structure (disk-shaped

such as a cell, vesicle or molecule) interacting with a network structure (vascular, neuronal, cyto-

skeletal, organellar). Examining colocalization events across conditions is often complicated by

changes in density of both structure types, confounding traditional statistical approaches since

colocalization cannot be normalized to the density of both structure types simultaneously. We have

developed a technique to measure colocalization independent of structure density and applied it to

characterizing intercellular colocation with blood vessel networks. This technique could be used to

analyze colocalization of any annular structure with an arbitrarily shaped network structure.

Results: We present the circular colocalization affinity with network structures test (CIRCOAST), a

novel statistical hypothesis test to probe for enriched network colocalization in 2D z-projected

multichannel images by using agent-based Monte Carlo modeling and image processing to gener-

ate the pseudo-null distribution of random cell placement unique to each image. This hypothesis

test was validated by confirming that adipose-derived stem cells (ASCs) exhibit enriched colocali-

zation with endothelial cells forming arborized networks in culture and then applied to show that lo-

cally delivered ASCs have enriched colocalization with murine retinal microvasculature in a model

of diabetic retinopathy. We demonstrate that the CIRCOAST test provides superior power and type

I error rates in characterizing intercellular colocalization compared to generic approaches that are

confounded by changes in cell or vessel density.

Availability and implementation: CIRCOAST source code available at: https://github.com/uva-

peirce-cottler-lab/ARCAS.

Contact: bac7wj@virginia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Interactions between vascular endothelial cells, which are arranged

in arborized networks throughout all tissues of the body, and other

cell types are instrumental in the initiation and perpetuation of a

wide range of diseases, including diabetes mellitus (Ruggiero et al.,

1997). Interacting cell types with vascular endothelial cells include

immune cells (Gerhardt and Ley, 2015), perivascular cells

(Motherwell et al., 2017; Sheets et al., 2016) and stem cells
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(Amos et al., 2008). Modulating intercellular interactions associated

with disease progression is seen as a therapeutic target for prevent-

ing or ameliorating the associated pathology (Gartner et al., 2017).

A key imaging-based measure of cell-cell interactions is intercel-

lular colocalization, the frequency that two cell populations reside

immediately adjacent to each other. Changes in intercellular colocal-

ization suggest changes in cell-cell interactions and cellular behav-

iors that influence the interaction, including altered migrational

capabilities, cytokine sensing and other chemotactic behaviors.

Most research in cellular colocalization has focused on intracellular

interactions with point-based features, specifically whether two mo-

lecular probes codistribute (dispersed in a spatially related fashion)

or associate with a particular organelle (Dunn et al., 2011). The sta-

tistics are often limited to a pixel-by-pixel analysis of correlation

using Pearson’s correlation coefficient or Mander’s overlap coeffi-

cient (Zinchuk and Zinchuk, 2008), or more advanced analysis tech-

niques such as spatial point pattern analysis (Burguet and Andrey,

2014; Helmuth et al., 2010) or protein–protein interaction models

(Johnson et al., 2015). By contrast, there is a lack of statistical tech-

niques to study cell–cell interactions (Payés et al., 2012) where

point-based analysis is less pertinent.

Cell populations are known to change dramatically in disease

(Kowluru and Chan, 2008), which can confound metrics of colocali-

zation. Intercellular colocalization events depend on the prevalence

of the two interacting cell populations, and generic statistics cannot

ascertain changes in colocalization because the data cannot be nor-

malized to both cell populations simultaneously. This is especially

problematic when there are substantial changes in vascular or

cellular density between study groups or high variance between bio-

logical replicates. Here, we present an image analysis tool that statis-

tically assesses intercellular colocalization independent of cell and

network density by testing against a pseudo-null distribution for

random intercellular colocalization events unique to each image. By

comparing the intercellular colocalization fraction (ICF), the frac-

tion of cells colocalizing with network structures, between an ex-

periment image compared to the distribution of ICF values derived

from modeling random cell placement in the same image, changes in

colocalization can be ascertained relative to random behavior. Using

additional statistics to combine data across images from a single bio-

logical replicate and compare between study groups yields a process

that can characterize changes in intercellular colocalization affinity

(ICA), which we define as the frequency of colocation events be-

tween two cell populations corrected for changes in cell density, cell

size and network density across study groups.

An example where large changes in cellular density are observed

is diabetic retinopathy, a disease that is marked by progressive dam-

age to the retina (Wong et al., 2016). Decreases in the densities of

both blood vessels (Kowluru and Chan, 2008) and pericytes (Ejaz

et al., 2008), a cell type that colocalizes with and stabilizes the

microvasculature, have been observed in early diabetes and are

thought to initiate the degradation of the retina (Beltramo and

Porta, 2013). Toward cell-based therapies, previous work has

shown that injecting adipose-derived stem cells (ASCs) can amelior-

ate microvessel loss when ASCs colocalize with blood vessels and

adopt a pericyte-like morphology in the retina and other tissues

(Amos et al., 2008; Mendel et al., 2013). However, it was difficult

to conclude whether or not ASC colocalization with the retinal

microvasculature occurred at a rate greater than random chance

without a validated statistical method.

We developed and validated CIRCOAST as a tool to measure

intercellular colocalization by testing for a known enriched colocali-

zation between ASCs and the arborized networks that endothelial

cells form in culture. Then, we applied CIRCOAST to determine

that locally delivered ASCs significantly colocalize with the retinal

microvasculature in a murine model of diabetic retinopathy. By pro-

viding a robust method for evaluating the statistical significance of

cell–cell colocalization, CIRCOAST provides insight into putative

mechanisms of and potential therapies for a wide range of patholo-

gies. This method naturally extends to the colocalization analysis of

any annular shaped structure (disk-shaped such as a cell, vesicle or

molecule) with any arbitrary background network structure within

tissues or cells.

2 Materials and methods

2.1 Codebase
CIRCOAST was written in MATLAB 2016 b using the image proc-

essing toolbox and can be run either as source code or as compiled

code with the MATLAB runtime environment version 9.1. The

source code and compiled executable are available as a part of the

Automated Random Cell Association Simulator (ARCAS) code re-

pository (https://github.com/uva-peirce-cottler-lab/ARCAS). The

user interface is designed with MATLAB’s graphical user interface

development environment (guide), which allows the user to analyze

a dataset of two or more color images, one marking the vasculature,

and the others marking one or more cell types to be examined indi-

vidually for enriched vascular colocalization. In this study, a con-

focal microscope was used to acquire a z-stack at approximately

Nyquist sampling. The 3D images were then flattened with a max

projection in the z axis dimension to produce a 2D RGB image.

2.2 Monte Carlo model development (MCMRP)
An initial Monte Carlo model of random placement (MCMRP) was

created to simulate randomly placed cells. An input image of the net-

work is imported into the CIRCOAST GUI, and segmented via an

adjustable global threshold (Fig. 1A). Image resolution, cell size and

number of cells are set by the user, and a series of Monte Carlo sim-

ulations are performed with an agent-based model that stochastical-

ly spawns cells in an image, in which under the random cell

placement paradigm, every location within the input image region

has an equal chance of being selected as a site of cell placement; and

once placed, the fraction of cells overlapping with the vasculature

network is calculated (Fig. 1A, ICF). A probability distribution for

the ICF in a given image is approximated based on the thousands of

Monte Carlo simulation repetitions of the random cell placement

process (detailed outline of algorithm in Supplementary Note 1).

Probing of the key parameters that influence cellular colocaliza-

tion with the vasculature was undertaken via a simple program cre-

ated to stochastically create a network structure resembling blood

vessels in a controlled manner (Supplementary Fig. S1). Dense

microvascular networks have been described as having structural

characteristics of interconnected wires (Longden et al., 2017). The

stochastically-generated networks were created by defining a ran-

domly seeded point cloud with an enforced minimum distance be-

tween points, and using the watershed algorithm to create a

network of line segments bisecting all points. Line segments were

then iteratively removed until the desired vessel network was

obtained, mimicking the range of vessel density found in vascular-

ized tissues (extended explanation of algorithm in Supplementary

Note 2).

A set of parameters defining the network structure and the cell-

of-interest (COI) were identified (Supplementary Fig. S2), including:

(i) network fraction: the fraction of pixels in an image that comprise
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the network, (ii) network length density: the length of the centerline

for all network structures divided by the area of the image, (iii) net-

work radius: thickness of network orthogonal to the network center-

line, (iv) cell number, (v) cell diameter and (vi) cell-dilated network

fraction (CDNF). CDNF defines the area of the image where if the cen-

ter of a COI is within that area, the COI overlaps with the network by

at least one pixel and is counted as being a colocalized cell, which is

captured by morphologically dilating the segmented network with the

length of the radius of the COI. Therefore, with a fixed network struc-

ture, as cell diameter increases so will the value for CDNF.

The relation between each system parameter and the ICF pre-

dicted by the MCMRP was examined over a wide range of param-

eter values (Supplementary Fig. S3). All parameters correlated with

the MCMRP derived mean ICF except for cell number, suggesting

many variables influence the mean of the ICF distribution under the

random cell placement paradigm, but giving little insight to what

parameter(s) directly dictate network colocalization.

To determine if any of the parameters can directly predict mean ICF

under the random cell placement paradigm, a dataset of 2500 simulated

experiments were generated using the vessel network generator with

randomly assigned parameters. The means of ICF distributions derived

from the 2500 experiments were correlated with the individual parame-

ters (Fig. 2). While most parameters correlated with mean ICF, only

CDNF had a correlation coefficient (r) of 1 (rounded to within 6 deci-

mal places), suggesting that CDNF correlates almost perfectly with the

MCMRP derived mean ICF (Fig. 2F). Note that in Figure 2F; that for

all intended purposes, the relationship between the CDNF values and

mean ICF values is deterministic (points fall on a 45� line).

To further examine if CDNF is a unique predictor of ICF, a mul-

tivariable linear regression (MVLR) analysis was conducted with all

input parameters as predictor variables and mean ICF as the re-

sponse variable. Input parameter values and mean ICF values were

converted to z-scores so that all of the multivariate regression model

coefficients shared the same scale of measure while still preserving

the underlying multivariate relationships that exist on the non-z-

score scale. All predictors had insignificant P-values except for

CDNF (Table 1). Furthermore, since the regression coefficients of

all predictors other than CDNF were essentially equal to zero,

CDNF is the only input parameter that was given any weight in the

MVLR in terms of predicting the mean ICF z-score. Given that the

MVLR model multiple coefficient of determination (R2) was ¼1, we

conclude that CDNF is highly and uniquely correlated with the pre-

dicted mean ICF of the MCMRP. Although the ICF in given

MCMRP trial can differ from CDNF due stochasticity, and the ICF

from an acquired image may differ from CDNF from stochasticity

or non-random cell placement, the CDNF can be used to calculate

the mean ICF from random behavior in both cases.

2.3 Binomial model development and validation

(BMRP)
Based on the aforementioned Monte Carlo findings, CDNF was

used to develop a binomial model of random placement (BMRP) for

a more mechanistic and exact representation of cell colocalization

under the random placement paradigm. By defining CDNF as the

probability of success for a randomly placed cell colocalizing with

the vasculature within an image, intercellular colocation can be

modeled as a binomial stochastic process using Equation (1) (Sokal

and Rohlf, 2012);

f c; n;pð Þ ¼ n

c

� �
pc 1� pð Þn–c; (1)

where p is the cell-dilated network fraction (CDNF), c is the number

of cells colocalizing and n is the total number of cells in the image.

Fig. 1. CIRCOAST GUI for analyzing cellular colocalization. (A) GUI for

CIRCOAST that imports a thresholded vasculature and predicts the random

cell colocalization fraction (ICF) (B), through a series of trials from a Monte

Carlo model of random placement (MCMRP)

Fig. 2. Network area fraction dilated by cell radius determines the random cell

colocation fraction. The mean ICF was calculated with the MCMRP over

10 000 trials with randomly selected parameters and displayed as a function

of (A) cell diameter, (B) cell number, (C) network radius, (D) network fraction,

(E) network length density and (F) cell-dilated network fraction (CDNF,

N¼2 500 images). Pearson correlation coefficient and associated 95% confi-

dence interval and P-values are provided at the top of each scatterplot

Table 1. Multivariable regression of z-scored input parameters ver-

sus the z-score of the ICF predicted by Monte Carlo model of ran-

dom placement (R2¼1.00)

Predictor Coefficient SE F-statistic P-value

Intercept �9.54E-16 1.20E-05 — —

Cell diameter �1.96E-05 2.56E-05 �0.76 0.444

Cell number �5.57E-06 1.20E-05 �0.46 0.642

Network Rad. �2.59E-05 4.34E-05 �0.60 0.551

Network Frac. 5.01E-06 5.74E-05 0.09 0.931

Network. Len. Dens. �3.24E-05 4.67E-05 �0.69 0.489

CDNF 1.000 5.00E-05 2.00E4 <0.000

Model — — 1.16E9 <0.000

Note: z-score transformation preserves the underlying multivariate rela-

tionships. Significant predictors highlighted in bold.
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The mean (l) and standard deviation (r) of the distribution can be

directly calculated using the formulas listed in Equation (2) (Sokal

and Rohlf, 2012), as opposed to approximating the values based on

successive MCMRP trials.

l ¼ n� p; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� p� 1� pð Þ

p
(2)

To evaluate the BMRP, the predicted mean ICF from random

cell placement was compared to the MCMRP predicted mean ICF

(10 000 trials/image) across the same dataset of 2500 simulated

experiments that were used to produce Figure 2. The discrepancies

between the predicted mean ICFs of the BMRP and the MCMRP are

shown as a function of the predicted mean ICF in Figure 3.

A paired two-tailed Student’s t-test revealed no difference be-

tween the predicted mean ICFs of the BMRP and the MCMRP

(P ¼ 0.850, a ¼ 0.05). Furthermore, no systematic relationship

could be detected between the discrepancy between the predicted

mean ICFs of the BMRP and the MCMRP as a function of the mean

of predicted model ICFs (P ¼ 0.248, Pearson correlation), nor were

any of the input parameters individually systematically related to

the discrepancy between the predicted mean ICFs of the BMPR and

the MCMRP (Fig. 4A–F). When the z-scores of the input parameters

were used as predictor variables in a MVLR model to predict the

z-score scaled values for the discrepancies between the predicted

mean ICFs of BMPR and MCMRP, neither the MVLR model nor

any of the input parameters individually were significant predic-

tor(s) of the ICF discrepancy z-score (Table 2).

With no significant difference seen between the mean ICF values

predicted by the BMRP and the MCMRP, and no systematic rela-

tionships seen in the discrepancies between the predicted mean ICFs

of the BMPR and the MCMPR across the input parameter space, we

concluded that the BMRP accurately represents the MCMRP, and

that random cell placement can be modeled as a binomial stochastic

process using Equations (1) and (2).

2.4 Hypergeometric model and validation (HMRP)
The binomial model assumes that the random placement of cells is

completely independent events, that each successive COI placed in

an image can be placed anywhere. However, in practice, COIs

cannot overlap because they would be counted as a single cell.

Thus, at higher cell densities, there are less locations for additional

cells to be added and still counted as additional cells in the image,

suggesting that placement of cells are related events and there exists

a maximum number of placed cells, possibly suggesting that a hyper-

geometric model of random placement (HMRP) could be more suit-

able to model this process:

h kjN; n;Kð Þ ¼
K
k

� �
N�K
n�k

� �
N
n

� � (3)

where k is the number of colocalizing cells, n is the total observed

number of cells in the image, N is the max number of cells that can

exist in the image, K is number of colocalizing cells of the max

population of cells placed in the image. The mean (l) and standard

deviation (r) of the distribution can be directly calculated using the

formulas listed in Equation (4) (Sokal and Rohlf, 2012):

u ¼ n� k

N
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� k� N � kð Þ � N � nð Þ

N2 � N � 1ð Þ

s
(4)

Theoretically, the max number of non-overlapping cells that can

be found in an image is defined by the hexagonal packing of circles,

Fig. 3. Discrepancy between BMRP predicted mean ICF and MCMRP pre-

dicted mean ICF. Bland Altman plot of the 2500 pairs of BMRP and MCMRP

predicted mean ICF values, with the difference in paired values plotted

against the average. Note that the blue horizontal line identifies the mean dis-

crepancy between the 2500 pairs of BMRP and MCMRP predicted mean ICF

values (mean: 1.05E-7), and the green horizontal lines identify the lower and

upper 95% confidence limits (�0.00025, 0.00026) for the discrepancy between

any pair of BMRP and MCMRP mean ICF values

Fig. 4. Discrepancy between BMRP mean ICF and MCMRP mean ICF versus

the cell and network input parameter values. (A–F) Relationship between

each input parameter and the discrepancy between the BMRP predicted

mean ICF values and the MCMRP predicted mean ICF values. Pearson correl-

ation coefficient and associated 95% confidence interval and P-value are pro-

vided at the top of each scatterplot

Table 2. Multivariable linear regression of z-scored input parame-

ters versus the z-score of the difference in mean ICF predicted by

MCMRP and BMRP (R2<0.00)

Predictor Coefficient SE F-statistic P-value

Intercept �0.013 0.017 — —

Cell diameter �0.023 0.036 0.40 0.526

Cell number 0.017 0.017 1.05 0.305

Network Rad. �0.100 0.060 2.74 0.098

Network Frac. 0.100 0.799 1.55 0.213

Net. Len. Dens. 0.048 0.065 0.54 0.462

CDNF �0.004 0.070 0.00 0.968

Model — — 1.38 0.217
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which previous research has shown to have a packing ratio of 0.901

(fraction of image area covered by circles), demonstrated to be in-

variant to the size of the circle and bounding area (Steinhaus, 1999).

Yet this packing assumes perfect placement of all circles. Randomly

placed non-overlapping pixelated cells may have a much lower

packing ratio than this scheme, and may not be invariant to cell size

since the shape of a cell is approximated in a pixelated fashion.

Moreover, cells must be fully contained in the image area to contrib-

ute to the packing ratio for possibly colocalizing cells; cells that ex-

ceed the border of the image are not counted because their

colocalization state with the network outside of the image cannot be

determined.

We designed a Monte Carlo model of random cell placement

without replacement that iteratively places cells until no more can

fit in the image and then calculates the final packing ratio. Doing

this for a range of cell pixel diameters reveals that the packing ratio

of randomly placed fully contained non-overlapping pixelated

circles changes with cell size (P ¼ 0, Kruskal Wallis, N ¼ 100 trials,

Supplementary Fig. S4A) and image dimensions (P ¼ 0, Kruskal

Wallis, N ¼ 100 trials, Supplementary Fig. S4B). For cell diameters

<5 pixels, distinct cells cannot be discerned at the highest density,

so experiment data with that low cellular resolution is considered in-

valid. For cell diameters above five pixels in diameter, a look up

table is provided (Supplementary Table S1) for 512 by 512 image

dimensions and is used for calculating the N parameter in a hyper-

geometric distribution:

N ¼ A�g
pr2

(5)

where A is the pixel area of image, g is the packing ratio from the

look up table and r is the pixel radius of the cell [Equation (5)]. The

CDNF of each image is used to approximate the number of cells

colocalizing (k) from the max population of cells (N), since it repre-

sents the fraction of the image where colocalization occurs:

k ¼ Np (6)

where p is the CDNF, used also in the binomial distribution from

Equation (1).

The mean ICF from the BMRP was compared to HMRP

with the same dataset in Figure 3. No difference was seen in

mean ICF values (p ¼ 0.194, paired t-test, N ¼ 2500,

Supplementary Fig. S5A). Multiple variable linear regression

revealed a marginally significant relationship between cell diameter

and CDNF (Supplementary Fig. S5B–H), but the magnitude of the

discrepancy between the models was negligible (mean difference:

4.26E-6), on par with difference between the MCMRP and BMRP

models. The BMRP was selected for experimental use since its dis-

crepancy with the HMRP mean ICF was negligible. Furthermore,

with the HMRP, the parameter N changes with both cell size and

image size: the computational demand of running simulations to ap-

proximate the max cell number in a given image makes it impracti-

cal to present as a general method until these parameters can be

calculated in a more efficient and parameter invariant fashion.

Related to the issue that placement of cells are dependent events

is whether homotypic interactions of the COI (cells migrating based

on the position of other cells of the same type to form clumps)

would alter the ICF. Encouragingly, we found that there is no differ-

ence in mean ICF from random placement of individually placed

cells compared to cells placed in non-overlapping or overlapping

clumps, suggesting that colocalization with the network structure

is independent of self-colocalization with the COI (Supplementary

Fig. S6).

2.5 Statistical pipeline
Statistical processes were created to test for: (i) enriched ICA of a

cell type with the network structure within a single image,

(ii) enriched ICA for a study group of images and (iii) unique

ICA between two study groups. All three of these tests were

conducted by examining where the observed value of the random

variable is located along the null probability distribution

(Supplementary Fig. S7).

2.5.1 CIRCOAST test: testing colocalization for single image

To test for enriched colocalization affinity in a given image, the net-

work structure in the image is thresholded and segmented, dilated

by the radius of the COI, and the fraction of white pixels defines

the cell-dilated network fraction for that image. Under the binomial

stochastic model, the CDNF and cell number is used to calculate

the probability of observing colocalization with the network to an

equal or greater extent than what is observed in the image if colocal-

ization occurs under random placement (Supplementary Fig. S7A).

Equation (3) is utilized to derive the P-values for a one-tailed bino-

mial hypothesis test:

CIRCOAST p ¼ 1�
Xn

c

n

c

� �
pc 1� pð Þn�c (3)

where c is the observed number of cells colocalizing in the image, n

is the total number of cells in the image and p the cell-dilated net-

work fraction (CDNF) for that image. The null hypothesis that the

image exhibits a degree of colocalization no greater than what

would be expected by chance is rejected if CIRCOAST p�0.05.

Since intercellular colocalization is modeled as a binomial pro-

cess, sufficient sampling is determined by the quantity of each cell

population sampled rather than fields of view imaged. In order to

ensure that sufficient sampling can be obtained for each biological

replicate, the data from multiple images is pooled together by calcu-

lating the combined CDNF across images and summing total COIs

found in each image. This technique was validated by comparing the

CDNF and CIRCOAST p-value calculated from a test image com-

pared to splitting it into four sub images. No difference was seen be-

tween the test images and original image, confirming the validity of

this technique to join colocalization information across images

(Supplementary Fig. S8). Notably, while this process can probe for

enriched colocalization affinity in an image, it fails to directly test

for enriched colocalization for a study group of multiple biological

replicates (animals, culture well plates, etc.).

2.5.2 One-sample CIRCOAST test: testing colocalization for a sin-

gle study group

We assert that a statistical test that probes for enriched colocaliza-

tion within one or more study groups requires a random variable

that acts as a metric of colocalization and is scaled to reflect the de-

gree of colocalization beyond what would be expected purely by

chance. The P-value from the CIRCOAST calculated from the bino-

mial hypothesis test in Equation (3) satisfied both of the aforemen-

tioned criteria. P-values are known to be reliable random variables

suitable for hypothesis testing (Sackrowitz and Samuel-Cahn, 1999).

The mean CIRCOAST P-value is calculated across the joined images

of each animal or subject (Supplementary Fig. S7B). The null distri-

bution of the mean CIRCOAST P-value is simulated by assuming

the null hypothesis is true and approximating what the distribution
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of the mean CIRCOAST P-value would be under the random place-

ment paradigm (i.e. the pseudo-null distribution). When the null hy-

pothesis is true, the P-value of a hypothesis test is a uniform (0, 1)

random variable. Therefore, to generate a pseudo-null distribution

for the mean binomial P-value, sets of N P-values are generated

from a uniform (0, 1) distribution to match the N number of bio-

logical replicates in the experiment data and the mean of the distri-

bution of generated P-values is calculated. Repeating this process

(10 000 000 trials) yielded the pseudo-null distribution of the mean

CIRCOAST P-value under the random cell placement paradigm.

The percentile at which the observed mean P-value falls along

the distribution of simulated mean P-values yielded a one-sample

cellular colocalization affinity with network structures P-value (1-

sample CIRCOAST) for enriched colocalization across the entire

study group by combining the information from the unique binomial

distributions found in each image.

2.5.3 Two-sample CIRCOAST test: testing colocalization between

two study groups

To determine if two study groups differ with respect to the

frequency of cell–cell colocalization, the CIRCOAST P-values are

calculated for all the images from each group and subjected to a

two-sample parametric (e.g. Student’s t-test) or non-parametric (e.g.

Wilcoxon rank sum test) test to yield an ‘observed’ P-value

(Supplementary Fig. S7C). This P-value is then compared to the

pseudo-null distribution of P-values that are generated under the

null hypothesis scenario. The pseudo-null distribution is generated

by way of a large number of permutations of the study group

identifications; i.e. the original study group identifications are

randomly assigned to the sample identification numbers and the

same parametric or non-parametric two-sample test is conducted

using these random study group assignments. The fraction of

the two-sample permuted test P-values less than or equal to the

‘observed’ two-sample test P-value yields the two-sample cellular

colocalization affinity with network structures P-value (2-sample

CIRCOAST).

2.6 Experimental validation
2.6.1 In silico validation

A dataset of images was created to represent healthy and diseased

tissue, with one study group with high injected cell and endothelial

cell network density to mimic healthy conditions, and the another

with low injected cell and endothelial cell network density for the

dropout seen in diabetes (Supplementary Fig. S9). Vessels were cre-

ated with the vessel network generator program and cells randomly

placed with a single run of the MCMRP. Correct statistical analysis

should reveal no changes between study groups since the cells were

randomly placed. While generic statistics revealed a change in ICA

(colocalization per field of view: p ¼ 2.46e-09; colocalization per

1 mm vessel length: p ¼ 1.12e-02; fraction of injected cells colocaliz-

ing: p ¼ 6.68e-07; unpaired t-test), CIRCOAST correctly revealed

no changes in colocalization between study groups (p ¼ 0.494). This

dataset reveals that a false positive conclusion can be generated by

generic statistics tests that confound changes in vascular and cell

density when examining intracellular colocalization.

Imaged cells have a range of phenotypes in both size and shape

that depart from the idealized uniform disk shape used in the

MCMRP. We determined that a collection of cells with heteroge-

neous diameters can be approximated as cells with diameter

equal to the mean diameter, yielding mean ICF values that are not

identical, but have close agreement and negligible effect sizes

(Supplementary Fig. S10). While the shape used to represent a cell

can alter the ICF from random cell placement, representing cells as

disk whose area is equal to the mean cell area sampled from a collec-

tion of imaged cells minimizes inaccuracies from altered geometry

(Supplementary Fig. S11).

Errors in analyzing experimental images, such as failing to iden-

tify all cells in an image or discerning individual cells from cell

clumps, could potentially throw off results of the CIRCOAST test.

To examine the consequence of input error, we created a dataset

of 2000 simulated images, split into 50 study groups with 20 images

each, to see how errors in quantification alter mean ICF,

CIRCOAST 1-sample P, and statistical outcome. Simulated images

had uniform vascular density and elevated cell density to induce a

high degree of cell overlap with randomly placed cells.

With highly erroneous quantification represented by cell count

quantified by connected components (any overlap between cells

leads to them being counted as a single cell, roughly 20% of cells

miscounted), CIRCOAST 1-sample P-values were significantly

reduced, leading to an elevated false positive rate (Supplementary

Fig. S12A–E). However, this effect was mitigated by calculating the

input cell area using the diameter approximated circle method.

Therefore, the error caused by incorrectly quantified cell clumps can

be minimized by accounting for how the cell clusters change the

mean cell area, although high emphasis should be placed on correct

cell counting in experiment images. If cells are randomly missed and

not counted in the quantification process, mean ICF or CIRCOAST

1-samples P-values do not change (Supplementary Fig. S12F–H),

corroborated by the fact that cell density does not change mean ICF

with the MCMRP parameter sweeps in Supplementary Figure S3.

2.6.2 Cell sources

See Supplementary Note 3.

2.6.3 In vitro and in vivo validation

See Supplementary Note 4.

2.6.4 Image acquisition, thresholding and quantification

See Supplementary Note 5.

3 Results

A biologically relevant application of colocalization of annular cells

with network structures is cellular colocalization with microvascular

networks, which are comprised of branched networks of endothelial

cells. ASCs are known to colocalize with vascular endothelial cells

in vitro (Merfeld-Clauss et al., 2010) and can engraft when injected

in vivo (Mendel et al., 2013). Active homing of ASCs to the vascula-

ture is hypothesized to play a role in this intercellular colocalization,

but has not been established at a cell population level. The

CIRCOAST statistical pipeline is validated by testing for the

enriched cellular colocalization known for ASCs and ECs in vitro

compared to fluorescent microspheres for a negative control, and

then used in vivo to determine if injected ASCs exhibit greater than

random colocalization with the vasculature to give insight to their

possible mode of therapeutic action in disease (Mendel et al., 2013).

ASCs cultured with a network of HUVECS were found to have

enriched colocalization over random behavior predicted by the

BMRP (Fig. 5A and B; p < 1e-7 1-sample CIRCOAST, a¼ 0.05, 1e7

trials, N ¼ 6 wells, 3 images/well). For a negative control, fluores-

cent microspheres cultured with a network of endothelial cells did

not exhibit unique colocalization as expected (Fig. 5C and D;
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p ¼ 0.235 1-sample CIRCOAST, a ¼ 0.05, 1e7 trials, N ¼ 6 wells,

3 images/well). There was a significant difference in ASC and micro-

sphere cell density (Fig. 5E, �18.7%, p ¼ 2.4E-2 two-sample t-test)

and endothelial network density (Fig. 5F,þ74.5%, p ¼ 3.3E-3 two-

sample t-test) between study groups, illustrating the need for statis-

tical tests that are not confounded by changes to cell or vessel dens-

ity across study groups. As demonstrated in Supplementary Figure

S9, changes in network and cell density can confound generic statis-

tics that examine colocalization events, while the CIRCOAST takes

into account these changes between study groups and effectively

standardizes for both changes in network and cell density. Unique

colocalization affinity between ASCs and microspheres with endo-

thelial cells was detected (Fig. 5G, p ¼ 1.3e-6, 2-sample

CIRCOAST, a ¼ 0.05, 1e7 permutations).

For an in vivo validation of the CIRCOAST test, ASCs were

injected into the eye in an in vivo model of diabetic retinopathy and

found to exhibit enriched colocalization with the retinal vasculature

(Fig. 6A–B, p < 2.0e-7 1-sample CIRCOAST, 1e7 trials, N¼ 6

wells). Surprisingly, injected dead cells also had enriched colocaliza-

tion with the vasculature (Fig. 6C–D, p < 5.2e-4 1-sample

CIRCOAST, 1e7 trials, N ¼ 6 mice, 3 images/mouse), possibly due

to immune cells phagocytosing the injected dead cells while still

retaining their fluorescent signal (Kang et al., 2014; Sutton et al.,

2008), and then chemotaxing to the vasculature and reentering the

bloodstream (Cortez-Retamozo et al., 2012). While there was no

change in EC density (Fig. 6F, 2.24%, p ¼ 0.70 two-sample t-test),

there was a trend of decreased injected circular cell density in the

dead cell group (Fig. 6E, �48.2%, p ¼ 0.071 two-sample t-test),

and a high degree of variance between biological samples, illustrat-

ing the need for statistical tests to correct for high variance with cell

densities. No difference was discerned in colocalization affinity be-

tween live and dead ASCs (Fig. 6G, p ¼ 0.53 2-sample CIRCOAST,

1e7 permutations).

4 Discussion

In summary, we present CIRCOAST, a tool to characterize intercel-

lular colocalization with network structures independent of the

changes in cell and vessel network density found across study groups

from both in vitro and in vivo experiments. The tool was validated

by probing for the previously known colocalization events observed

between ASCs and endothelial cells in vitro, and used to test for

enriched colocalization between these cells in vivo.

In the field of immunology, changes in cell density measured via

flow cytometry or fluorescence microscopy are used as key metrics

to study cell behaviors in disease (Krummel et al., 2016). These

measurements report cell numbers or densities and only indirectly

allude to changes in cell–cell interactions. In studies when cellular

Fig. 5. ASCs exhibit enriched colocalization with HUVECS network, while

fluorescent microspheres (lSpheres) do not. (A) ASCs (red) co-cultured with

HUVECS (green). (B) Distribution of simulated mean CIRCOAST P-values

(blue) of random colocalization of ASC group compared to observed mean

CIRCOAST P-value (red). (C) Fluorescent lSpheres seeded on a culture of

HUVECs (scale bar 250 um). (D) Distribution of simulated mean CIRCOAST P-

values (blue) of random colocalization from fluorescent lSpheres compared

to actual mean P-value (red). (E) Circular cell density and (F) endothelial net-

work density between groups. (G) Distribution of P-values (blue) derived from

permuting CIRCOAST P-values in a Wilcox sum rank test between ASCs and

lSpheres, with observed P-value (red) (N¼6 wells, 3 images/well)

Fig. 6. Injected live and dead ASCs both exhibit enriched intercellular colocali-

zation affinity with the vasculature. (A) Confocal image of retinal vasculature

(green, preprocessed and thresholded) and injected with live DiI-labeled cir-

cular ASCs (red). (B) Distribution of simulated mean CIRCOAST P-values

(blue) of random colocalization of ASC group compared to observed mean bi-

nomial P-value (red). (C) Dead DiI-labeled circular ASCs in the retinal vascula-

ture (scale bars 150 um). (D) Distribution of simulated mean CIRCOAST P-

values (blue) of random colocalization from dead cell group, compared to ac-

tual mean P-value (red). (E) Injected circular cell and (F) endothelial network

density between study groups. (G) Distribution of permuted P-vales of Wilcox

sum rank test of CIRCOAST P-values between study groups, with observed P-

value (red) (N¼6 mice, 3 images/mouse)
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colocalization is examined more directly using microscopy, changes

to cell density of either cell population can confound colocalization

metrics analyzed with generic statistics: the method presented here

does not have such drawbacks. Additionally, this method could be

used to test for changes in colocalization within subpopulations of a

single cell type denoted by unique marker expression to implicate

marker expression with colocalization behavior.

Although we focused on characterizing the frequency of interac-

tions between cells and microvessels, other static cellular network

structures could be analyzed, such as neuron networks, glial cells

and lymphatics. Furthermore, we think that CIRCOAST could be

extended beyond cell-vessel associations to study colocalization be-

tween two migrating cell populations so as to interrogate putative

chemotactic behaviors. Possible applications include the study of

interactions between T-cells and B-cells, which are known to be crit-

ical for T-cell activation and immune responses to infection

(Janeway et al., 2001). Additionally, T-cell interactions with antigen

presenting cells (e.g. macrophages, monocytes and dendritic cells)

play a significant role in homeostatic conditions and in initiating the

adaptive immune response during disease (Mahnke et al., 2008).

Furthermore, in vivo time lapses indicate that macrophages may

preferentially interact with pericytes in a juxtacrine fashion and re-

ceive instructions for launching innate immune responses (Stark

et al., 2013) and play a role in vascular remodeling (Corliss et al.,

2016). Analysis of intercellular colocalization could confirm that

macrophages are preferentially migrating to pericytes as part of this

process. This method could also be extended to intracellular colocal-

ization studies at high resolutions where imaged structures typically

approximated as a point cloud are better approximated as an annu-

lar shape. Possible intracellular applications would include charac-

terizing vesicle trafficking across cellular cytoskeletal components

(Schuh, 2011).

Although CIRCOAST serves as a new method for hypothesis

testing, additional features could enhance its capability. Future

work, for example, could include extending the framework to

perform power analyses for experiments, along with measuring the

effect sizes between groups. Continued research in using a hypergeo-

metric model of random cell placement could yield more accurate

results once the distribution’s parameters are better understood for

this application. CIRCOAST is also limited to approximating cells

as circular shapes, but supporting elongated cell morphologies could

facilitate its use in analyzing a greater diversity of cell types and phe-

notypes. Furthermore, using established methods in characterizing

cell morphology (Pincus and Theriot, 2007), simulated cells could

be designed to directly represent the heterogeneity in cell size and

morphology specific to each image instead of using a single cell

shape as an approximation. Currently, CIRCOAST supports the

analysis of 2D images that are maximum projections of 3D confocal

z-stacks, leading to the issue that cells may appear to colocalize with

the projected image but may not be colocalized in the z-dimension.

Extending CIRCOAST so that it is capable of analyzing 3D image

volumes will allow for more accuracy in determining whether cells

of interest are colocalizing in the z-direction, in addition to the x-

and y-directions. Usage of a nuclear dye would add greater certainty

quantifying structures that correspond to distinct cells, especially in

the cases where cell clumps form. Indeed, this test could be extended

to characterize colocalization of a cell type with itself to study

homotypic interactions.

Limitations in generic statistical approaches have been

implicated as a contributing factor in the crisis of reproducibility

in the biomedical sciences (Nuzzo, 2014). With the development

and validation of CIRCOAST, we aim to provide a novel statistical

method that is superior to generic hypothesis tests for studying

intercellular colocalization, allowing for more robust and

repeatable characterization of cell–cell interactions in 2D images

of tissues.
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