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ABSTRACT

Accurate prediction of gene regulatory rules is im-
portant towards understanding of cellular processes.
Existing computational algorithms devised for bulk
transcriptomics typically require a large number of
time points to infer gene regulatory networks (GRNs),
are applicable for a small number of genes and fail
to detect potential causal relationships effectively.
Here, we propose a novel approach ‘TENET’ to recon-
struct GRNs from single cell RNA sequencing (scR-
NAseq) datasets. Employing transfer entropy (TE) to
measure the amount of causal relationships between
genes, TENET predicts large-scale gene regulatory
cascades/relationships from scRNAseq data. TENET
showed better performance than other GRN recon-
structors, in identifying key regulators from public
datasets. Specifically from scRNAseq, TENET iden-
tified key transcriptional factors in embryonic stem
cells (ESCs) and during direct cardiomyocytes repro-
gramming, where other predictors failed. We further
demonstrate that known target genes have signifi-
cantly higher TE values, and TENET predicted higher
TE genes were more influenced by the perturbation
of their regulator. Using TENET, we identified and
validated that Nme2 is a culture condition specific
stem cell factor. These results indicate that TENET is
uniquely capable of identifying key regulators from
scRNAseq data.

INTRODUCTION

Regulatory mechanisms are key to understanding cellular
processes. The cell-type specific functions and responses

to external cues is governed by complex gene regula-
tory networks (GRNs) (1–3). Various approaches including
genome-wide location analysis using chromatin immuno-
precipitation followed by genome-wide sequencing (ChIP-
seq) (4,5) and perturbation analysis were designed to ex-
plain the putative causal relationships between genes (6,7).
However, protein binding information is limited by the
availability of antibodies and identification of target genes is
difficult when bound at intergenic regions. Moreover, using
perturbation experiments, it is hard to measure the strength
of the putative causal relationships with the target genes.
Systems biology approaches have been suggested to predict
regulators and their target genes, prior to experimental wet-
lab validation to reduce the cost and time (2,8–11). How-
ever, previous attempts to infer GRNs have been limited to
a small number of genes (12–14) and/or cannot detect pu-
tative causal relationships effectively (15,16).

When dealing with causal relationships, time is often in-
volved, i.e. an effect cannot occur before its cause. In or-
der to utilize time to identify the cause (the regulator) and
the effect (the target genes), a time series analysis of gene
expression data would be useful. Single cell RNA sequenc-
ing (scRNAseq) provides sequential static snapshots of ex-
pression data from cells aligned along the virtual time also
known as pseudo-time (17–19). Indeed, gene expression
patterns and peak levels across pseudo-time have been used
to infer potential regulatory relationships between genes
previously (18,20). It is based on an assumption that the ex-
pression profile of a potential regulator precedes the expres-
sion pattern of a target gene along the pseudo-time. More-
over, current approaches rely on visual and manual inspec-
tion and the gene expression dependencies are not exten-
sively investigated. Systematic approaches that quantify po-
tential causal relationships between genes and reconstruct
GRNs are still highly required.
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We aim to quantify the strength of causality between
genes by using a concept originating from information
theory, called transfer entropy (TE). TE measures the
amount of directed information transfer between two vari-
ables (21,22). Leveraging the power to measure potential
causality, TE has been successfully applied to estimating
functional connectivity of neurons (23–25) and social in-
fluence in social networks (26). Based on TE, we devel-
oped TENET (https://github.com/neocaleb/TENET) to re-
construct GRNs from scRNAseq data. Using single-cell
gene expression profile along the pseudo-time, TENET cal-
culates TE values between each set of gene pairs.

We found that TE values of the known critical regula-
tors (i.e. target genes) were significantly higher than that of
randomly selected targets. Interestingly, target genes with
higher TE values were influenced more profoundly by the
perturbation analysis. We also show that TENET outper-
forms previous GRN constructors in identifying target
genes.

Pseudo-time has been used in a number of GRN recon-
structors (27–31). Unique to TENET is the ability to repre-
sent key regulators with the hub nodes in the reconstructed
GRNs. For instance, TENET identified pluripotency fac-
tors from scRNAseq during mouse embryonic stem cell
(mESC) differentiation (32) and the key programming fac-
tors from scRNAseq for the direct reprogramming toward
cardiomyocytes (33), where existing methods either failed to
identify or capture their importance for the regulatory net-
work. Interestingly, the factors that TENET identified were
more negatively correlated with the number of final states
(or attractors) in the Boolean networks (12), which confirms
the importance of the identified hub nodes. An alternative
method SCENIC also infers GRNs and their target genes
using co-expression and the motif information (15). Com-
pared with SCENIC, TENET determines the regulatory
relationships using the expression profiles alone along the
pseudo-time. Therefore, TENET can be used to search for
any type of regulators regardless of their binding to DNA.

In summary, TENET has a potential to elucidate previ-
ously uncharacterized regulatory mechanisms by reprocess-
ing scRNAseq data.

METHODS

The TENET algorithms

TENET measures the amount of putative causal relation-
ships using the scRNAseq data aligned along pseudo-
time. From pseudo-time ordered scRNAseq data (Fig-
ure 1A), TENET calculates bidirectional pairwise TE val-
ues for selected genes using JAVA Information Dynamics
Toolkit (JIDT) (34) (Figure 1B). We calculated TE val-
ues by estimating the joint probability density functions
(PDFs) for mutual information (MI) using a non-linear
non-parametric estimator ‘kernel estimator’(21). The joint
PDF of two genes x and y can be calculated as follows:

p̂r (xn, yn) = 1
N

N∑
n′= 1

�

(∣∣∣∣
(

xn − xn′

yn − yn′

)∣∣∣∣ − r
)

, (1)

where � is a kernel function and N is the number of cells.
We used step kernel (�(x>0) = 1, �(x≤0) = 0) with kernel

width r = 0.5 as default. The TE from X to Y is defined as
follows:

TEX→Y = H (Yt|Yt−1:t−L)

−H(Yt|Yt−1:t−L, Xt−1:t−L), (2)

where H(X) is Shannon’s entropy of X and L denotes the
length of the past events considered for calculating TE. It
calculates the amount of uncertainty of Yt reduced by con-
sidering Xt-1:t-L. We reconstructed the GRNs by integrating
all TE values for gene pairs (Figure 1C). To remove poten-
tial indirect relationships, we applied the data processing in-
equality (10), i.e. iteratively eliminating feed-forward loops.
The feed-forward loop is defined by a network motif com-
posed of three genes, where gene X regulates gene Y and
both gene X and Y regulate gene Z. We trimmed the link
from gene X to gene Z if TEX→Z is less than the minimum
value of TEX→Y and TEY→Z. Finally, we reconstructed a
GRN consisting of the significant links using Benjamini–
Hochberg’s false discovery rate (FDR) (35) after perform-
ing the one-sided z-test while considering the all trimmed
TE values as a normal distribution. The hub node is identi-
fied by calculating the number of targets (outgoing links).

Statistical analysis

A two-sided one-sample z-test was performed to evaluate
the mean of TE values for the targets of key factors (c-Myc,
n-Myc, E2f1, Zfx, Nme2) in mESCs and Gata4 in mouse
cardiomyocytes. This was accomplished by generating a fit-
ted z-distribution of the TE values using the same num-
ber of randomly selected genes (1000 times). A two-sided
two-sample Student’s t-test was performed to evaluate the
relative gene expression changes after knocking-in of Tbx3
and Esrrb and knocking-down of Pou5f1 and Nanog for the
specified TE values, respectively.

Data processing of scRNAseq data

To test TENET, we used the scRNAseq dataset obtained
from mESCs (32) and mouse cardiomyocytes (33). Wish-
bone (17) was used for pseudo-time analysis. As an in-
put gene list for the benchmarking of mESC dataset, we
used 3277 highly variable genes with log2(count)>1 for
>10% of all cells and a coefficient of variation >1.5.
For the scRNAseq data during the reprogramming into
cardiomyocytes, we used 8640 highly variable genes with
log2(count)>1 for >10% of all cells and a coefficient of vari-
ation >1. To reconstruct the GRN, we used a regulator gene
list that includes genes with a GO term ‘regulation of tran-
scription (GO:0006355)’ for the mESC. We generated all the
network figures using Cytoscape 3.6.1 (36).

Gene ontology (GO) terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways for the functional gene
group

All enriched GO terms and KEGG pathways were ob-
tained using Enrichr (37). The ‘pluripotency gene’ and
the ‘neural differentiation gene’ were obtained from the
genes with a GO term ‘stem cell population maintenance

https://github.com/neocaleb/TENET
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Figure 1. TENET reconstructs GRNs from pseudo-time ordered single cell transcriptome data using TE. (A) Step 1: Pseudo-time ordered scRNAseq data
are used as the input for TENET. (B) Step 2: TENET calculates gene-to-gene pairwise TE while considering the past events of X and Y. (C) Step 3: A
reconstructed GRN is composed of putative but significant causal relationships followed by trimming indirect relationships. The heatmap shows the gene
expression levels for a regulator (X) and its target genes.

(GO:0019827)’ and ‘neuron differentiation (GO:0030182)’,
respectively. We used GO terms ‘cardiac muscle cell dif-
ferentiation (GO:0055007)’, ‘cardiac muscle contraction
(GO:0060048)’ for cardiomyocyte gene.

Gene expression and ChIP-seq data for validation

We downloaded an RNAseq dataset in mESCs with three
different combinations of double knock-in for Esrrb and
Tbx3 (Esrrb-/Tbx3-, Esrrb+/Tbx3-, Esrrb+/Tbx3+) (7).
The gold standard target genes of Esrrb and Tbx3 were
obtained by comparing Esrrb-/Tbx3- versus Esrrb+/Tbx3-
samples and Esrrb+/Tbx3- versus Esrrb+/Tbx3+ samples
with 2-fold change criterion, respectively. The target genes
of Nanog and Pou5f1 were identified by using microarray
data in mESC with Nanog and Pou5f1 knockdown (6). To
identify target genes of these two TFs, we used a 2-fold
change and a P-value < 0.01 as described in the original
data analysis.

ChIP-seq data for Pou5f1, Esrrb and Nanog in mESCs
were reanalyzed for peak calling (5). After removing the
adapter sequence using CutAdapt (38) implemented in
TrimGalore-0.4.5, we aligned the ChIP-seq reads to the
mm10 genome using Bowtie2 (39). ChIP-seq peak was
called against GFP control using the ‘findPeaks’ command
in the Homer package (40).

Robustness of TENET

In order to evaluate the robustness of TENET, we ran the
Wishbone 57 times with different options on the Boolean
expression data of single-cells obtained from early blood de-
velopment experiments (12). About 57 Wishbone trajecto-
ries were obtained by running Wishbone with 19 different
initial states provided in the reference paper (12) and three
different choices of cells based on the branches (total cells,

trunk + first branch, trunk + second branch). The other
GRN reconstructors from Beeline were also run based on
these 57 Wishbone trajectories.

Condition specific targets

To identify condition specific targets, we reconstructed
GRNs using the pseudo-time ordered expression data of
2iL+NPCs and SL+NPCs using TENET. Subsequently, the
condition specific targets of the top 20 factors in the com-
mon GRN were obtained by selecting targets in the culture
condition specific GRNs. For example, the 35 target genes
of Nme2 were included in the 2iL-specific but not in the SL-
specific GRN whereas the 14 target genes were included in
the SL-specific but not in the 2iL-specific GRN.

ESC culture

E14 mESC were cultured on plastic plates coated with
0.1% gelatin (Sigma #G1393) in either DMEM knockout
(Gibco #10829), 15% FBS (Gibco #10270), 1xPen-Strep-
Glutamine (Gibco #10378), 1xMEM (Gibco #11140),
1xB-ME (Gibco #21985) and 1000 U/ml LIF (Merck
#ESG1107) (‘Serum’) or in NDiff 227 (Takara #Y40002),
3uM CHIR99021 (Tocris #4423), 1 �M PD0325901 (Tocris
#4192) and 1000 U/ml (‘2iL’). For Nme2 experiments,
mESCs were treated with either vehicle DMSO (Sigma
#02660) or 0.5 �M STP (StemCell technologies #72652) for
24 or 48hr.

Alkaline phosphatase staining

For AP staining, 1000 mESCs were seeded in a 12-well
plate and cultured with vehicle/drug for 24 and/or 48 h.
The cells were washed in PBS, fixed in 1% formaldehyde
and stained with AP following manufacturers instruction
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(Merck #SCR004). For quantification of positive stained
colonies, four randomly selected areas of each well were im-
aged (10× magnification; Nikon Eclipse TS2) and manually
counted. Colonies were marked as pluripotent or primed
based on morphology and intensity of AP staining. The
mean and standard error of mean (SEM) were calculated
over four independent replicates.

Cell proliferation assay

For proliferation assay, 100,000 mESCs were seeded in a
6-well plate in both 2iL and SL conditions. Cells were ini-
tially allowed to attach for 24 h before treatment with either
DMSO or STP. After either 24 or 48 h of DMSO or STP
treatment, cells were detached from the plate using Accu-
tase and counted using the TC-20 automated cell counter
(BioRad). Data are mean + SEM from four biological repli-
cates.

RNA extraction and qPCR

Total RNA was harvested using Trizol (Ambion
#15596026), lock-gel columns (5prime #733–2478)
and precipitated in chloroform/isopropanol using with
glycogen. Reverse transcription was performed with 1 �g
of RNA using high capacity cDNA kit (Applied Biosys-
tem #4368814). Quantitative-PCR was performed using
SYBR-green with LightCycler480. To obtain relative gene
expression levels, expression levels were normalized to
Gapdh as a control.

RESULTS

TENET quantifies the strength of putative causal relation-
ships between genes from scRNAseq data aligned along the
pseudo-time

TENET measures TE for all pairs of genes to reconstruct
a GRN. To assign time to the cells, TENET aligns cells
along the pseudo-time. The paired gene expression levels
along the pseudo-time are used to calculate TE (Figure 1A).
Given the pseudo-time ordered expression profiles (Figure
1A), TE quantifies the strength of putative causal relation-
ships of a gene X to a gene Y (Figure 1B) by considering
the past events of the two genes. TE represents the level
of information in gene X that contributes to the prediction
of the current event Yt. The highly significant relationships
between genes are obtained by modeling all possible rela-
tionships with normal distribution (Benjamini–Hochberg’s
FDR (35)<0.01). The potential indirect relationships are re-
moved by applying data processing inequality measure (10)
(Figure 1C; see ‘Materials and Methods’ section). TENET
can be run on various sets of cell type regulators including
either known set of genes or the set of all TFs, or even on
the entire set of genes depending on the network of interest.
After feature selection, the network analysis is applied to
understand key regulators and relationships within the net-
works. In sum, TENET is useful in identifying target genes
of a regulator and predicting key regulators.

The TF target genes showed significantly higher TE values
than randomly selected genes

We applied TENET to the scRNAseq data during mESC
differentiation into NPCs (32). We profiled mESCs cultured
in 2iL (serum-free media with MEK and GSK3 inhibitors
and cytokine LIF) and SL (serum media and cytokine
LIF) and induced differentiation into neural progenitor
cells (41). The 2iL cultured mESCs (termed ‘ground state’)
homogeneously express naı̈ve pluripotency markers mim-
icking mouse epiblast, while SL cultures contain a hetero-
geneous mix of undifferentiated and differentiating ESCs
(42,43). Another motivation for choosing the mESC exper-
imental system was that a number of ChIP-seq and RNAseq
datasets are publicly available for validation (5–7). Visu-
alization of the scRNAseq data during mESC differentia-
tion using tSNE showed the differentiation trajectory from
naı̈ve ground state pluripotency (2iL) to differentiation-
permissive (SL) to NPCs (Figure 2A). Consistent with the
differentiation time course, general and naı̈ve pluripotency
markers including Pou5f1 (or Oct4), Sox2 and Nanog were
highly expressed in the mESC population whereas NPC
markers such as Pax6 and Slc1a3 were highly expressed in
the NPCs (Supplementary Figure S1). Then, we evaluated
the TE values of the target genes supported by ChIP-seq
at the promoter proximal (+/-2kbps) region. We chose c-
Myc, n-Myc, E2f1 and Zfx (5) as their occupancy is often
observed at the promoter region of their target genes. Ap-
plying peak calling using Homer (40), we found 541 c-Myc
promoter proximal peaks. The TE values of the c-Myc tar-
gets were compared to the randomly selected genes (as con-
trol) with the same sample size, similar GC contents and
expression levels. Repeating the process 1000 times, we ob-
served that the 541 c-Myc target genes showed significantly
higher TE values (P-value = 1.19e-27) than the randomly
selected genes (Figure 2B). We also confirmed that ChIP-
seq binding targets for other promoter binding TFs such
as n-Myc, E2f1 and Zfx also have significantly higher TE
values compared with the random targets (Supplementary
Figure S2A–C).

Additionally, we performed evaluation of TE values us-
ing the scRNAseq dataset for the reprogramming of mouse
fibroblasts into induced cardiomyocytes (33). Investigation
using Gata4 ChIP-seq in cardiomyocytes (44) confirmed
that the 331 potential target genes with Gata4 promoter oc-
cupancy also possess significantly higher TE values com-
pared with random targets (Supplementary Figure S2d).

TE values reflect the degree of dependency to the regulator

Gene perturbation followed by gene expression measure-
ment by bulk RNAseq has been widely used to determine
potential target genes. We further examined the TE val-
ues of the potential TF target genes identified by over-
expression of Esrrb and Tbx3 as well as knockdown of
Pou5f1 and Nanog (6,7). We divided the genes based on
their TE values and investigated the fold changes upon the
perturbation of the corresponding TF. Interestingly, the ex-
pression levels of the genes with low TE values (<0.05)
had little or no influence upon perturbation. However, the
expression levels of the genes with high TE values were
markedly increased upon overexpression of Esrrb and Tbx3
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Figure 2. Validation of TENET-inferred GRNs for the mouse embryonic stem cell (mESC) pluripotency. (A) A tSNE plot of the mESCs (2iL and SL)
and NPCs shows distinct expression. (B) The c-Myc target genes have higher TE values than the randomly selected 541 genes (repeated 1000 times). The
expression ratio of predicted Tbx3 (C) or Esrrb (D) target genes (Tbx3 or Esrrb overexpression (Tbx3+ or Esrrb+) against control (Tbx3- or Esrrb-)). The
expression ratio of predicted Pou5f1 (E) or Nanog (F) target genes (knockdown versus wild-type).

and consistently, decreased upon knockdown of Pou5f1
and Nanog. These changes were particularly more signifi-
cant for genes with higher TE values (>0.2) (Figure 2C–F).
These results indicate that TE values reflects the degree of
dependency of the target genes to the expression of their
regulator.

TENET can predict key regulators from scRNAseq data

To determine whether the TENET captures the key bio-
logical processes, we investigated hub nodes and evaluated
if key regulators were well represented. From the recon-
structed GRNs from mESC to neural cells, we assessed if
key regulators (based on the number of outgoing edges) in
the GRNs are associated with stem cell or neural cell biol-
ogy. The gene ontology (GO) terms and KEGG pathways
enrichment tests showed that the hub regulators (number of
outgoing edges ≥ 5) are mostly associated with pluripotent
stem cells and cellular differentiation functions (Supple-
mentary Figure S3a). We also benchmarked and compared
TENET’s performance to other methods including SCODE
(27), GENIE3 (45), GRNBOOST2 (46), SINCERITIES
(29), LEAP (28), SCRIBE (30) and SCINGE (31). For un-
biased comparison, we ran each GRN method on the same
set of 3277 highly variable genes (see Methods).

The top 4 ranked regulators determined by TENET
were markers for pluripotency (Pou5f1, Nanog, Esrrb and
Tbx3) (Figure 3A). Compared to TENET, most methods
failed to identify these key genes in the hub list except for

SCRIBE. For instance, GENIE3 and GRNBOOST2 only
found Nanog as the 14th and 5th of the top regulators, re-
spectively; but they did not detect Pou5f1. SCRIBE, an-
other TE-based GRN predictor identified Nanog, Pou5f1,
Esrrb, Tbx3 as the top regulators, suggesting the algo-
rithmic advantages of TE especially for scRNAseq data
(Supplementary Figure S4). However, both SCRIBE and
SCODE the numbers of target genes in the hub node were
drastically reduced beyond the 5th regulator, which high-
lights that these methods emphasize on a few potential reg-
ulators during network reconstruction.

Intrigued by this, we investigated whether the hubs in the
networks are associated with ‘pluripotency’ or ‘neural dif-
ferentiation’ using the list of the genes obtained from GO
database (see ‘Materials and Methods’ section). We inves-
tigated both receiver operating characteristic (ROC) curves
and precision-recall curves (PRCs) while regarding genes in
the GO database as true. The ROC curves for the pluripo-
tency and neural differentiation demonstrates TENET’s far
exceeding capability in predicting key regulatory factors re-
lated with these key GO terms compared to other methods
(Figure 3B; Supplementary Figure S5a and b). The area un-
der precision-recall curve (AUPRC) further confirmed the
increased performance of TENET in capturing key regula-
tors (Figure 3C). As TE values rely on pseudo-time, we also
investigated whether TENET results were sensitive to other
pseudo-time inference methods. Computing pseudo-time
using PAGA (47) and Slingshot (48) showed that TENET
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Figure 3. TENET outperformed other tools when predicting key regulatory factors for mESC pluripotency and direct reprogramming from mouse fi-
broblast into cardiomyocyte. (A) Key regulatory factors for mESC pluripotency and neural differentiation predicted by TENET. The purple bar denotes
pluripotency and neural differentiation genes. (B) ROC curves and (C) Area Under Precision-Recall Curves (AUPRCs) for the prediction of key regulatory
factors of pluripotency and neural differentiation. (D) Key regulatory factors for direct reprogramming into cardiomyocyte in the TENET-inferred GRN.
Three major reprogramming factors Mef2c, Tbx5 and Gata4 have a large number of targets. (E) ROC curves and (F) AUPRCs for the prediction of key
regulatory factors of cardiomyocyte.

is robust to the choice of pseudo-time inference and outper-
formed other GRN reconstructors (Supplementary Figure
S6).

To further test if TENET can suggest key regulatory
factors in various biological systems, we reconstructed a
GRN based on the scRNAseq data for direct reprogram-
ming of mouse fibroblast into cardiomyocyte by overex-
pressing Mef2c, Tbx5 and Gata4 (33). We first examined
if these overexpressed factors were well predicted in the in-
ferred GRNs. Consistently, TENET identified those three
major reprogramming factors (Mef2c, Tbx5 and Gata4)
as well as other genes associated with cardiomyocytes as
top ranked regulators (Figure 3D and Supplementary Fig-
ure S3b). Not surprisingly, these factors were not well ob-
served in the GRNs inferred by other reconstruction meth-
ods (Figure 3E and F; Supplementary Figure S5c-d) with
exception of SCRIBE that only found Mef2c (Supplemen-
tary Figure S7). Additionally, while GRNBOOST2 showed
relatively better performance in detecting pluripotency and
neuronal differentiation factors, it failed in detecting the key
factors during cardiomyocyte reprogramming. Collectively,
our results show that TENET can robustly capture key reg-
ulatory genes for biological processes.

TENET’s hub nodes were associated with the controllability
of Boolean network dynamics

To further investigate the characteristics of TENET in find-
ing key regulators, we compared the reconstructed networks
with Boolean networks (BNs) (12). BNs consider all pos-
sible binary status of its members (genes) and have been

widely used to model biological systems (13,49,50). BNs
can simulate overexpression or knockout of a gene and its
consequences from the inferred networks. Therefore, BNs
can be used to evaluate how much a member (i.e. gene)
can influence the steady-state dynamics of the networks,
and in combination with other members (called ‘control-
lability’) (51). Previously, a BN based GRN using 20 TFs
was built using single cell qRT-PCR during mouse early
blood development (12) (Supplementary Figure S8). Us-
ing the BN-inferred GRN as a surrogate for the gold stan-
dard, we first evaluate if the networks from GRN recon-
structors accurately mimic the BN-inferred GRN. The com-
parison showed that TENET and GRNBOOST2 outper-
forms other approaches in both directed and undirected
networks in this example (Supplementary Figure S9a and
b).

In the BNs, the number of final stable states (known as
attractors) can be calculated while simulating all possible
states of the members except one member of interest (a gene
with perturbation). A critical member usually has a small
number of attractors. Therefore, the predicted hub genes in
the GRN will negatively correlate with the number of at-
tractors if the hub genes are the key genes. In a series of ex-
periments, TENET showed an ability to find key regulators.
We further tested if the predicted key regulators are nega-
tively correlated with the attractors found in the BNs. Our
simulation showed that the TENET-inferred network has
the strongest negative correlation with the number of attrac-
tors compared followed by SCRIBE, SCODE and GRN-
BOOST2 (Supplementary Figure S9c), while other meth-
ods showed either no or positive correlation. This further



PAGE 7 OF 11 Nucleic Acids Research, 2021, Vol. 49, No. 1 e1

demonstrated that TENET has the capability to identify key
regulators.

TENET outperforms other GRN reconstruction algorithms
in identifying target genes

To further assess TENET, we used Beeline (52), a bench-
marking software for GRN inference algorithms. Among
them, we performed benchmarking only for those algo-
rithms that can implement large scale GRN reconstruc-
tion including SCODE (27), GENIE3 (45), GRNBOOST2
(46), SINCERITIES (29), LEAP (28), SCRIBE (30) and
SCINGE (31), using the mESC scRNAseq dataset (32). To
prepare stringent datasets for evaluation, we regarded a tar-
get as true if the expression of the target gene is changed
significantly by the perturbation study (6,7) and the bind-
ing occupancy of the corresponding regulator is observed
nearby (+/-50kbps to transcription start sites (TSSs)) (5)
(see Supplementary Figure S10a and ‘Materials and Meth-
ods’ section).

We benchmarked all methods running Beeline on 3,277
highly variable genes (see ‘Materials and Methods’ sec-
tion). Beeline (52) provided comprehensive results after run-
ning all GRN reconstructors. The ROC curves showed that
TENET, GENIE3 and LEAP outperformed other recon-
structors in predicting targets of Nanog, Pou5f1, Esrrb and
Tbx3 (Supplementary Figure S10b and c). Interestingly,
SCRIBE showed worse performance than TENET, while
GENIE3 and LEAP failed to find key regulatory genes but
showed good performance in this benchmarking test (even
with a small number of regulators).

TENET identifies culture condition specific regulators

To search for potential regulators besides the known TFs
during stem cell differentiation (32), we extended the GRN
by considering 13,694 highly variable genes as well as target
genes (see ‘Materials and Methods’ section). In addition to
several known pluripotency (Nanog, Sox2, Pou5f1, Tfcp2l1
etc.) and neural regulators (Meis1, Tbx3 etc.), we were in-
trigued to find Fgf4 and Nme2 as the top regulators (ranked
by number of targets, Supplementary Figure S11b and Ta-
ble S1). Fgf4 is known to be dispensable for embryonic stem
cells, but is critical for exit from self-renewal and differenti-
ation (53,54), while Nme2 (55) has been implicated in stem
cell pluripotency (Supplementary Figure S11).

As we profiled mESCs in both ground-state 2iL and het-
erogeneous SL conditions, we assessed whether TENET
could further distinguish them and identify culture-
condition specific GRNs. We reconstructed GRNs for 2iL
and SL condition separately and compared the regulators
as well as their specific targets (Supplementary Figure S12;
see ‘Materials and Methods’ section). We found several
naı̈ve pluripotency markers specifically enriched in 2iL con-
dition including Nanog (56), Esrrb (57) and Tfcp2l1 (58,59),
whereas heterogeneous and hypermethylated SL condition
(60,61) regulators included Tet1 (62,63) and Dnmt3l (64)
and Zfp57 (65) (Supplementary Figure S12). Interestingly,
Nme2 was a top mESC regulator for the 2iL GRNs. In-
trigued by this, we sought to investigate the effect of Nme2
perturbation using an small molecule inhibitor Stauprim-

ide (STP) that blocks the nuclear localization (55). We cul-
tured mESCs in 2iL and SL conditions and treated cells
with 0.5 �M STP (Figure 4A). The cellular proliferation
and division were significantly inhibited in both culture con-
ditions, but were drastic in 2iL (Figure 4B). Upon 24hr
STP treatment in 2iL, we could visually observe high lev-
els of apoptotic cells, detached colonies and few viable cells
at 48hrs. We quantified the STP effect on pluripotency by
alkaline phosphatase staining (AP; Figure 4C) and scored
cells either as undifferentiated (high AP staining, rounded
colonies; naı̈ve mESCs) or as mixed (low/no AP stain-
ing, flattened colonies; differentiation-like/apoptotic cells)
(43,66). The STP treatment in 2iL led to a drastic decrease
in undifferentiated colonies (45% ± 5.9% colonies) and the
remaining mixed cells were mostly composed of apoptotic
cells.

Previously, c-Myc has been reported as a target gene of
Nme2 (55), consistent with TENET prediction. We con-
firmed that c-Myc expression was significantly downregu-
lated upon STP treatment in both culture conditions (Fig-
ure 4D). TENET also predicted several TFs including
Nanog and Ctnnb1 at the target of Nme2. We found that
both Nanog and Ctnnb1 transcripts were highly upregu-
lated upon STP treatment in both culture conditions but
more significant in 2iL condition, indicating condition spe-
cific regulation of Nme2 as predicted by TENET (Figure
4D).

DISCUSSION

Systems biology approaches to infer GRNs can provide
a hypothesis for further experimental validation. Existing
methods for bulk transcriptomics datasets are limited be-
cause they cannot capture the continuous cellular dynamics
and/or require cell synchronization to avoid ‘average out’
expression. scRNAseq has emerged as an alternative be-
cause of its power to provide the transcriptomic snapshots
of hundreds, thousands of cells on a massive scale, from
same population. Subsequently, computational approaches
used scRNAseq for GRN reconstruction (2,12,14,15,27–
31,46).

Many GRN reconstruction algorithms including
TENET use the temporal gene expression changes, after
ordering cells across pseudo-time. For example, GENIE3
(45) and GRNBOOST2 (46) were originally applied the
ensembles of regression trees to temporal bulk expression
data. LEAP (28) calculates possible maximum time-lagged
correlations. SINCERITIES (29) and SCINGE (31) used
Granger causality from pseudo-time ordered data. SCODE
(27) uses a mechanistical model of ordinary differential
equations on the pseudo-time aligned scRNAseq data.
Compared with current methods, TENET makes use of
the power of information theory by adopting TE on gene
expression along the pseudo-time. Therefore, the perfor-
mance of these predicted regulators could be dependent on
the performance of the pseudo-time inference. However, we
found that TENET is robust to the multiple pseudo-time
inference approaches in comparison with other GRN
reconstructors (Supplementary Figure S6).

We showed that TE values of the known target genes
were significantly higher than randomly selected genes (Fig-
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Figure 4. Nme2 inhibition blocks proliferation of mESC in 2iL condition. (A) Experimental design: The mESCs were seeded in either SL or 2iL culture
conditions and were treated with either DMSO (control) or 0.5 �M STP for 24 and 48 h. The six samples were assayed for proliferation rates, relative
transcript expression and for pluripotency using alkaline phosphatase (AP). (B) Cell proliferation assay for mESCs cultured in SL and 2iL conditions
with either DMSO (Control) or 0.5 �M STP. The mean and SEM were calculated over four independent replicates. (C) STP treatment leads reduction
in undifferentiated colonies and increase in mixed differentiation-like colonies across both SL (48 h) and 2iL (24 h) conditions, based on AP staining.
AP staining intensity and colony morphology are used to classify undifferentiated (high AP staining, rounded colonies) and mixed (low/no AP staining,
flattened colonies; differentiation-like; apoptotic cells) populations. Representative images of undifferentiated and mixed colonies in control and STP
treated colonies across both culture conditions. The data in the barplots describe the mean ± SEM from two biologically independent replicates. (D) The
c-Myc transcript levels are downregulated both in 2iL and SL upon STP treatment, owing to impaired Nme2 nuclear localization. The Nme2 target genes
in TENET (Nanog and Ctnnb1) are selectively regulated between culture conditions. Significance (P-value) are highlighted above barplots. The data in
barplots describe the mean ± SEM from three biologically independent replicates.

ure 2B and Supplementary Figure S2). The target genes
with higher TE values were more significantly perturbed
by either overexpression or knockdown of the correspond-
ing regulators (Figure 2C–F). We also performed compre-
hensive benchmarking of TENET and several GRN re-
constructors using Beeline (52) and its automated pipeline.
TENET was consistently one of the top performing GRN
reconstructors in these tests.

The evaluation of the performances of GRN reconstruc-
tors by counting the number of true or false prediction does
not fully reflect the importance of the inferred network.
We observe that TENET consistently predicts and iden-
tifies key regulators. This is important because upstream
regulators for a biological process are often of interest to
explain the underlying mechanisms. It is still required to
evaluate if the inferred networks reflect the key underlying
biological processes. Applying TENET to a series of scR-
NAseq datasets including (i) mESC differentiation and (ii)
reprogramming to cardiomyocytes, we find that TENET
identified key factors as the top scoring hubs. For mESC
differentiation, TENET ranked Nanog, Pou5f1, Esrrb and

Tbx3 as the top 4 regulators, while existing methods failed
to identify these key factors. In an additional test using
GO terms, TENET identified gene relationships associated
with pluripotency and neural differentiation (Figure 3B and
C). Interestingly, existing methods including LEAP and
SINCERITIES did not find any genes related to pluripo-
tency in their networks (Supplementary Figure S5b). An-
alyzing the reprogramming to cardiomyocytes scRNAseq
data, only TENET identified the reprogramming factors
(Mef2c, Tbx5 and Gata4) (33; Figure 3D–F and Supple-
mentary Figure S7). These results suggest that while other
approaches successful in finding some regulatory rules, they
cannot make networks focusing on the key biological pro-
cess.

We further questioned if TENET is capable of identifying
key regulators using BNs. While BNs may not be a perfect
model of biological system, they can still provide a compre-
hensive systematic overview by visiting all potential states.
In BN, the key nodes usually have small number of attrac-
tors as they drive the networks into more determined status.
In our analysis using BNs, TENET-inferred networks were
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negatively correlated with the number of attractors (Sup-
plementary Figure S9), indicating the key ability to capture
biological processes.

A number of studies showed distinct expression patterns
in the pseudo-space (67,68). Since pseudo-time inference
can lead to multiple branched trajectories, we also applied
TENET to individual branches. These expression changes
for some genes may be attributed to association along the
spatial axis. However, the associating potential causal rela-
tionships for them may not be relevant.

With the power to predict key regulators, we applied
TENET to identify mESC culture-condition specific reg-
ulators. TENET predicted several TFs (Nanog, Esrrb and
Nme2) as specific for 2iL compared to SL culture conditions
(Supplementary Figure S12). Although Nme2 is expressed
both in 2iL and SL, perturbing Nme2 leads to more dra-
matic effects (reduced proliferation, AP staining and apop-
tosis) in the 2iL condition, consistent with our prediction.
In sum, TENET is a useful approach to predict previously
uncharacterized regulatory mechanisms from scRNAseq.
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