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Abstract Soil moisture-precipitation feedbacks in a large ensemble of global climate model
simulations are evaluated. A set of three metrics are used to assess the sensitivity of afternoon rainfall
occurrence to morning soil moisture in terms of their spatial, temporal, and heterogeneity characteristics.
Positive (negative) spatial feedback indicates that the afternoon rainfall occurs more frequently over wetter
(drier) land surface than its surroundings. Positive (negative) temporal feedback indicates preference over
temporally wetter (drier) conditions, and positive (negative) heterogeneity feedback indicates preference
over more spatially heterogeneous (homogeneous) soil moisture conditions. We confirm previous results
highlighting a dominantly positive spatial feedback in the models as opposed to observations. On average,
models tend to agree better with observations for temporal and heterogeneity feedback characteristics,
although intermodel variability is largest for these metrics. The collective influence of the three feedbacks
suggests that they may lead to more localized precipitation persistence in models than in observations.

Plain Language Summary Not only does rainfall influence soil moisture, but soil moisture
can also actively influence rainfall. Current climate models do not represent such two-way relationships
correctly, mainly due to uncertainty in the latter. Our understanding of models' weaknesses in simulating
these processes is relatively low, and this is the focus of this study. Here we investigate how afternoon
rainfall occurrence is affected by morning soil moisture conditions from three perspectives: relative soil
moisture of the region where it rains compared to (1) surrounding regions (spatial feedback), (2) its
long-term mean (temporal feedback), and (3) the spatial heterogeneity of soil moisture (heterogeneity
feedback). In models, the afternoon rainfall preferably occurs over regions that are wetter than their
surroundings, as opposed to observations. Models show better agreement with observations in the temporal
and heterogeneity feedback, but large differences across the models remain. We suggest that the
combined effect of these three relationships in models may contribute to their biases in the persistence
of precipitation.

1. Introduction
Despite substantial research over the past few decades, soil moisture-precipitation (hereafter SMP) feed-
backs remain among the most uncertain processes in the field of land-atmospheric interactions (Santanello
et al., 2017; Seneviratne et al., 2010). Soil moisture influence on precipitation at seasonal to interannual
scales has been investigated with the concept of moisture recycling (Dirmeyer et al., 2006; Eltahir & Bras,
1996; van der Ent et al., 2010), here referred to as direct SMP feedback. There has also been an increasing
attention toward understanding indirect SMP feedback at subdaily to daily scales, which is also the focus
of our study. Indirect SMP feedback can be narrowed down to the influence of soil moisture condition on
boundary layer characteristics and convective initiation. Several studies have investigated such local effects
of soil moisture using two main types of approaches. Some focused on the temporal effect of soil moisture on
rainfall based on one-dimensional frameworks, which can yield both positive and negative effects (Alfieri
et al., 2008; Duerinck et al., 2016; Findell & Eltahir, 2003; Gentine et al., 2013; Guillod et al., 2014). A positive
temporal feedback appears when the increase of moisture is more critical for the cloud formation and pre-
cipitation, often under low stability in the free troposphere. A negative temporal feedback usually appears
under a strong stability barrier at the top of planetary boundary layer, which requires larger sensible heat to
allow sufficient turbulent mixing (Hohenegger et al., 2009). Another line of research considers spatial soil
moisture gradients (C. M. Taylor & Lebel, 1998) whereby locally drier soils induce a mesoscale atmospheric
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circulation such that increased convergence over the drier region, which leads to convection (C. M. Taylor
et al., 2011). Conceptually, temporal and spatial feedbacks may interact: Rainfall may produce spatial het-
erogeneities in soil moisture that subsequently lead to further rainfall events over the drier regions, thereby
increasing precipitation occurrence over a wider area (Guillod et al., 2015; H. Hsu et al., 2017).

C. M. Taylor, de Jeu, et al. (2012) have demonstrated that observations display a negative spatial SMP feed-
back, contrary to global climate models (GCMs), which display a positive feedback. This misrepresentation
of SMP feedback in GCMs suggests issues in the dynamics of rainfall and soil moisture and could intro-
duce systematic errors in the climate simulated by these models. Many studies have assessed the feedback
in GCMs using different approaches, including modeling experiments. Koster et al. (2006) investigated the
relative strength of the SMP feedback across GCMs in terms of precipitation variability explained by soil
moisture and highlighted regions with stronger coupling such as the Sahel and central North America. Sev-
eral regional studies analyzed the development of convective rainfall in model simulations with different
soil moisture perturbations, in, for example, South Africa (Cook et al., 2006), the Indian and African mon-
soon region (Douville et al., 2001; Meehl, 1994), the Alpine region (Hohenegger et al., 2009), and the Sahel
(C. M. Taylor et al., 2013). These studies commonly concluded that simulations with parameterized convec-
tion, as applied in most of the GCMs, are not able to simulate negative feedbacks. In addition, although the
previous studies have proven the substantial contribution of parameterized convection to SMP feedback in
models, the role of the land surface schemes should not be overlooked as surface variability induced from
land surface processes is likely to influence the development of convection and thus the SMP feedback itself.

Previous studies mainly point to the spatial resolution of models and thereby parameterization of convection
as the main issue that may prevent GCMs from correctly simulating SMP feedbacks. Nonetheless, there is
a lack of understanding in how such feedbacks are represented in current GCMs, especially with respect to
their spatial and temporal components. In this study, for the first time we evaluate both spatial and temporal
SMP feedbacks in a large ensemble of fully coupled climate models using the diagnostics introduced by C. M.
Taylor, de Jeu, et al. (2012) and Guillod et al. (2015). Section 2 describes the observational data and models
used in the analysis. Section 3 describes the coupling diagnostics and their application to both observations
and models. The analysis of SMP feedbacks in observations and models is presented in section 4.1. In section
4.2, the possible collective effects of spatial and temporal SMP feedbacks in observations and models are
discussed. Conclusions are drawn in section 5.

2. Data
2.1. Observational Data
In this study, three precipitation data sets and four soil moisture data sets are used, which resulted in 12
combinations of observational estimates of the SMP feedback metrics. Using multiple observational data
sets allows to consider observational uncertainty in identifying the SMP feedback (Ford et al., 2018; Guillod
et al., 2015). All observational data are sets commonly available over the period 2002–2011 at 0.25◦ × 0.25◦

resolutions.

2.1.1. Precipitation
We use three different 3-hourly precipitation data sets that are commonly based on multiple satellite mea-
surements: version 1.0 of the CMORPH (Climate Prediction Center morphing method, Joyce et al., 2004)
precipitation product, PERSIANN (Precipitation Estimation from Remotely Sensed Information using Arti-
ficial Neural Networks, K.-L. Hsu et al., 1997), and version 7 of TRMM3B42 (from the Tropical Rainfall
Measuring Mission, hereafter referred as TRMM, Huffman et al., 2007). CMORPH precipitation is derived
by propagating infrared data from geostationary satellites to precipitation estimates obtained from passive
microwave sensor aboard polar-orbiting satellites, which complement each other with their different advan-
tages on detection accuracy and spatiotemporal coverage. The PERSIANN algorithm also uses combined
infrared and passive microwave information from multiple geostationary and low Earth orbit satellites with
an artificial neural network model of which parameters are updated with ground-based data. TRMM pre-
cipitation is a combined precipitation estimates from multiple satellite systems, which is adjusted with rain
gauge observations. We adjusted the 3-hourly precipitation data sets to local time based on longitude before
the analysis.
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2.1.2. Soil Moisture Data
We use Land Parameter Retrieval Model (Owe et al., 2008) version of AMSR-E (The Advanced Microwave
Scanning Radiometer for Earth Observing System) soil moisture (hereafter referred to as AMSR), and three
different soil moisture estimates from GLEAM (Global Land Evaporation Amsterdam Model, Miralles et al.
(2011)), the latter resulting from the use of three precipitation data sets described in the former section as
an input to GLEAM.

The Land Parameter Retrieval Model is mainly based on the relationship between polarization ratios, veg-
etation optical depth, and the soil dielectric constant and the derived surface soil moisture represents the
uppermost 1–1.5 cm, as the AMSR-E detects microwave brightness temperatures at X (8–12 GHz) and C
band (4–8 GHz). We use the AMSR estimated at 1:30 a.m. local time, which is the descending overpass time
of AMSR-E. The soil moisture from GLEAM is derived as evaporative stress representing the whole root
zone depth using remotely sensed radiation, precipitation, air temperature, soil moisture, vegetation opti-
cal depth, and snow water equivalent as input. The GLEAM data used in this study (see also Hsu et al.,
1997, 2015) assimilate AMSR soil moisture available for 2002–2011 period and were driven by the three dif-
ferent precipitation data sets used in this study. Since a soil moisture estimate at a specific timing of day (9
a.m.) is required for calculating the SMP feedback metrics, the original GLEAM formulation that provides
estimates of daily averages (0–24 UTC) was modified such that the input variables are aggregated at a local
daily cycle, which starts and ends at 9 a.m. local time and the estimated soil moisture hence corresponds to
instantaneous values at 9 a.m. Further details of this specific version of GLEAM can be found in Guillod et
al. (2015).

2.2. CMIP5 Models
GCM output data from historical simulations, for the period 1976–2005, from the CMIP5 (K. E. Taylor, Stouf-
fer, et al., 2012) ensemble have been used. A longer time period (compared to observations) was necessary
to ensure that enough afternoon rainfall events are captured in models, as their spatial resolutions are much
coarser (see also section 3). Hence, we assume that SMP feedback characteristics have remained constant
over the considered time period (1976–2011). Models with 3-hourly precipitation and surface soil moisture
output available at a spatial resolution finer than 2.5◦ × 2.5◦ were chosen, leading to the nine GCMs listed
in Table 1 together with a few relevant properties. A longitude-based time adjustment was also conducted
to ensure that model outputs are arranged along local time. The surface soil moisture output of the models
used in this study represents the uppermost 10 cm, except for CNRM-CM5 of which represents the top 1 cm.

3. Coupling Diagnostic
Diagnostics to assess SMP coupling are mainly adopted from C. M. Taylor, de Jeu, et al. (2012) and Guillod et
al. (2015). A set of three metrics, which assess the sensitivity of afternoon rainfall occurrence to morning soil
moisture spatially, temporally and in terms of heterogeneity, are calculated for each afternoon precipitation
event. In this section, we first provide a description of the methodology as applied to the observational data,
and we then describe the differences introduced for the analysis of models at the end of this section.

For each day, accumulated afternoon precipitation (12 p.m. to 12 a.m.) is analyzed. Locations of precipitation
maxima (Lmax, more than 4 mm) are first identified. An event domain (Levt) is subsequently defined as
5 × 5 grid cells centered at the Lmax locations, and locations of minimum rainfall on that day within Levt
are called Lmin. Grid cells with highly varying topography, water bodies or morning (6 a.m. to 12 p.m.)
accumulated precipitation larger than 1 mm were masked out. The three metrics are then identified based
on these locations as follows: The spatial metric Ys is defined as S′

Lmax − S′
Lmin, where S' is the morning

(preevent) soil moisture anomaly obtained by subtracting the seasonal cycle .The subscript refers to the
location where S' is taken. The seasonal cycle of soil moisture was calculated by applying 31-day moving
average filter to a multiyear daily climatology. In the case of multiple Lmins due to zero precipitation, S′

Lmin
was calculated as the average soil moisture anomaly at all corresponding grid cells. The temporal metric Yt
is defined as S′

Lmax. The heterogeneity metric Yh is defined as standard deviation of the 25 values, S′
Levt. Only

the convective seasons determined by latitude are considered for the analysis, which are May–September
for the north of 23◦N, November–March for the south of 23◦S, and all months in the tropics.

In addition to event samples that are metrics calculated for each event at the respective locations, we define
a control sample as the same metrics at the same locations but from nonevent days from the same month
of all years.
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Table 1
Model Features Related to Atmospheric and Land Surface Scheme

Resolution
Model name (◦ in latitude × Land surface model (subgrid
(main reference) ◦ in longitude) Atmospheric model Convection scheme variability, number of soil layers)
ACCESS1-0 1.2 × 1.9 Included (as in HadGEM2(r1.1)) Mass flux scheme MOSES2 (tiled, 4)
(Dix et al., 2013) (Gregory & Rowntree, 1990)
ACCESS1-3 1.2 × 1.9 Silmilar to GA1.0 Mass flux scheme CABLE (tiled, 6)
(Dix et al., 2013) (Gregory & Rowntree, 1990)
CNRM-CM5 1.4 × 1.4 ARPEGE-climat Mass flux scheme SURFEX (tiled, 14)
(Voldoire et al., 2013) (Bougeault, 1985)
HadGEM-ES2 1.2 × 1.9 Included Mass flux scheme MOSES2 (tiled, 4)
(Collins et al., 2011) (Gregory & Rowntree, 1990)
INMCM4 1.5 × 2.0 Included Convective adjustment scheme included
(Volodin et al., 2010) (Betts & Miller, 1986)
IPSL-CM5A-MR 1.3 × 2.5 LMDZ5 Mass flux scheme (Emanuel, 1991) ORCHIDEE (mosaic, 2)
(Hourdin et al., 2013)
MIROC5 MATSIRO (single vegetation type
(Watanabe et al., 1.4 × 1.4 CCSR/NIES/FRCGC AGCM6 Entraining plume model per grid box, 13)
2010) (Chikira & Sugiyama, 2010)

MRI-CGCM3 1.1 × 1.1 MRI-AGCM3.3 Mass flux scheme HAL (mosaic, 14)
(Yukimoto et al., 2011) (Yoshimura et al., 2015)

MRI-ESM1 1.1 × 1.1 MRI-AGCM3.3 Mass flux scheme HAL (mosaic, 14)
(Yukimoto et al., 2011) (Yoshimura et al., 2015)

All events within 5◦ × 5◦ boxes are pooled together to assess the statistical strength of the mean metric value,
which is determined by assessing whether the differences between the event and control samples are signif-
icantly larger (or smaller) than those generated by chance as follows: First, the climatology of the individual
locations within the 5◦ boxes is removed by subtracting the long-term mean of the values within the control
and the event samples (pooled together from both samples for each location). Second, the difference between
the averages of the event sample and the corresponding control sample (𝛿(Y) = mean(Ye) − mean(Yc)) is
computed, and its strength is determined by the corresponding quantile of the distribution of the same dif-
ference in each of 1,000 random samples. These samples consist of n values (where n is the size of the event
sample) randomly selected from all values of the event and control samples pooled together (as a substitute
for the event sample) and the remaining values within this pool (as a substitute for the control sample). Sta-
tistical significance of a positive (negative) feedback is claimed if the strength of 𝛿(Y ) is greater (smaller) than
0.9 (0.1). 5◦ boxes with less than 25 event samples were masked out as they cannot provide robust results.

The models and observations differ in terms of their spatial resolution. In addition, climate models consis-
tently have an early initiation of afternoon rainfall compared to observations (Dai, 2006). To account for
these mismatches, we follow previous assessments (C. M. Taylor, de Jeu, et al., 2012) and process observed
and modeled data differently; time steps were used with a 3-hr shift in models (9 a.m. to 9 p.m. for after-
noon, 3 a.m. to 9 a.m. for morning precipitation, and 6 a.m. to 9 a.m. for morning soil moisture), and Levt
consists of 3 × 3 grid cells around Lmax instead of 5 × 5.

As mentioned earlier, the comparatively coarse spatial resolution of climate models requires parameteriza-
tion of convection and this might itself affect the SMP feedback. We note that in previous studies (C. M.
Taylor, de Jeu, et al., 2012), the metrics chosen to assess the SMP feedback were additionally calculated at
coarser resolutions from observations, which resulted in weaker but consistent sign of the metrics. We find
similar results in the supporting information (Figure S1), suggesting that the spatial resolution of the data
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Figure 1. The three soil moisture-precipitation feedback metrics (from top to bottom: spatial, temporal, and
heterogeneity metrics) in observations (left column) and CMIP5 models (right column). Colors are determined by the
fraction of observation data set combinations or models in the following three categories: negative, nonsignificant, and
positive with a 10% significance level. The 5◦ boxes with less than five valid observational or model soil
moisture-precipitation feedback estimates were excluded.

on which the metrics are computed does not qualitatively affect the results. Nonetheless, the coarser spa-
tial resolution of models compared to observations may cause the former to capture only the largest or most
widespread events, while the observations capture many more smaller events. It should be noted that the
metrics do not explicitly account for atmospheric preconditions (apart from the filter for morning rainfall,
which ensures that rainfall was not already present in the morning), which might determine the preferred
soil moisture condition or in some cases inhibit moist convection (Findell & Eltahir, 2003).

4. Results and Discussion
4.1. Average Statistics of Observations and Models
Figure 1 shows the fractions of observational estimates and models belonging to each of the categories of
significantly positive (>0.9), significantly negative (<0.1) or nonsignificant feedbacks. Spatial SMP feedback
(Ys) in the models is dominantly positive as opposed to generally nonsignificant or negative Ys in observa-
tions. The highest fraction of models simulating positive Ys is found in South America, South Africa, and
northern Australia. C. M. Taylor, de Jeu, et al. (2012) also found dominantly positive Ys in model simulations
of the Atmospheric Model Intercomparison Project that are forced with prescribed sea surface temperature.
Some models still capture negative Ys in the western part of Sahel, which appears as one of the regions with
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the strongest negative Ys in the observations. In North America and North Asia, most of the models simulate
nonsignificant Ys.

The temporal feedback (Yt) in the models shows better agreement with observations than the other two
feedback metrics. Positive Yt in Australia, South Africa, North Asia, and India and negative Yt in western
South America and western Sahel are reasonably well captured by the models. Yet in North America the
models show very different behavior compared to observations, with strong negative Yt in the eastern part.
Larger variability across the models is found in central North America, western and southern parts of Brazil,
and central Africa (indicated by light purple). Note also that large-scale factors such as the North Atlantic
Oscillation, El Niño/Southern Oscillation, or sea surface temperature variability could substantially affect
precipitation persistence, which in turn may lead to a spurious correlation between soil moisture and sub-
sequent precipitation (Guillod et al., 2014; Salvucci et al., 2002). For instance, precipitation persistence at
the time scale of the order of weeks induced by oceanic or atmospheric processes could lead to a positive
temporal metric even in the absence of SMP feedback mechanism (Orlowsky & Seneviratne, 2010; Tuttle &
Salvucci, 2017). Although we cannot exclude such artifacts, the temporal feedback metric allows for a com-
parison between observations and models while providing an indication on the temporal feedback (Guillod
et al., 2015). We note that the temporal metric also exhibits a negative sign in some regions, for example,
parts of the Sahel and Southern Great Plains, indicating that the metric does not systematically identify
positive coupling mechanisms.

While the heterogeneity feedback (Yh) is dominantly positive or nonsignificant in observations, around 50%
of the models capture positive Yh correctly but show negative Yh in most of the regions where observa-
tions indicate nonsignificant Yh. In observations, Yt and Yh generally have a positive sign, if statistically
significant. In the models, similarity between Yt and Yh is much stronger than in observations.

The feedback metrics for individual observations and models are shown in Figures S2 and S3 (supporting
information), respectively. Interproduct variability is relatively large, and clusters of model families can
be identified (see also Text S1). In addition, we note that observations and models also show substantially
different spatial coverage of the feedback metrics, reflecting that a lower number of events are detected in
several models (Figure S3, supporting information), since the same threshold for the minimum number of
events is applied for both models and observation to ensure the statistical significance of estimated SMP
feedback metrics. These differences in the number of analyzed precipitation events can be due to differences
in spatial resolution (leading to more events in observations compared to models) and in the length of the
time series (more events in models). In addition, a part of the difference may be due to the known drizzle
issue, that is, an overestimated frequency of light intensity precipitation, in GCMs (Dai, 2006; Rosa & Collins,
2013). Hence, masking out the days with morning precipitation could be more critical for SMP diagnostics
in the models.

4.2. Combined Effects of SMP Feedbacks
Figure 2 shows the fraction of land areas that feature combinations of the spatial and temporal SMP feedback
metrics (top row) and heterogeneity feedback metric (bottom row) in observations and models. Results of
the same analysis using different significant levels are presented in the supporting information (Figures S4
and S5). Only 5◦ × 5◦ boxes of which more than a third are land areas were classified as land are considered,
and the ratio of land area is calculated with area-weighted composition. Analyzing Ys and Yt in a com-
bined way allows for a more comprehensive comparison of the prerainfall morning soil moisture conditions
between observations and models. Additionally, with the consideration of Yh, we discuss possible mecha-
nisms behind the commonly found combinations of SMP feedback metrics in both observations and models
and how they potentially contribute to the spatial and temporal structure of precipitation persistence.

The combination of negative (hereafter, N) Ys and positive (hereafter, P) Yt occurs predominantly in the
observations. While each observational estimate shows a similar fraction of land area, the regions where
the combination appears vary across different observational data sets (Figure S2, supporting information).
An important implication of this combination (NYs-PYt) is that the majority of the afternoon rainfall events
occur when the whole event domain is anomalously wet, since the location of maximum afternoon precipita-
tion occurs over a grid cell with positive soil moisture anomaly in the morning (PYt), while the surrounding
grid cells have even higher soil moisture anomaly (NYs). Therefore, the dominant positive heterogeneity
metric across all observed estimations (Figure 2, lower left) indicates high heterogeneity among positive soil
moisture anomalies, which should be distinguished from high heterogeneity due to mixture of dry and wet
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Figure 2. Fractions of land area with different combinations of the spatial and temporal soil moisture-precipitation feedback metrics (top row) and the
heterogeneity feedback metric (bottom row) in observations and models. Ys, Yt, and Yh indicate spatial, temporal, and heterogeneity metric, respectively. P
stands for positive sign of the feedback metrics and N for negative. Subscripts in GLEAMC , GLEAMT , and GLEAMP indicate the precipitation data set used to
derive each of the soil moisture estimates.

soil moisture anomalies. The other dominant combination in observations is NYs-NYt. This combination
still reflects significantly more frequent afternoon rainfall occurrence over regions drier than their surround-
ings but also less precipitation persistence due to NYt. In addition, this combination does not reveal the
large-scale soil moisture condition in the entire event domain, unlike the former, and thus, there is larger
uncertainty in how the positive Yh is driven. It should be noted that in Figure 2, the combination of posi-
tive spatial and positive temporal metrics (PYs-PYt) also seems to appear relatively often. However, looking
at the maps of the metrics (Figure S2) reveals that this cooccurrence in fact stems from various, randomly
distributed grid cells and does not cluster into consistent regions. Therefore, this signal appears not robust
and should be interpreted with caution.

In models, the combination of positive Ys and Yt (PYs-PYt) appears as the most common and is, unlike in
observations, also confirmed by the maps in Figure S3. This combination indicates localized (grid scale) dry
or wet persistence as it means that afternoon rainfall occurs more frequently over the temporally and spa-
tially wetter regions. This is opposed to the observational estimates. PYs-NYt is the second most common
combination in the models. PYs-NYt indicates that afternoon rainfall is more likely under dry soil condi-
tion and occurs over wetter regions in a given area. Thus, under this combination of feedbacks increase in
precipitation likelihood might be only possible when there are sufficient drying down periods between the
precipitation events, indicating a system with low precipitation persistence or high evaporative demands.
The fraction of areas with different signs of Yh varies substantially across different models, but for each given
model, the fractions of NYh and PYh are comparable. CNRM-CM5 appears as the only model where fraction
of land areas with negative Ys and significant Yt is larger than 10%. IPSL-CM5A-MR simulates dominantly
positive signals in all three metrics.

5. Conclusions
We evaluated spatial and temporal SMP feedbacks in nine GCMs stemming from the CMIP5 archive using
three different metrics (Ys, Yt, and Yh), which quantify sensitivity of afternoon rainfall occurrence to morn-
ing soil moisture conditions compared to 12 observational estimates over the period of 1976–2011. We found
dominantly positive spatial feedback metric (Ys) in all coupled climate models, contrasting to observations
and consistent with the results of C. M. Taylor, de Jeu, et al. (2012), which were based on Atmospheric Model
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Intercomparison Project-type simulations. The temporal feedback metric (Yt) in the models shows better
agreement with observations, but with a larger intermodel spread. When interpreting Yt, one should keep in
mind that the sign of the feedback metric might be partially caused by atmospheric persistence, which may
induce spurious positive relationship between soil moisture and precipitation. The heterogeneity feedback
metric (Yh) and Yt have similar spatial patterns in models, unlike in observations where Yh is dominantly
positive. The combinations of spatial and temporal SMP feedbacks in models, mainly PYs-PYt and PYs-NYt,
indicate that they might introduce more localized and stronger wet or dry persistence than the observations,
where generally negative Ys is combined with positive Yh. The SMP feedback is an emergent property of
climate models which is not parameterized and certainly influences simulated climate or weather phenom-
ena. In particular, it reveals the spatiotemporal structure of precipitation persistence that could be favored
in a given climate model. Thus, the results in this study may help to understand how land-climate interac-
tion in climate models contributes to errors in precipitation variability at different temporal scales that were
identified in previous investigations (Langford et al., 2014; Moon et al., 2018), of which substantial parts are
not explained by contributions from large-scale variability.
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