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Abstract

Motivation: Despite considerable advancements in sequencing and computing technologies, de novo
assembly of whole eukaryotic genomes is still a time-consuming task that requires a significant amount
of computational resources and expertise. A targeted assembly approach to perform local assembly of
sequences of interest remains a valuable option for some applications. This is especially true for gene-
centric assemblies, whose resulting sequence can be readily utilized for more focused biological re-
search. Here we describe Kollector, an alignment-free targeted assembly pipeline that uses thousands of
transcript sequences concurrently to inform the localized assembly of corresponding gene loci. Kollector
robustly reconstructs introns and novel sequences within these loci, and scales well to large genomes—
properties that makes it especially useful for researchers working on non-model eukaryotic organisms.
Results: We demonstrate the performance of Kollector for assembling complete or near-complete
Caenorhabditis elegans and Homo sapiens gene loci from their respective, input transcripts. In a
time- and memory-efficient manner, the Kollector pipeline successfully reconstructs respectively
99% and 80% (compared to 86% and 73% with standard de novo assembly techniques) of
C.elegans and H.sapiens transcript targets in their corresponding genomic space using whole gen-
ome shotgun sequencing reads. We also show that Kollector outperforms both established and re-
cently released targeted assembly tools. Finally, we demonstrate three use cases for Kollector,
including comparative and cancer genomics applications.

Availability and Implementation: Kollector is implemented as a bash script, and is available at
https://github.com/bcgsc/kollector

Contact: ibirol@bcgsc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Production of high quality reference genome sequences for non-
model organisms remains a challenging undertaking, especially for
large (>1 Gbp) genomes. For such projects, de novo whole-genome
assembly typically requires billions of sequencing reads from several
different types of DNA libraries. Processing these large volumes of

©The Author 2017. Published by Oxford University Press.

data, and using them to assemble a genome, usually necessitates ac-
cess to a high-performance computing environment, significant ex-
pertise and specialized software (Nagarajan and Pop, 2013). An
attractive alternative for generating reference sequences can be
achieved through targeted assembly of gene/transcript sequences of
interest. Even for species with scant transcriptomic sequence infor-
mation, there are likely existing sequences that could be used to aid

1782

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com


https://github.com/bcgsc/kollector
Deleted Text: ,
http://www.oxfordjournals.org/

Kollector

1783

de novo assembly, such as homologous gene sequences from a
related organism. Utilization of these data helps to localize the as-
sembly problem, and ensures that the desired sequences (e.g. genic
regions) are fully reconstructed. A favorable consequence of this lo-
calization is a reduction of the complexity and computational cost
relative to that of a whole genome assembly. In practice, however,
the computational cost of identifying reads related to target se-
quences has remained challenging due variation and novel sequences
not found within a target.

The first solution for the reconstruction of specific targets was
accomplished with TASR, an alignment-free targeted de novo as-
sembly software (Warren and Holt, 2011). This method was fol-
lowed by Mapsembler (Peterlongo and Chikhi, 2012), which uses
read alignments to guide the process, and presented a more
memory-efficient and faster alternative. These pioneering targeted
assembly technologies were originally designed to reconstruct spe-
cific transcript variants, fusion transcripts or genes from large con-
sortium shotgun data, and have now found applications in human
health research (Brown et al., 2014; Warren et al., 2012). These
method are notably very efficient as they pair sequence recruitment
with built in de novo assembly algorithms that utilizes internal data
structures directly. Unfortunately, these targeted assembly tools
have limited utility when an incomplete sequence bait is used to lo-
calize reads for assembly, such as using a transcript to reconstruct a
whole genic region or the use of homologous, yet divergent, se-
quences as bait.

To reconstruct incomplete regions, most modern methods utilize
an iterative read recruitment process to fill in gaps. MITObim
(Hahn et al., 2013), GRAbB (Brankovics et al., 2016) and aTRAM
(Allen et al., 2015) recruit reads based on sequences derived from
read recruited in earlier iterations to extend novel regions of previ-
ously incomplete sequences. MITObim was designed to assemble
mitochondrial sequences, and works by recruiting reads that share a
31-mer (subsequence of length 31) in common with the target,
cycling through the read set multiple times until the target is recon-
structed. GRADbB, works in a similar fashion, however it is designed
to recruit reads for multiple targets at a time, and thus had been
shown to computationally out-perform MITObim (Brankovics
et al., 2016). Finally, aTRAM is designed for assembling orthologs
from a related genome, and utilizes BLAST (Altschul ez al., 1990) to
index portions of the sequence reads so multiple iterations do not re-
quire multiple passes through the raw reads during the recruitment
process at the cost of a higher memory usage. For each of these
tools, after each cycle of recruitment, an assembly using an estab-
lished assembly tools (e.g. Velvet; Zerbino and Birney, 2008) is per-
formed and fed into later iterations to extend the bait sequence.

Advances in RNA-Seq technology and de novo assembly tools
(Grabherr et al., 2011; Peng et al., 2013; Robertson et al., 2010)
have made high-quality transcriptomes from non-model organisms
increasingly available, which can provide a valuable resource to in-
form targeted assembly of genic regions. In this manuscript we intro-
duce Kollector, an alignment-free targeted assembly pipeline that
can use whole transcriptome assemblies to filter and classify whole
genome shotgun sequencing reads, thereby localizing the de novo as-
sembly of corresponding genic loci. The pipeline collects genomic
reads related to target loci using a novel data structure called pro-
gressive Bloom filters implemented within BioBloom Tools (BBT)
(Chu et al., 2014), and assembles them with ABySS (Simpson ez al.,
2009), a de Bruijn graph (Pevzner et al., 2001) short read de novo
assembler. Kollector is able to expand intronic regions iteratively,
but in practice requires fewer number of iterations than previous
methods by greedily populating progressive Bloom filters. We

demonstrate efficient targeted assembly of Caenorhabditis elegans
and Homo sapiens genes by Kollector, and its relative effectiveness
compared to four published targeted assembly tools. We also show
applications of Kollector in comparative and cancer genomics use

cases.

2 Materials and methods

2.1 Progressive Bloom filters

Bloom filters are memory-efficient probabilistic data structures with
tunable false positives rates (Bloom, 1970). They are effective in
storing sequences for use in fast, specific and sensitive sequence clas-
sification (Chu et al., 2014; Stranneheim et al., 2010). This works
by shredding (k-merizing) a reference sequence, such as transcript
sequences, into its constituent k-mers (subsequences of a uniform
length k), and seeding a Bloom filter with these k-mers. This seeding
sequence is also referred to as a bait sequence. One can then query
the Bloom filter using k-mers derived from whole genome sequence
reads, and test for sequence similarity at a given threshold. Within
this paper, our match criteria is based on a similarity score threshold
(a value between 0 and 1) described in the BioBloom Tools (BBT)
manuscript (Chu ez al., 2014). Reads/queries are then categorized as
match or no match.

Implemented within BBT, we introduce efficient read recruit-
ment using a novel data structure called a progressive Bloom filter.
In a progressive Bloom filter, we scan a read set and greedily add
additional k-mers from matching reads (and their pairs, when avail-
able) after each filter query. Because the sequence similarity/k-mer
overlap threshold (r parameter) can result in partial overlaps, it
allows for addition of new k-mers in the Bloom filter. Consequently,
the contents of our Bloom filter will expand into genomic regions
not found in our original seed sequences, such as intronic regions.
This method works particularly well when read pairs are used, by
incorporating the entire k-mer content of a read when its pair regis-
ters a positive match (Supplementary Algorithm S1). After the k-mer
space is expanded sufficiently, the resulting Bloom filter can be used
to again scan through the reads to recruit all relevant reads within
the expanded regions of interest.

2.2 Kollector pipeline

In Kollector we first use BBT in progressive Bloom filter mode
seeded with input transcript (target) sequences. We scan a set of gen-
omic reads for reads pairs that share a user-defined amount of k-mer
overlap based on the (7 parameter) referred to as the tagging stage of
Kollector. The threshold parameter  should remain high (0.5-0.9)
to minimize off-target k-mer recruitment, but in the case of high
read error rates, divergent or low coverage regions, a low value of »
(0.2-0.5) might be used instead. Read tagging continues until the
progressive Bloom filter reaches a user-defined maximum number of
k-mers (n parameter), or until all the genomic reads are processed.
The n parameter determines the maximum number of k-mers the
progressive Bloom filter can contain to maintain a maximum FPR
before the second stage mentioned below. The maximum FPR is
determined by the f parameters in BBT, set to 0.001 by Kollector.
In practice, 7 should be set to the maximum expectedsize of the total
genic space being reconstructed. At this FPR the memory usage of
the progressive Bloom filter will not exceed 157 bits.

A real-data illustration of this process for a single C.elegans tran-
script C17E4.10 is shown in Figure 1. As one would expect, initially
tagged reads are derived from exonic regions, but as those reads are
added to the filter it allows for reads from intronic regions to be
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tagged as well (from recruiting their pair), until reads spanning the
entire gene have been added to the filter. This progressive Bloom fil-
ter is used to recruit reads that share a k-mer overlap with the filter
based on the length of the read (s parameter, defined in BBT (Chu
et al., 2014)) within the entire read set in the second stage of the
pipeline (All Recruited reads in Fig. 1). The threshold parameter s
uses the same similarity metric as » when evaluating reads, however
s is not as critical since off-target read classifications will not propa-
gate, and can remain safely set to values between 0.2 and 0.5.

In the third stage, the recruited reads are assembled with ABySS
(v1.5.2; np=12 CPUs, k=96), and finally the input transcripts are
aligned to the assembly with GMAP (version 2016-05-01; t=10)
(Wu and Watanabe, 2005) to report assembled scaffolds that con-
tain the targeted loci. The peak memory of Kollector is dominated
by of the downstream assembly algorithm used. By default, our
pipeline uses ABySS 1.5.2 but in principle other assembly algorithms
may be used as well.

This pipeline can also be run in an iterative mode. Un- or
partially-assembled targets from an earlier iteration may be selected
as input, along with other targets, and fed back to the pipeline, as
the read localization process and the resulting de Bruijn graph

Gene
model
|
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Fold coverage 5
5 8 8 B

38

Distance from transcription start site (kbp)

Fig. 1. Genomic read tagging by progressive Bloom filter. Fold coverage of
tagged reads is shown at points in time (first 300, 600 and 1200 and all tagged
reads) during a single run with the C.elegans C17E4.10 gene as target. The
raw read coverage is indicated solely as a baseline, to show the tagging pro-
cess of the progressive Bloom filter. The final recruited coverage is shown in
purple after the second stage of Kollector has collected all the reads. The fold
coverage was calculated after read alignment to the reference transcript.
In the Gene Model track, the black rectangles depict the exons and the con-
necting grey line depicts the introns

Table 1. Datasets used in targeted assembly experiments

complexity are dependent on the context represented in the Bloom
filters. Therefore, iterations may result in successful reconstructions
for targets that had failed previous attempts.

To improve the performance of Kollector in complex genomes,
BBT can also take a Bloom filter of repeat sequences as an additional
input, and use it to tag repeats while extending the progressive
Bloom filter. Sequences that are tagged as repeats are not used for
the expansion of the k-mer space within the filter, thus preventing
the recruitment of off-target regions (Fig. 2).

3 Results

We tested our tool on a variety of datasets (Table 1), and in different
targeted assembly contexts to show the utility and efficacy of
Kollector. All benchmarks described below were obtained using a
single high performance computer with 48 GB of RAM and 12 dual
Intel Xeon X5650 2.66 GHz CPUs.

3.1 Targeted gene assembly using transcript sequences
3.1.1 Kollector assemblies

Kollector performs incrementally better when used iteratively,
where genes not assembled in initial stages are provided as input for
the next iteration. After each iteration, the target transcript se-
quences are aligned to the Kollector output with GMAP (Wu and
Watanabe, 2005), and those that have a unique match to a single
genomic contig along a certain sequence identity (default=90%)
are deemed to have been successfully reconstructed. Transcripts that
do not satisfy this criterion are re-tried in the subsequent iteration
by setting a lower specificity for sequence selection during the read
collection phase. This is achieved by lowering the r parameter in
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Fig. 2. Graphic of progressive Bloom filter with repeat filtering. The black bars
depict k-mers derived from the input transcripts. The grey bars depict the
k-mer space after a few reads have been tagged and their constituent k-mers
added to the Bloom filter

Source

# Species Datatype Read lengths Total bases Raw Cov.

1 C.elegans WGS 110 bp 7.5 Gbp 75%
C.elegans Transcripts ~ — 27 Mbp -

2 H.sapiens WGS 250 bp 229 Gbp 70x
H.sapiens Transcripts ~ — 138 Mbp -

3 Pglauca WGS 150-300 bp 1.2 Tbp 48x
P.glauca Transcripts - 23 Mbp -

4 P.schaeffi WGS 100 bp 12.8 Gbp  128x
P.Humanus Transcripts  — 2.44Mbp -

S M.musculus WGS 150 bp 116 Gbp 41x
H.sapiens Transcripts - 57 Mbp -

6 H.sapiens WGS 100 bp 13.8 Gbp  4x
HPV 16 Ref. Genome - 8 Kbp -

SRA Accession: DRR008444

RefSeq mRNA (>1kb)

SRA Accession: ERR309932

TCGA barcode: 22-4593-01 assembled using Trans-ABySS (v1.5.1; k = 42)
SRA Accession: SRR1982100

Genome Annotation: GCA_000966675.1 (high confidence genes)
SRA Accession: SRX390495

Dryad DOL http://dx.doi.org/10.5061/dryad.9fk1s

SRA Accession: SRX1595526

Ensembl bioMART

TCGA barcode: TCGA-BA-4077 (subset)

Papillomavirus Episteme

The white spruce whole genome shotgun sequence read data reported in Table 1 dataset #3 is available at the SRA under accession SRP041401 and Genome

Annotation from the high-confidence genes are available at ftp://ftp.begsc.ca/supplementary/PG29_20140822/high_confidence_genes.fasta.
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each iteration (e.g. 0.90, 0.70, 0.50, 0.30, 0.20), while keeping the
other parameters constant (s=0.50, »=100 000 000 in our
experiments).

Before running Kollector on H.sapiens, we randomly divided the
transcriptome (Table 1, #2) into five bins of ~10k transcripts each
to prevent the memory usage of ABySS v1.5.2 from exceeding 48
GB of RAM. Each bin is used to initiate a single progressive Bloom
filter in a separate Kollector run with a k-mer cap (-n) of 100 000
000. Each bin took 29 GB of RAM and completed within 12h.
Isoforms split across different bins may assemble the same genic re-
gion multiple times. Similarly, isoforms within the same bin will
help reinforce the assembly of their common target locus from the
improved read tagging. Highly similar transcripts originating from
multi-copy genes may be collapsed into a single sequence, however,
the extent of this depends on the assembly algorithm used by
Kollector.

Because progressive Bloom filters are also sensitive to the order
of reads in the input file, Kollector has the option to shuffle the gen-
omic reads before each iteration to reduce any potential bias created
by read order (Fig. 3). In our tests, read shuffling led to significant
gains in the overall assembly success for both species, reaching
98.7% in C.elegans (13 378 out of 13 556 assembled) and 80.1%
(41 631 out of 52 006 assembled) in H.sapiens.

To determine the efficacy of our targeted approach compared to
a regular de novo assembly in reconstructing the genic space, we
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Fig. 3. Performance of Kollector for assembling target sequences in (A) C. ele-
gans and (B) H. sapiens. Genomic reads were randomly shuffled prior to
being provided as input to the pipeline (solid lines, mean of 10 independent
experiments). For comparison, runs with no shuffling are also depicted
(dashed lines). The success rate was calculated as the proportion of target
genes successfully assembled over five iterations

performed a whole genome assembly of the C.elegans and H.sapiens
datasets discussed above. We used ABySS v1.5.2 to assemble both
genomes, utilizing the same assembly k-mer size used within our tar-
geted assemblies. This value of k& was used because it yielded the
highest N50 in a set of k-mer sweeps on the whole genome assem-
bly. We found that only 85.7% and 72.9% of all genic regions were
completely captured (within a single contig) in the C.elegans and
H.sapiens whole genome de novo assemblies, respectively.
Compared to 98.7% and the 80.1% with Kollector, these results
show that performing targeted assembly increases reconstruction
contiguity in genic regions. In addition, each complete whole gen-
ome assembly required more computational resources than
Kollector, requiring 3 hours with 8 GB (single node) and 41 hours
with 857 GB (18 nodes) for the C.elegans and H.sapiens assemblies,
respectively.

We investigated the failed reconstruction of 199 C.elegans tran-
scripts (unshuffled experiment, Fig 3A dashed line), and found that
the failed targets had on average a longest intron length significantly
larger than the successfully assembled ones (P=1.5 x 108
Student’s #-test; Fig. 4A), indicating that the failure was due in part
to the lengths of the longest introns. For targets with maximum in-
tron lengths of approximately 20 kbp, we expect 50% of the recon-
structions to fail reconstruction. However, we note that these large
intron genes make-up a very small proportion of the total dataset
(Fig. 4B). Although the distributions suggest substantial overlap,
and there were many long targets with successful assembly, with
lengths comparable to the failed targets, our statistical test suggests
that Kollector has a bias towards assembling smaller genes, likely
due to the challenge of identifying enough genomic reads to connect
exons separated by long introns. We expect that the use of longer
reads and insert sizes (possibly mate-pair reads) could help alleviate
some of these issues.
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Fig. 4. (A) Longest intron length comparison between the C.elegans target
genes that are successfully assembled (top) versus those that failed (bottom).
Notches in the boxes represent a 95% confidence interval around the median.
The length difference between two groups, represented on a logarithmic
scale on the x-axis, is found to be statistically significant by t-test (P=1.5 x
10~ 8). This analysis yields the same result for gene length comparison
(Supplementary Fig. S2) B) Proportion of successful gene assemblies versus
longest introns (bars) with number of gene in each bin (lines). The first and
second bins make up 10 237 and 1496 genes respectively, and make up 86%
of all genes in the dataset (Supplementary Fig. S1)
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To evaluate the accuracy of the genomic contigs produced by
Kollector, we aligned the output of a Kollector run from both spe-
cies to their respective reference genome with BLASTn (Altschul,
1990), calling a correct alignment at a threshold of 95% query
coverage and 95% sequence identity. Doing so, we find that 99.7%
or more of the assembled genes satisfy these criteria in both species
(Table 2).

Due to the greedy nature of our algorithm it is possible to recruit
off-target regions. The primary source of error is due to repeats,
with minor contributions from false positives and read errors. We
investigated these off-target events by aligning H.sapiens transcripts
to the genome. We extracted the regions based on the start and end
coordinates of all contigs produced by Kollector that aligned. We
found that for contigs >500bp, only 40% were on target. Though
this may seem low, this assembly still represents a significantly
smaller subset of the whole genome, and this analysis does not take
into account contigs generated directly upstream of each gene.

3.1.2 Comparisons against mapsembler, TASR, aTRAM and
GRAbB
Although not originally and specifically designed for reconstructing
genomic loci from transcript sequences, we tested Mapsembler2
(v2.2.4) and TASR (v1.5.1) using the C.elegans genomic dataset and
input transcripts. For Mapsembler2, we used the default k-mer size
(k=31) and the consensus sequence mode (-i 2), which means ex-
tensions of the target sequence are collapsed. We ran TASR using
the independent, de novo assembly mode (-i 1) with default param-
eters, meaning targets are only used for read recruitment and not for
seeding the assembly. We evaluated results of these tools with the
same GMAP alignment criteria that we reported for Kollector.
In our tests, Mapsembler2 and TASR assembled 28% and 18% of
the targets, respectively (Table 3). In contrast, Kollector was able to
assemble 97% of the target gene set in the first iteration alone. This
is because Mapsembler2 and TASR are designed for re-assembling
input targets within their respective sequence boundaries, with lim-
ited extension capability in the flanking regions, limiting their utility
beyond single exon genes. Kollector’s progressive filtering algo-
rithm, unlike the former approaches, can incorporate reads derived
from intronic regions for assembly, as discussed.

We also tested iterative read recruitment methods aTRAM and
GRAbB on a random subset of 1000 transcripts from our
C.elegans dataset. A smaller subset was chosen as the methods

Table 2. Accuracy of Kollector-assembled genes

Species Number of Number of Success
genes assembled genes aligned rate

C.elegans 13378 13 356 99.8

H.sapiens 41 631 41525 99.7

Table 3. Comparison with Mapsembler2 and TASR

proved intractable on larger datasets. To complete the computa-
tion of GRADB, it requires stopping conditions such as a minimum
length of assembly for each target. We provided GRAbB with the
exact genomic lengths specified by the reference annotations.
Despite this, we were unable to finish computation of GRAbB in a
tractable amount of time, and instead took the intermediate results
of the method after running GRAbB for 48 hours. We found that
on these read subsets, aTRAM and GRADbB assembled 73.1% and
42.5% of the targets respectively. Despite the smaller size of the
subset, Kollector outperformed both tools in speed, while utilizing
a comparable amount of memory.

3.1.3 Scaling to large genomes: gene assembly in white spruce
Assembling complex and very large eukaryotic genomes is a compu-
tationally demanding process. Therefore, a targeted assembly ap-
proach for retrieving biologically important gene sequences remains
an attractive option for most researchers. We have tested such a use
case for Kollector using Picea glauca (white spruce), which has a
genome size in the 20 Gbp range (Birol ez al., 2013; Warren et al.,
2015). For the species, Warren and colleagues derived a high-
confidence set of 16 386 gene predictions and associated transcripts.
Using these transcript sequences, Kollector was able to reconstruct
13 277 (80.4%) of the original target genes in a single iteration,
requiring five processes, each using 43.3 GB of RAM and running
for 24 hours.

Researchers are often also interested in the regions immediately
upstream and downstream of genes, which contain promoters and
other regulatory elements. Due to the nature of the progressive fil-
tering algorithm, Kollector assemblies may extend into these re-
gions. In order to demonstrate this, we aligned the aforementioned
high-quality transcript models to the resulting Kollector assemblies,
and quantified the amount of sequence upstream and downstream
with respect to the transcript. We show that, in addition to a gene’s
exonic and intronic sequences, Kollector typically reconstructs ap-
proximately 1kb of sequence beyond the 5’ and 3’ ends of the target
transcript (Fig. 5). Such extensions would enable characterization
of the regulatory factors and complexes in the proximal promoter
of genes of interest by chromatin immunoprecipitation, and would
be especially empowering to studies of non-model organisms with-
out available reference genome sequences.

3.2 Targeted cross-species gene assembly

Non-model organisms might not have extensive and well-annotated
transcriptomes available to researchers. In such cases, Kollector can
use transcript sequences from one species to reconstruct the genic re-
gions of a related species.

Method Number of Number of Percentage of targets Wall clock Peak memory (GB)
targets attempted targets assembled assembled time (h)

Kollector 13556 13 144 96.96 2 4.8

Mapsembler2 13556 3742 27.60 2 9.3

TASR 13 556 2418 17.83 3 15.6

aTram 1000 731 73.1 38 2.4

GRAbB 1000 425 42.5 48 3.1

*Time of termination.
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Fig. 5. Length distribution of flanking regions, after Kollector assembly of P.
glauca genes. In order to define the flanking regions, we aligned the high-
confidence transcript models of white spruce to our Kollector assemblies and
quantified the length of the sequence upstream (dashed line, upper x axis
and right-side y axis) and the downstream (solid line, lower x axis and left y
axis) of the input transcript alignment

Table 4. Comparison with aTRAM

Method Proportion Reciprocal Best-BLASTn Time (h)
Kollector 99.3 1532 2
aTRAM 98.6 1530 25

3.2.1 Cross-species assembly using kollector

We tested Kollector using H.sapiens transcript sequences as bait to
assemble orthologous (>70% sequence identity) Mus musculus
genes (Table 1, #4). Despite being separated by approximately 90
million years of evolution (http:/timetree.org), Kollector was able
to assemble 3295 of 4025 target genes in a single iteration (r=0.90,
assembly k=96), corresponding to an 81.9% success rate, as as-
sessed using the orthologous M. musculus transcripts. This single it-
eration took 4 hours using 18.1 GB of RAM.

3.2.2 Comparisons to aTRAM

We assessed Kollector’s performance against aTRAM (Allen ez al.,
2015), which to our knowledge, is the only tool designed to assem-
ble entire genes (including introns) guided by an input protein or
DNA gene sequence with or without introns. In their study, Allen
and co-workers (2015) used a dataset of 1534 conserved proteins
from human head lice (Pediculus humanus) (Johnson et al., 2014) to
assemble orthologous genes in the chimpanzee lice (Pediculus
schaeffi) genome. We ran Kollector using the same whole genome
shotgun reads and corresponding cDNA sequences for each ortholo-
gous gene, and compared the results using two metrics: proportion
of the target gene that aligned to the assembled scaffold, and num-
ber of assembled genes that passed a reciprocal best BLASTn hit test
with each target gene.

In our tests Kollector slightly outperformed aTRAM on both
metrics (on average 99.3% to aTRAM’s 98.6%, and 1552 genes
passing the reciprocal BLASTn test compared with 1530 in
aTRAM). Kollector achieved this task in less than one tenth of
aTRAM’s run time (Table 4). The markedly greater speed of
Kollector is mainly due to its use of alignment free classification
with k-mers and Bloom filters, allowing it to process thousands of
transcripts in a single run. Whereas aTRAM relies on iterative

alignments to individual targets to recruit enough reads for their as-
sembly. For applications on this relatively small scale, the progres-
sive read filtering algorithm used by Kollector eliminates the need
for iterations.

For these experiments parameterized Kollector with r=0.9,
s=0.5, k=48, and n=10 000 000, values similar to our other ex-
periments. Our success rate suggests that this method is robust in cap-
turing relatively divergent sequences. We think this is due to our
progressive filtering algorithm, which recruits reads from more con-
served regions first and then uses them to extend the sequence in more
divergent regions. Furthermore, the sensitivity of reconstruction of
more divergent sequences may be increased by using a low 7 param-
eter (the specificity required for read tagging), which may be prefer-
able if evolutionary distance between two species is considerable.

3.3 Whole genome targeted assembly

A prominent application of de novo assembly is the detection of spe-
cific, yet novel, sequences, where a mapping approach can introduce
bias (Alkan et al., 2011). However, the large sample size of many
studies, such as those of cancer genomics consortia (e.g. ICGC,
TCGA), can put a strain on computational resources when de novo
whole genome assembly is required. Therefore, a fast and reliable
targeted assembler, like Kollector, might be an attractive option for
most researchers, especially when considering its ability to extend
incomplete input sequences.

In order to demonstrate the extent of its utility, we have used
Kollector for the targeted assembly of Human Papilloma Virus (HPV)
in a cancer sample. The Cancer Genome Atlas consortium has pro-
filed 279 head and neck squamous cell carcinomas (HSNCs), and de-
tected many HPV positive samples, which were experimentally
confirmed with immunohistochemistry and in situ hybridization
(Cancer Genome Atlas, 2015). We ran Kollector on the genomic data
from one of the confirmed samples [TCGA-BA-4077] with HPV type
-33. Kollector does not need the bait to match the exact target se-
quence, as demonstrated in Section 3.2, so we used HPV type-16 ref-
erence genome as bait, and were able to re-assemble the complete
HPV type-33 genome sequence in a single iteration with less than
15 minutes runtime and using 1 Gb of memory. We also used genomic
reads from the matched normal sample as negative control, and, as
expected, Kollector did not yield any assembled HPV sequences.
Because Kollector uses only sequences contributed by the reads, the
assembled strain remains unbiased relative to our bait sequence.

4 Discussion

We have presented Kollector, a targeted de novo genome assembly
application that takes transcript sequences and whole genome
sequencing reads as input, and assembles the corresponding gene
loci. Input transcripts are used to seed progressive Bloom filters,
a greedy database that can efficiently expand into intronic regions
using sequence overlaps. Due to our alignment free approach, we
demonstrate that Kollector can scale well up to large genomes, such
as those of human and spruce.

When assembling genes from transcripts, we show that Kollector
successfully assembles more gene loci than iterative read recruitment
methods aTRAM and GRABD in less time, and assembles more genes
than both non-iterative read recruitment methods Mapsembler2 and
TASR. However, we note in the latter case that this was expected
since these tools were not designed for targeted gene loci assembly
using RNA transcripts, and are thus unable to fill in large intronic
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gaps. Kollector also successfully assembles more gene loci than
aTRAM when assembling the genic space of a related species.

After our evaluations, we showcased three additional use cases
for Kollector. The first one showed that Kollector was able to effect-
ively assemble gene sequences in P.glauca (white spruce), despite its
large 20-Gbp genome. These gene assemblies typically included 1 kb
of upstream and downstream sequence with respect to the input
transcript, illustrating the utility of the approach to examine pro-
moters and other regulatory elements around genes for downstream
applications. This demonstrates that for gene-centric investigations,
Kollector can be a robust substitute for de novo whole genome assem-
bly, which remains computationally challenging at large scales.

The second use case concerned comparative genomics, where
Kollector assembled M.musculus genes using orthologous H.sapiens
transcripts as input. This comparative genomics approach is particu-
larly valuable to researchers working on non-model organisms,
which might not have extensive and well-annotated transcript se-
quences available.

Our final demonstration involved the whole genome targeted as-
sembly of HPV in a head and neck cancer sample. Kollector solves
this problem by de novo assembling reads of interest, without the
risk of introducing artifacts, as typically is the case when aligning
reads to a reference genome. Because Kollector can fill in missing se-
quences by recruiting reads with a progressive Bloom filter, it only re-
quires a limited amount of sequence homology within the bait
sequence to fully reassemble a viral sequence. We note that the extent
of divergence of the seed sequence that Kollector can use was not fully
explored, and thus may be interesting to investigate in future studies.

In conclusion, we expect Kollector to be a valuable addition to
the current suite of targeted assembly tools. Not only does it scale to
large datasets, it can be used to reconstruct orthologous sequences
in non-model organisms, and will find utility in the reconstruction
of large regions de novo, using only transcript sequences.
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