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Abstract

Highly pathogenic avian influenza (HPAI) H5N1, a disease associated with high rates of mortality in infected human
populations, poses a serious threat to public health in many parts of the world. This article reports findings from a study
aimed at improving our understanding of the spatial pattern of the highly pathogenic avian influenza, H5N1, risk in East-
Southeast Asia where the disease is both persistent and devastating. Though many disciplines have made important
contributions to our understanding of H5N1, it remains a challenge to integrate knowledge from different disciplines. This
study applies genetic analysis that identifies the evolution of the H5N1 virus in space and time, epidemiological analysis that
determines socio-ecological factors associated with H5N1 occurrence, and statistical analysis that identifies outbreak
clusters, and then applies a methodology to formally integrate the findings of the three sets of methodologies. The present
study is novel in two respects. First it makes the initiative attempt to use genetic sequences and space-time data to create a
space-time phylogenetic tree to estimate and map the virus’ ability to spread. Second, by integrating the results we are able
to generate insights into the space-time occurrence and spread of H5N1 that we believe have a higher level of
corroboration than is possible when analysis is based on only one methodology. Our research identifies links between the
occurrence of H5N1 by area and a set of socio-ecological factors including altitude, population density, poultry density, and
the shortest path distances to inland water, coastlines, migrating routes, railways, and roads. This study seeks to lay a solid
foundation for the interdisciplinary study of this and other influenza outbreaks. It will provide substantive information for
containing H5N1 outbreaks.
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Introduction

Highly pathogenic avian influenza (HPAI) H5N1 first isolated in

Guangdong province, southern China in 1996 [1]. The HPAI

H5N1 virus was redetected in East-Southeast Asia in late 2003

associated with large outbreaks among poultry in Thailand,

Vietnam, Indonesia, and China [2]. The HPAI H5N1 influenza

virus has established multiple regional sub-lineages and shown

long-term persistence in these countries [3]. Also, the virus has

continued its geographical migration through Southeast Asia to

Eurasia and Africa. Disease control measures resulted in large

numbers of domestic and wild birds being killed or culled to

prevent a possible avian-influenza pandemic that might cost still

more human lives in addition to huge economic loss [4]. HPAI

H5N1 is considered a serious public health risk despite relatively

low numbers of human infections. The public health risk arises

through the high human mortality rates (to September 2010, a

total of 505 patients from 15 countries were known to have been

infected by H5N1, of which about 60% had died [5]) and the

prospect that the H5N1 virus might reassort with another

influenza A strain to produce a highly pathogenic and transmis-

sible virus in humans [6]. Moreover, the wide distribution of

H5N1 in South-East Asia provides ample opportunity for

reassortment [7]. Identifying areas that are at risk of H5N1 is

important for the development of strategies to control this disease.

Traditional genetic analysis, which infers the phylogenetic

relationships associated with the H5N1 virus from its genomic

sequences, has enabled progress to be made in understanding the

evolution of avian influenza viruses [2,8]. By this means, possible

sources and pathways that are associated with the spread of the

H5N1 virus can be inferred [8,9]. Phylogeographic analysis [10]

offers a method of tracking the migration of the H5N1 virus. It

analyzes the topology of the phylogenetic tree and uses evolution-

ary models to statistically infer the resident localities of the H5N1

virus [11]. Medical geography examines the spatial pattern of

H5N1 looking for localized hot spots where outbreaks are

significantly clustered [12]. In spatial epidemiology, risk factor

analysis focuses on the identification of factors associated with

H5N1 occurrence and statistical modeling is used to predict the

incidence of the disease [13]. All these different forms of analyses

have a common objective which is to understand the distribution

and the spread of avian influenza. The study of avian influenza
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H5N1 is multi-disciplinary across Virology, Molecular Biology,

Evolutionary Biology, Medical Geography, and Spatial Epidemi-

ology.

However, any study that relies on only one kind of disciplinary

knowledge may miss important connections. For example, not

taking into account the effects caused by geographical scale (the so-

called ‘‘modifiable areal unit problem’’ [14]) could lead to

interpretation errors when reviewing results from statistical

analysis and modeling in area-based epidemiology. The predictive

mapping of H5N1 risk in China, for instance, in Fang et al. [15],

conflicts with empirical observations [5,16] and previous studies

[17,18]. Also, phylogenetic analysis [19] has its own limitations

when genetic data are incomplete, and evolutionary models

inappropriate [20]. This form of analysis, which provides a micro-

scale insight into the process of viral evolution, is insufficient for

understanding macro-scale spread of avian influenza. In addition,

uncertainty, perhaps arising from incomplete data, limited domain

knowledge, or the application of an insufficiently sophisticated

methodology could limit the value of these analyses. Wallace et al.

states that limited sampling may lead to results that are not

statistically significant [11].

Although current research tends to integrate multi-disciplinary

studies of avian influenza, it stops at the early stage of analytically

integrating data, for example, on phylogenetic relationships

between isolated occurrence of the virus, migratory bird move-

ments, and trade in poultry and wild birds [21,22] or implement-

ing only basic statistical analysis between genetic distance and

geographic distance [23]. Even though knowledge has been

acquired in many different disciplines, adequate methods to

quantify and integrate this knowledge for H5N1 remain poorly

developed.

This article proposes a novel approach to integrating the

findings of phylogenetic analysis, which unravels H5N1 evolution

in space and time, with modified local K function analysis, which

identifies outbreak clusters in space, and also with spatial

epidemiology, which determines socio-ecological factors associated

with the occurrence of H5N1. In this study, Dempster-Shafer

theory of evidence [24,25], a mathematical method for making

inferences based on multiple forms of evidence and which

recognizes the uncertainties associated with the different sources

of evidence, is used to formally integrate the three sets of findings.

The present study is novel and significant in seeking to lay a solid

foundation for the inter-disciplinary study of this and other

relevant influenza epidemics. First, it uses genetic sequences and

space-time data to create a phylogenetic tree to estimate the virus’

capability of spreading. This is the first attempt to provide a

mapping of H5N1 viruses derived from the phylogenetic tree.

Second, by integrating the results obtained from the three

analyses, we offer insights into the occurrence and space-time

spread of H5N1 that have a higher level of correlation with

empirical evidence than is found when analysis is based on only

one methodology. In addition, we apply the methodology across

multiple scales; that is to the whole of East-Southeast Asia as well

as the individual countries of Thailand, Vietnam, Indonesia, and

China, respectively. Our analysis results in a significant advance in

findings over those reported in, for example, Gilbert et al. [13],

and we believe our findings are more precise and informative in

representing the occurrence and the space-time dynamics associ-

ated with the spread of H5N1.

Results and Discussion

Thailand and Vietnam
Figure 1 and Figure S1 show the result for Thailand and

Vietnam. Figure S1(c) and (f) demonstrate our estimate of the

spatially varying ‘degree of belief’ in the level of risk of H5N1

obtained by integrating the three forms of analysis (see Figures 1(a)

and (c), and Figures 1(b) and (d), and Figures S1(b) and (e)) using

the Dempster-Shafer theory of knowledge fusion. Figures S1(b)

and (e) are the results from the epidemiological analysis of Gilbert.

et al. [13]. In both cases the closer any area’s value is to 1 (the

redder it is) the greater the likelihood of an H5N1 outbreak in that

area. Figure S1 also reports Pearson correlation coefficients (R)

and associated p-values which show that our experimental patterns

((c) and (f)) have a closer correspondence to the observed pattern of

cases ((a) and (d)) than the results of Gilbert et al. [13] ((b) and (e)).

This finding holds over a range of spatial scales from 60|60 cell

aggregates to 30|30 cell aggregates.

Figure 1. Probability maps predicting the occurrence of avian
influenza (H5N1) in Thailand and Vietnam. (a) and (c) show the
probabilities derived from the phylogenetic trees analyses (see Figure
S3(b)); (b) and (d) show the results of the modified local K function
analysis, depicting the spatial distribution of outbreak clusters. The
experimental data covers the H5N1 outbreaks from late 2003 to 2009.
doi:10.1371/journal.pone.0029617.g001

Knowledge Fusion to Analyze H5N1
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Figure S1(c) shows that the greatest risk of H5N1 is in the upper

central region and the lower part of northern Thailand. It

indicates less risk in central Thailand than predicted by Gilbert et

al. [13] (Table 1(b)). This pattern corresponds with fewer observed

outbreaks in this area of Thailand.

For Vietnam, the greatest risk occurs in the north and to a lesser

extent the south of the country (Figure S1(f)). Unlike the work of

Gilbert et al. [13], our results not only model the spatial

distribution of H5N1 outbreaks, but also the space-time dynamics

of viral evolution. Our analysis combines real-world outbreak data

with evidence on viral evolution. For instance, the H5N1 virus was

first detected and became established around Hanoi, north

Vietnam, in 2001 and consequently spread to the south around

Ho Chi Minh city [26]. Phylogenetic analysis shows that the virus,

isolated from the north, has multiple sublineages and shares a close

phylogenetic relationship with the virus from Thailand, Malaysia,

Laos, and provinces in southern China [3,8]. Furthermore, the

northern H5N1 virus is associated with novel genetic subtypes,

and these have facilitated the spread of the disease both within and

outside the country [26]. Finally, it was reported that the number

of H5N1 outbreaks decreased in the south in late 2005, but the

disease still persists in causing outbreaks in northern Vietnam

[16,26]. Figure S1 again demonstrates that the risk estimates

obtained from our integrated analysis correspond more closely

than the results from Gilbert et al. to the empirical outbreak

pattern at a range of different scales.

Indonesia, China, and East-Southeast Asia
Figure 2 shows the observed distribution of H5N1 outbreaks

and our estimates of the risk of the disease in Indonesia, China,

and the whole of East-Southeast Asia. Table 1 summarizes the

logistic regression analysis in the three areas.

For Indonesia, the highest risk of H5N1 is in central Java

(Figure 2(b)). It shows that the risk extends through the island to its

surrounding archipelagos. The findings from the logistic regression

analysis provide an interpretation for this pattern. Table 1

illustrates that population density, poultry density, and the shortest

path distance to railways are significantly (pv.001) associated with

occurrences of the disease. The results indicate that the very high

density of population (more than 940 people per km2) and the high

concentration of poultry production (60% of Indonesia’s produc-

tion takes places in Java) are underlying factors in the establish-

ment of multiple H5N1 subgroups [8]. These factors greatly

increase the risk of H5N1 occurrence in Java. In addition, the

significant negative relationship between H5N1 and the shortest

path distance to railways implies that avian influenza is spread to

other surrounding archipelagos through the production and

trading of poultry [8].

For China, our result shows that the highest risk of H5N1 is in

Guangdong, Yunnan, Fujian, and areas close to Dongting Lake in

Hunan province, south China. High risk also appears to extend

along the coastline of southern China (see Figure 2(d)). The risk

increases from the northwest to southeast. Qinghai Lake, where

over 6000 migratory birds were infected and killed by HPAI

H5N1 in early 2005 [27,28], was also highlighted as a potential

Figure 2. The spatial pattern of H5N1 in Indonesia, China, and East-Southeast Asia. (a), (c), (e) show the distribution of observed H5N1
outbreaks; (b), (d), and (f) show the probability maps integrating the findings of the phylogenetic analysis ( Figures S2(a), (d), and (g)), the modified
local K function analysis (Figures S2(b), (e), and (h)), and the logistic regression analysis (Figures S2(c), (f), and (i)). The closer the probability is to 1, the
greater is the probability of an H5N1 outbreaks.
doi:10.1371/journal.pone.0029617.g002

Knowledge Fusion to Analyze H5N1
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source for the disease. The logistic regression analysis identified

population density and the shortest path distance to inland water

bodies as significantly (pv.005) associated with the occurrence of

H5N1 (Table 1). In eastern China, farming, free-grazing poultry,

and economic trade and movement, have played significant roles

in the maintenance and the transmission of avian influenza. The

significant positive relationship (pv.005) between the shortest path

distance to migratory bird pathways and outbreaks, however,

appears to suggest that bird migration may not be a key factor

triggering large outbreaks and viral transmission in China,

particularly in eastern China between 1996 and 2009, even

though bird migration has been widely thought as a cause of wide

spread of the disease globally [27–29]. The other socio-environ-

mental variables (as shown in Table 1), including altitude,

population density, poultry density, and the shortest distances to

inland water bodies, coastlines, migratory bird pathways, railways,

and roads, fail to show statistical significance within the two

periods between 1996 and 2004, and 2005 and 2009. This might

be due to data limitations associated with using such a short time

span.

Figure 2(f) depicts the risk of occurrence of avian influenza

H5N1 in East-Southeast Asia. The large-scale mapping shows that

the highest risk is in central Thailand and the northern and

southern parts of Vietnam. The central part of Indonesia also has

high risk. Compared to these countries, China appears to have

lower levels of risk, especially in the northwest including Tibet and

Xinjiang autonomous regions, and the northern part of Qinghai

province. This pattern can be regarded as a reflection of the

relationship between the disease and heterogeneity of the local

socio-ecological environment. The logistic regression analysis

indicates that outbreaks significantly (pv.001) associated with

altitude, population density, and the shortest path distance to

inland water bodies, coastlines, railways, and roads (Table 1). In

East-Southeast Asia, most cities and countries are usually located

in areas where the environment is suitable for human habitation

and agricultural production. Rice cropping and poultry rearing

are popular in Thailand, Vietnam, Indonesia, and south China.

These countries benefit from abundant hydrological resources

(e.g., river deltas), but suffer from ecological-environmental

problems caused by a rapidly increasing population which in turn

facilitates the establishment of multiple H5N1 sublineages [27]. In

addition, convenient transport networks like railways and roads

become significant in spreading and triggering the re-occurrence

of H5N1 in East-Southeast Asia.

Materials and Methods

Three analyses are implemented on raster data frames. The

probability of the occurrence of HPAI H5N1 is estimated for each

lattice point (or small pixel). Specifically, this study consists of four

parts. First, phylogenetic tree are built for the evolution of the

H5N1 virus. The branches and the topology of the tree describe

the processes of viral evolution. The ability of a virus to survive in

nature (its ‘‘capability’’) is a characteristic of a virus which goes

through a long evolutionary process with wide spatial dispersion

and persistence over time. Strong capability may lead to a high

probability of the disease spreading widely. In this study, the years

and localities from which the genetic sequences were sampled are

collated for each H5N1 virus. Integrating in space and time, the

quantification of the phylogenetic tree is a feasible way to measure

and map the capability of the H5N1 virus. Second, the local K

function, a spatial point pattern statistic [30], is modified for the

purpose of identifying the local pattern of outbreaks. The estimates

obtained from the analysis are an indicator of outbreak clusters.

Third spatial epidemiological analysis involves building a logistic

regression model for analyzing the statistical association between

the presence/absence of reported H5N1 outbreaks and eight

socio-environmental variables. This model can be used to predict

the probability of the occurrence of an H5N1 outbreak. The

findings obtained from the three analyses provide evidence with

which to explore the spatial distribution of H5N1. To present a

powerful, robust, and unified result, Dempster-Shafer theory of

evidence is applied to integrate the different forms of evidence.

Data
Three kinds of data were used in this study: genetic sequences,

reported H5N1 outbreak records, and socio-environmental

factors, including altitude, population density, poultry density,

and the shortest path distances to inland water, coastlines,

migratory bird pathways, railways, and roads (see Figure S2). All

Table 1. Summary results of the logistic regression model for the avian influenza H5N1 epidemics in East-Southeast Asia,
Indonesia, and China, 1996–2009.

Regent or Country Con Alt PopDen PolDen D2Wat D2Coast D2Flyway D2Rail D2Road

East–Southeast Asia .5371 2.001 .0007 24.01{5 2.0037 2.0008 2.0007 2.0004 2.249

pv.001 pv.001 p = .142 pv.001 pv.001 pv.001 pv.001 pv.001

Indonesia 21.841 3.654{4 4.298{4 4.142{4 5.597{3 24.383{3 3.904{4 21.853{3 2.014

p = .074 pv.001 pv.001 p = .030 p = .012 p = .011 pv.001 p = .082

China (1996–2009) 21.637 3.065{4 8.289{4 24.74{6 2.012 22.458{4 7.951{4 29.076{4 2.025

p = .036 p = .004 p = .580 pv.001 p = .094 p = .003 p = .166 p = .012

China (1996–2004) 21.367 6.515{4 1.407{3 24.947{5 2.034 23.718{4 1.353{3 24.431{3 2.041

p = .074 p = .078 p = .459 p = .0002 p = .288 p = .028 p = .049 p = .175

China (2005–2009) 21.422 2.547{4 6.517{4 23.429{6 2.014 24.7{6 4.184{4 27.944{4 2.027

p = .145 p = .083 p = .621 p = .001 p = .721 p = .169 p = .289 p = .020

These values are the average of 1000 bootstrap replicates of the logistic regression model. The meaning of the abbreviation shows as follow: Alt = average altitude;
PopDen = population density; PolDen = poultry density, D2Water = minimal distance to inland water bodies; D2coast = minimal distance to coastline;
D2Flyway = minimal distance to migratory bird pathways; D2Rail = minimal distance to railways; D2Road = minimal distance to roads. Con is the constant of the logistic
regression models.
doi:10.1371/journal.pone.0029617.t001

Knowledge Fusion to Analyze H5N1
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these data were collated for lattices based on different spatial

resolutions: 8.4 km2, 34.22 km2, 0.94 km2, 0.32 km2, and

0.24 km2 for East-Southeast Asia, China, Indonesia, Thailand,

and Vietnam, respectively.

First, from GenBank [31], 888 genetic sequences of influenza A

H5N1 hemagglutinin (HA) and neuraminidase (NA) genes were

isolated from a variety of hosts between 1996 and 2009 across the

areas of East-Southeast Asia covering Thailand, Vietnam, Laos,

Cambodia, Indonesia, and China. With reported geographic

localities, the sequences could be assigned to lattices by geocoding.

Multiple alignment of all sequences from each HA and NA gene

was carried out using MUSCLE [32], and the HA and NA

sequences were combined using TaxonDNA [33]. A phylogenetic

tree for the combined dataset was constructed using neighbor-

joining (NJ) [34] in PAUP* 4.0 [35](see Figure S3). The best-fit

model of genomic RNA substitution for the NJ analysis was

assessed by Model test version 3.7 [36]. Base composition and

pairwise comparisons were examined using MEGA version 4.02

[37]. The NJ algorithm was adopted in this study because this

distance-based method of phylogenetic reconstruction gave the

genetic distances among the sequences that needed to be

combined with the results of the other analysis in the knowledge

fusion step.

Second, outbreaks of the disease were assigned to lattice points.

Data on avian influenza H5N1 outbreaks in East-Southeast Asia

include 2204 avian and 327 human H5N1-confirmed cases

between May 1st 1997 to March 16th 2009, compiled by the

World Organisation of Animal Health (OIE, www.oie.int) and the

World Health Organization (WHO, www.who.int), respectively.

Each record contained the following attributes: country, province,

location (latitude, longitude), start time, affected species, and the

number of deaths. Using latitude and longitude, any outbreak

could be assigned to the lattice. For each lattice point, the numbers

of outbreaks of both human and avian influenza were recorded.

Third, the socio-environmental data were compiled for the

raster grids based on the spatial resolutions of East-Southeast Asia,

Indonesia and China, respectively. Poultry census data in 2005

were obtained from Food and Agriculture Organization’s Animal

Production and Health Division (FAO-AGA).

These poultry data, collected from sub-national livestock census

data and corresponding to administrative boundaries, were

converted into densities by excluding the areas unsuitable for

livestock. The poultry density data were downloaded from

GeoNetwork (www.fao.org/geonetwork/srv/en), and collated to

raster grids with each pixel value representing actual density per

km2. Population density was chosen as an indicator of the volume

of viral traffic [13]. The 2010 estimate of population density,

produced by the Center for International Earth Science

Information Network (CIESIN), Columbia University and the

United Nations Food and Agriculture Programme (FAO), were

downloaded from the CIESIN (www.ciesin.org). Railways and

roads were chosen because these two variables were used as

surrogate indicator of long-range movements of human and

poultry. The shape data for the two transport networks were

provided by GIVA-GIS (www.diva-gis.org), an open source for

mapping and geographic data. The area and line-based data,

including inland water bodies, coastline, and migratory bird

pathways, downloaded from the GIVA-GIS, were used to

determine the association between birds and the outbreaks. The

migratory bird pathways were specified by 70 km buffers on each

side because of uncertainty about the behavior of migrating birds.

All shapes were converted to binary lattice data indicating

presence or absence. In addition average elevation data [90_m

resolution Digital Terrain Model from the Shuttle Radar

Topography Mission data, STRM V3 (http://srtm.csi.cgiar.org)]

were used to capture topographic features that might be associated

with the establishment of an H5N1 epidemic [13].

Quantifying Phylogenetic Tree
In the phylogenetic trees of the H5N1 virus (Figures S3 and S4),

the process of viral evolution is composed of a set of branches,

originating from a common ancestor at the root of the tree. The

length of a branch describes an evolutionary stage which starts

from a previous hypothesized ancestor (or a node). The taxa

having a common node can be regarded as a subgroup (or a

clade). By this means, a phylogenetic tree is usually divided and the

taxa are grouped into different subgroups, with the members of

each subgroup are phylogenetically close. In Virology, subgroups

are usually determined by eye balling [2,8]. A subgroup is believed

to have a strong capability of surviving if its members show a

pattern of wide spatial dispersion and extensive persistence over

time [3]. This also indicates the capability of a subgroup to spread

the disease. However, for a virus, this capability can be measured

by both the process of the viral evolution and the capability of the

subgroups which the virus belongs to. The longer is the

evolutionary process the greater is the ability of a virus to survive

and the higher is the possibility of the spread of the virus. Also, a

virus is believed to have a large capability if it is a member of a

strong subgroup of the strains showing extensive persistence in

space and time. For evaluation, it is necessary to sum up all

evolutionary stages that a virus goes through. Each stage contains

a branch and a node which is shared by a subgroup of the taxa. As

a first approximation, pi, an estimate of the capability of a virus,

can be measured by a linear sum,

pi~w1eizw2sizw3ti, ð1Þ

where ei, si, and ti are viral evolution, spatial dispersion, and time

span at a stage i. w1, w2, and w3 are weights for the three variables,

assigned the values 0.4, 0.4, and 0.2, respectively. The lower

weight for the time span is because a temporal scale of a year is

coarse relative to the other two variables. The normalized values

of ei, si, and ti can be estimated from the hierarchical structure of

the tree. First, the length of the branch at a stage i is used to

measure viral evolution. Second, we measure how widely

dispersed, geographically, members of the same subgroup are.

Spatial dispersion is estimated by the total inertia (sum of the

variances) of the 2|2 covariance matrix calculated using the

locations (latitude, longitude) of the members at the same stage.

Third, the length of time for a subgroup is measured by the time

span from early to late occurrences of virus members. The time

span ti is a ratio, including the persistence of a subgroup at stage i.

It is calculated as the time length i divided by the time length of the

whole tree. Estimates of e and s are normalized to avoid the effect

of large values. Mathematically, the capability of a virus can be

evaluated by

s~
Xn

i~1

pi: ð2Þ

where n is the number of evolutionary stages of the virus.

Quantifying a phylogenetic tree enables us to estimate the

capability of a virus.

To determine the range of a virus, we also need to examine the

density of surrounding outbreaks at a series of scales from 10 to

250 km. Within this range, a scale l at which outbreak density is at

a maximum was selected. The area affected by a virus is estimated

Knowledge Fusion to Analyze H5N1
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using a spatial Gaussian kernel function:

G(x,s)~
1

2ps2
e
{

ExE2

2s2 , ð3Þ

If ExEwl and G(x,s)~0, the range of the affected surface is l;

otherwise, if ExEvl and G(x,s)~0, the range is x. Figures 1(a)

and (c) show the capability of H5N1 in Thailand and Vietnam

based on quantifying the phylogenetic trees of the H5N1 virus

(Figures S3(a) and (b)). The quantification of the trees of Indonesia,

China, and East-Southeast Asia (Figures S3 and S4(c) and (d)) can

be cross-referenced with to Figure S5(a), (d), and (g).

Cluster Analysis
The local K function, first prosed by Getis et al. [38–40], is a

statistic of spatial point patterns [30]. In this study, we apply a

weighted local K function for the identification of clusters of

outbreaks on lattices. The modified function can estimate the

intensity of aggregation (for an example, see Figure S6) by taking

into account the spatial effects arising from the locations of

outbreaks. Specifically, this statistic weights the number of

outbreaks by distance and can be expressed as K(h) which equals

the expected weighted number of outbreaks within distance h of a

lattice point i. Mathematically, the estimate of the modified

function is:

K̂Ki(h)~

Pn

j~1

wijI(dijvh)

lci

: ð4Þ

where l is the global density of outbreaks and dij is the distance

between lattice points i and j. I is an indicator function, commonly

defined as 1 for dijƒh and 0 for dijwh. It indicates the outbreaks

surrounding the lattice point i that are within a distance range h.

Each such outbreak is weighted by the inverse Euclidean distance,

wij~1=dij . In this study, the modified local K function analysis set

h = 113 km which is recommended by [41] as the appropriate

scale for exploring local patterns of influenza.

The estimates obtained from this analysis can be used as

predictors of the occurrence of H5N1 by normalizing. Figure 1(b)

and (d), for instance, show the local patterns of the outbreak

clusters in Thailand and Vietnam. The cluster analysis results of

Indonesia, China, and East-Southeast Asia are shown in Figures

S5(b), (e), and (h).

Risk Factor Analysis
A logistic regression was fitted to model the association between

the occurrence of H5N1 outbreaks and eight socio-environmental

factors in East-Southeast Asia, Indonesia, and China. Data on the

predictors were compiled for each lattice point, and the outbreaks

converted to ‘presence of outbreaks’ (1) or ‘absence of outbreaks’

(0) for each lattice point.

A very large majority of lattice points have no outbreaks which

makes fitting the logistic model to all the lattice points

unsatisfactory (see also [13]). We build models by selecting all

outbreak-present lattice points and randomly selecting double the

number of lattices points with no outbreaks. The number of H5N1

outbreaks in East-Southeast Asia including Indonesia and China

are much lower than in Thailand and Vietnam. One thousand

bootstrap replicates were implemented to ensure a satisfactory

sample size for carrying out model inference. In each repeat, the

coefficient and p value of each predictor were estimated. Cohen’s

kappa index was used to evaluate the observed/model predicted

misclassification matrix and Nagelkerke/Cragg & Uhler’s psuedo-

R2 was used as the goodness-of-fit statistic for the logistic

regression models. In addition, the receiver-operating character-

istic ROC provides a two-dimensional depiction of predictive

performance [42]. The area under the ROC curve (AUC)

measures the probability of a correct classification [43]( Figure

S7). The ROC, Cohen’s kappa index, and Nagelkerke/Cragg &

Uhler’s psuedo-R2 were calculated for the purpose of assessing the

predictive power of the model (Table S1). All these estimates were

averaged over the 1000 bootstrap replicates. The predictions for

the H5N1 in Indonesia, China, and East-Southeast Asia are shown

in Figures S5(c), (f), and (i).

Knowledge Fusion and the Dempster-Shafer Theory of
Evidence

Knowledge fusion provides a framework for integrating

information from different research domains. Uncertainty, per-

haps arising from incomplete data, limited domain knowledge, or

the application of an insufficiently sophisticated methodology,

could limit the value of the above analyses. Dempster-Shafer (D-S)

theory of evidence seeks to overcome the limitations associated

with conventional probability theory when the researcher seeks to

quantify and reason with imprecise, uncertain and/or weak

information [24,25]. It has been widely used in applications

involving the use of geographical information systems [44] and

image processing technologies [45,46]; it has also been used in

climate change research [47], detecting credit card fraud [48], and

in evaluating outcomes associated with medical intervention [49].

Recently, this method has been employed to identify areas at

risk from rift valley fever in Africa [50]. To provide a formal

description of D-S theory, H defines a finite set of mutually

exclusive and exhaustive elementary hypothesis fH1,H2, � � �Hng
called the frame of discernment (FOD). The number of possible

subsets of H is 2DHD, including the full and null hypotheses. In this

study, each lattice point is a binary frame of a discernment

containing two elementary hypotheses: fyesg for the presence of

H5N1 risk and fnog for absence, i.e., H~fyes,nog. The subsets of

H are fwg, fyesg, fnog, and fyes,nog. In particular, the subset

fwg and fyes,nog stand for empty and unknown (or uncertainty).

In D-S theory, each subset is assigned a belief value by the

available evidence, called probability mass function, m(:). In

particular, m(fwg)~0,
P

H5H m(H)~1, where H represents the

subsets H and 0ƒm(:)ƒ1. In this study, the results of the three

analyses (the capability measure of the H5N1 virus, the clusters of

outbreaks, and the results from the logistic regression analysis)

provide evidence indicating the belief for the risk of occurrence of

H5N1, denoted by m1(fyesg), m2(fyesg), and m3(fyesg).
However, no evidence is directly provided by the first two studies

regarding the absence of the disease. Therefore, the values of

m1(fnog) and m2(fnog) cannot be determined and so the mass

functions of unknown, i.e. m1(fyes,nog) and m2(fyes,nog), are

assigned: 1{m1(fyesg) and 1{m2(fyesg). The logistic regression

model results are different however because the predictive power

of the model allows us to assign values to the mass functions. The

average AUC is used to assess model predictions. The multipli-

cation of the predicted value and the average AUC is the evidence

for m3(fyesg). The values of m3(fnog) and m3(fyes,nog) are thus

(1{m3(fyesg))(1{AUC) and 1{m3(fyesg){m3(fnog), respec-

tively.

The Dempster’s rule of combination offers an approach to

combining evidence from different sources. The joint probability

mass function, for instance m(fyesg), can be obtained from the

combination of the two mass functions, m1(fyesg) and m2(fyesg):
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m(fyesg)~(m1+m2)(fyesg)~
X

s1\s2~fyesg

m1(s1)m2(s2)

k
, ð5Þ

where

k~1{
X

s1\s2~w

m1(s1)m2(s2)w0, ð6Þ

where k is a normalization factor, and s1 and s2 are subsets of H.

Dempster’s rule is commutative and associative, and thus the joint

mass function is independent of the order in which evidence are

combined [24].

In this study, the three sources of evidence are combined via an

iterative procedure in order to identify for each lattice point the

‘degree of belief’ we have in the likely occurrence of H5N1. To

simplify the text we have referred to this as the ‘‘risk’’. Thailand,

for example, is represented by a matrix 3088|1738 lattice points.

Figure S1(c) shows the integrated result of the H5N1 epidemic in

Thailand. Dempster’s combination procedure is demonstrated for

Thailand in Table S2.

Spatial Correspondence Analysis
Spatial correspondence analysis using Pearson’s correlation

coefficient, R, [51,52] measures the association between observed

avian-influenza outbreaks and model predictions. A sample size

adjusted t-test was employed to test statistical significance of R.

The reduction in the degrees of freedom is a function of the level

of spatial autocorrelation in the two maps that are being

correlated. This is because spatial autocorrelation introduces

redundancy into a set of data and the adjustment procedure

identifies the ‘‘equivalent’’ number of independent observations.

For the implementation, lattices were aggregated into blocks

varying in size from 60|60 to 30|30 because the number of

cases is small relative to the original spatial resolution of the data

which is extremely fine-grained. The observed outbreaks were

converted to a rate by calculating for each areal unit the number

of outbreak cases divided by the population at risk which is the

human plus poultry population, (number of outbreak)/(popula-

tionzpoultry). Model predictions were obtained by averaging

results across the lattice points falling within any block. Results

from the analysis of spatial correspondence using the sample size

adjusted t-test for significance testing are shown in Figure S1.

Supporting Information

Figure S1 Test for spatial correspondence of H5N1
outbreaks and the empirical patterns.
(TIF)

Figure S2 Spatial distribution of H5N1: spatial distri-
bution of reported H5N1 outbreaks, inland water
bodies, migratory bird pathways, pathways, and roads
in East-Southeast Asia.
(TIFF)

Figure S3 NJ tree of the 888 H5N1 concatenation of
hemagglutinin (HA) and neuraminidase (NA) DNA
sequences from East-Southeast Asia covering Thailand,
Vietnam, Cambodia, Laos, Indonesia, and China. The

best model is TVM+I+G (transversional model incorporating

invariable sites and rate variation among sites). The goose H5N1

DNA sequence from Guangdong in 1996 (A/Goose/Guangdong/

1/96) is used to root the tree. The length of a unit is .02. The taxa

are colored by locality with green for Thailand, blue for Vietnam,

orange for Indonesia, and black for all others including China,

Cambodia, Laos, and purple, especially, for Qinghai province,

western China.

(TIF)

Figure S4 NJ trees for the H5N1 virus from (a) Thai-
land, (b) Vietnam, (c) Indonesia, and (d) China. The best

model is GTR+I+G (General Time Reversible incorporating

invariable sites and rate variation among sites.

(TIF)

Figure S5 Results from phylogenetic tree analysis,
modified local K function analysis, and logistic regres-
sion analysis for Indonesia, China, East-Southeast Asia.
The values shown in the color bar are the probability of outbreaks

of H5N1. (a), (d), (g) are the outcomes from the phylogenetic tree

analysis (Figure 3(b) and Figures S3(c) and (d)), showing the spatial

profile of the capability of the H5N1 virus; (b), (e), and (h) are the

results from the modified local K function analysis, depicting the

spatial distribution of outbreak clusters; (c), (f), and (i) show the

predictive results from the logistic regression models.

(TIF)

Figure S6 Illustration of the original and modified local
K function. Note: the original local K function based on the

number of outbreaks cannot distinguish between the cluster with

the red and blue circles. The modified local K function, by taking

into account the distance between outbreaks, is able to distinguish

the two patterns.

(TIF)

Figure S7 ROC curves for the logistic regression model.
The area under the ROC curve (AUC) indicates the probability of

a correct classification. (a) and (b) show the average AUC of the

models for outbreaks of East-Southeast Asia and Indonesia from

1996 to 2009. (c), (d), (e) are the AUC of the models for China for

the periods between 1996 and 2009, 1996 and 2004, and 2005 and

2009, respectively. The blue areas are the envelopes of the 1000

bootstrap replicates.

(TIF)

Table S1 Logistic regression model assemssment for the H5N1

occurrences in East-Southeast Asia, Inodnesia, and China, 1996–

2009 and the two epidemic waves between 1996–2004 and 2005–

2009.

(PDF)

Table S2 Dempster’s combination for the three sources of

evidence on H5N1 in Thailand.

(PDF)
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