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Abstract: Mucins are large O-glycoproteins with high carbohydrate content and marked diversity
in both the apoprotein and the oligosaccharide moieties. All three mucin types, trans-membrane
(e.g., MUC1, MUC4, MUC16), secreted (gel-forming) (e.g., MUC2, MUC5AC, MUC6) and soluble
(non-gel-forming) (e.g., MUC7, MUC8, MUC9, MUC20), are critical in maintaining cellular functions,
particularly those of epithelial surfaces. Their aberrant expression and/or altered subcellular
localization is a factor of tumour growth and apoptosis induced by oxidative stress and several
anti-cancer agents. Abnormal expression of mucins was observed in human carcinomas that arise in
various gastrointestinal organs. It was widely believed that hepatocellular carcinoma (HCC) does
not produce mucins, whereas cholangiocarcinoma (CC) or combined HCC-CC may produce these
glycoproteins. However, a growing number of reports shows that mucins can be produced by HCC
cells that do not exhibit or are yet to undergo, morphological differentiation to biliary phenotypes.
Evaluation of mucin expression levels in precursors and early lesions of CC, as well as other types
of primary liver cancer (PLC), conducted in in vitro and in vivo models, allowed to discover the
mechanisms of their action, as well as their participation in the most important signalling pathways of
liver cystogenesis and carcinogenesis. Analysis of mucin expression in PLC has both basic research and
clinical value. Mucins may act as oncogenes and tumour-promoting (e.g., MUC1, MUC13), and/or
tumour-suppressing factors (e.g., MUC15). Given their role in promoting PLC progression, both
classic (MUC1, MUC2, MUC4, MUC5AC, MUC6) and currently tested mucins (e.g., MUC13, MUC15,
MUC16) have been proposed to be important diagnostic and prognostic markers. The purpose of this
review was to summarize and update the role of classic and currently tested mucins in pathogenesis
of PLC, with explaining the mechanisms of their action in HCC carcinogenesis. It also focuses on
determination of the diagnostic and prognostic role of these glycoproteins in PLC, especially focusing
on HCC, CC and other hepatic tumours with- and without biliary differentiation.

Keywords: primary liver cancer; mucins; liver cancer immunophenotype; tissue expression; mucins
as oncogenes; hepatobiliary carcinogenesis

1. Introduction

Mucins (MUC) are a major constituent of any mucous secretion, providing the mucus with its
biophysiochemical properties due to their nature and extent of glycosylation [1,2]. They are mostly
responsible for formation of the protective barrier of the mucous membranes [1–5]. Additionally,
they serve many more specialized functions, such as regulation of solute transport or provision of
attachment sites for commensal and pathogenic microbes, as well as for leukocyte targeting [6–8].
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They are associated with cellular regeneration, differentiation, integration, signalling, adhesion and
apoptosis [3,9]. Despite their first purified fraction being isolated from the mucus of the cervical
epithelium [10], they were most commonly described in the epithelia of the intestine/colon and
airways [2,7,8].

Mucins are large O-glycoproteins with high carbohydrate content and marked diversity both in
the apoprotein and in the oligosaccharide moieties [5]. They are produced by a variety of secretory
epithelial cells (including endothelial cells) and leukocytes [4,5,7]. The main mucin producers are goblet
cells and mucous cells in surface epithelium and glands of the gastrointestinal (GI) tract [5,8,11,12].

Human mucin genes exhibit a specific domain, called the Variable Number Tandem Repeat Region
(VNTR). It encodes a Tandem Repeat Peptide (TRP) with high percentage of such amino acids (aa) as
serine (Ser) and threonine (Thr). Finally, they exhibit complex RNA expression patterns [3,13]. These
genes code glycoproteins of large molecular mass (in GI tract from 250 to 2000 kDa and from 10,000
to 30,000 kDa in the respiratory system), in which the carbohydrates are bound with, among others,
proline (Pro), Ser and Thr (PTS domain), through O-glycosidic bonds [14–16].

The protein fragment of a mucin (apomucin) constitutes to ~20% of their dry mass [15].
Carbohydrates make up 70–80% of the molecular mass (mostly ~50%) [11,13,14,17]. Carbohydrate
chains are present in the VNTR regions of the aa, with their size and number depending on mucin
type [17]. Tight carbohydrate packing along the polypeptide chain is responsible for the filament
structure of the mucins, critical for the function they serve. The attached sulphate and sialic moieties
are responsible for the strong negative charge on the mucin surface [14]. Presence of Lewis antigens is
a modification of oligosaccharide chains [18–21].

21 mucin genes were identified in human, among which 15 are expressed in different regions of
the GI system [22]. Based on the structure, function and cellular localization, the mucins are divided
into two classes: membrane (cell surface associated) and secreted [11,16,23,24]. This division also
comes from an observation that some of the integral membrane proteins present on the apical part
of different epithelial cells, as well as leukocytes, are also classified as mucins [6]. Membrane-bound
mucins are modular proteins with structural organization usually containing PTS, Epidermal Growth
Factor (EGF)-like and Sea Urchin Sperm Protein, Enterokinase and Agrin (SEA) domains [11,15,25].
Via these domains, membrane-bound mucins are involved in cellular adhesion, pathogen binding
and signal transduction [15], while secreted mucins are highly related to the viscoelastic properties of
mucus [24]. Sometimes, three subfamilies of mucins are described: membrane-bound/trans-membrane
(e.g., MUC1, MUC4, MUC16), secreted (gel-forming) (e.g., MUC2, MUC5AC, MUC6) and soluble
(non-gel-forming) (e.g., MUC7, MUC8, MUC9, MUC20) [3]. It is worth noting that MUC1, MUC4
and MUC16 evolved from distinct ancestors and that the trans-membrane mucins consist of different
subgroups based on their genetic backgrounds. Additionally, it was shown that the MUC1 SEA domain
originates from heparin sulphate proteoglycan of basement membrane (HSPG2; perlecan), an inducer
of tumour cell growth [26].

Mucins serve a role in both physiological and pathological conditions [3,16,20,21,27–29]. Aberrant
expression of mucins can contribute to loss of epithelial cell polarity and promote Epithelial-Mesenchymal
Transition (EMT), which leads to enhanced cell motility and invasion ability, a key step for
tumorigenesis [16,30,31]. During neoplastic transformation of the GI tract, mucins are considered as
diagnostic-prognostic markers [14,29,32,33], as well as therapeutic targets [16,34,35]. Many pathways
that involve mucins were described in the carcinogenesis process, involving Ras, β-catenin, p120 catenin,
p53 and oestrogen receptor α, Hepatocyte Growth Factor/tyrosine-protein kinase Met (HGF/c-Met),
Nuclear Factor Kappa-light-chain-enhancer of Activated B cells (NF-κB), Mitogen-activated Protein
Kinase (MAPK), insulin, Transforming Growth Factor β (TGF-β), Vascular Endothelial Growth Factor
(VEGF) and c-Jun N-terminal kinase/Activation Protein 1 (c-JNK/AP-1) [36–44].

Altered expression profiles of mucins, as well as quantitative (up and down regulation) and
qualitative (e.g., disturbances of glycosylation) changes in apomucin and structures of O-glycans, are
often seen in GI tract tumours, with these alterations greatly contributing to the phenotype and biology
of cancer cells [14,20,21,29].
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It was widely believed that hepatocellular carcinoma (HCC) does not produce mucins, whereas
cholangiocarcinoma (CC) or combined/mixed hepatocellular-cholangiocarcinoma (cHCC-CC) may
produce these glycoproteins [45–51]. However, a growing number of reports shows that mucins can
be produced by HCC cells that do not exhibit or are yet to undergo, morphological differentiation to
biliary phenotypes [38,52–56]. The detailed role of tissue expression of mucins in neoplastic cells of
HCC in vivo have been poorly recognized.

The purpose of this review was to summarize and update the role of classic (MUC1, MUC2, MUC4,
MUC5AC, MUC6) and currently tested (e.g., MUC13, MUC15, MUC16) mucins in pathogenesis of PLC,
with explaining the mechanisms of their action in HCC carcinogenesis. It also focuses on determination
of the diagnostic and prognostic role of these glycoproteins in PLC, especially focusing on HCC, CC
and other hepatic tumours with- and without biliary differentiation.

2. Short Overview of Gastrointestinal (GI) System Mucins

Several excellent reviews describe structure and biochemical characteristics of mucins present in
the GI tract [11,14,57]. According to modern proteomics, MUC7 and MUC19 are main components of
the saliva [11,58], MUC5AC and MUC6 are characteristic for the stomach mucus, with MUC2 being
proprietary to intestinal mucus [7,8,11,57].

2.1. Secreted Mucins

Mucins of this group are coded by the mucin gene family, including: MUC2, MUC5AC, MUC5B,
MUC6 (all localised on the 11p15.5 chromosome) and MUC19 (12q12) as oligomerizing mucins and
MUC7 (4q13.3) as the only non-oligomerizing mucin [14,22]. They create an impermeable gel that forms
a physical barrier and “trap” microorganisms [59]. The MUC7 gene encodes the main saliva protein—
MUC7 (also called monomeric mucin, MG2), produced by salivary glands. MUC5B gene encodes a
salivary mucin, also called MG1 [11]. Both those mucins take part in the processes of agglutination and
bacterial colonization on the surfaces of the oral cavity. MUC19 is also present in the saliva [58].

The MUC5A (gastric foveolar mucin) is expressed in the gastric surface epithelium, while MUC6
(pyloric gland-type mucin) is produced by the cells of gastric glands [11,14]. MUC2 (goblet cell
mucin) is the main mucin expressed by goblet cells in small and large intestine [8,11,59]. What is also
interesting, the surface colonic goblet cells express mucins continuously to maintain the inner mucus
layer, whereas goblet cells of the small intestinal and colonic crypts only secrete upon stimulation, for
example, after endocytosis or in response to acetyl choline [8]. MUC5B is present in lower amounts and
is produced by a fraction of the goblet cells present at the bottom of the colonic crypts in humans [14].

2.2. Cell Surface (Trans-Membrane) Mucins

In GI system mucins of that subfamily are coded by nine genes localised on different chromosomes.
These genes are: MUC1 (chromosome location: 1q22), MUC3A (7q22.1), MUC3B (7q22), MUC4 (3q29),
MUC12 (7q22.1), MUC13 (3q21.2), MUC15 (11p14.3), MUC16 (19p13.2) and MUC17 (7q22.1) [14,22].
Proportions in their expression are dependent on the location in the GI tract, for example MUC1
(“polymorphic” epithelial mucin) is mostly present in the stomach and the pancreatic epithelium,
MUC3 can be found in the intestine, while MUC4 (“tracheobronchial” mucin) is characteristic for the
oral cavity and intestine [14]. Many regions of the GI tract are able to produce different mucin types,
with a possibility of co-expression of more than one type of mucins by singular cells [14,28]. All of
the mucins of this group are expressed on the apical part of the epithelial cell membrane and usually
exhibit large extracellular domains. Additionally, it is worth noting that intestinal trans-membrane
mucins show stronger expression in enterocytes, compared to goblet cells [11,14]. MUC3, MUC12 and
MUC17 probably build the glycocalyx [11]. General mechanisms of trans-membrane mucin action,
especially those of MUC1 [so called Cancer Antigen 15-3 (CA15-3) or CD227], MUC4 and MUC16
(CA125), as well as their role in tumorigenesis and metastasis are relatively well known [22,30,36,43,60].
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MUC1 is the best characterized of those proteins, consisting of two subunits: C- and N-terminal [31].
MUC1 participates in many cellular signal transduction pathways. It can create complexes with numerous
transcription factors inside the nucleus, as well as cooperate with mitochondrial proteins [11,36,60].
MUC1 C-terminal subunit (MUC1-C) signals drive the processes of integration of the EMT induction
with activation of stem cell traits, epigenetic reprogramming and immune evasion [31]. Stimulation of
pluripotent stem cell growth through a membrane-anchored MUC1 cleavage product, so-called MUC1*,
was also described as a major mechanism present in neoplastic cells [61].

MUC4 is an intramembranous ligand for erythroblastic oncogene B2 (ErbB2) receptor tyrosine–
protein kinase, related to regulation of p27, which is a cyclin-dependent kinase inhibitor involved in the
control of G1 and S phases of the cell cycle. MUC4/sialomucin complex acts as a regulator of differentiation
and a modulator of cell proliferation when functioning synergistically with neuregulin [62].

MUC15 is a highly glycosylated protein found in bovine milk fat globule membranes, as well as
in small intestine, colon and foetal liver [63].

MUC16 (CA125)—the largest glycoprotein (3–5 million Da) in the Mucins family [5], has been
identified as a prominent cancer biomarker in vivo, especially for epithelial ovarian cancers [43], with
immunohistochemical (IHC) expression also reported in patients with liver diseases [64].

Most of the studies on the role of mucins in carcinogenesis concerns human breast cancer,
colorectal carcinoma, pancreatic and ovarian cancers in in vitro and in vivo models [30,36,43,60].

Research on the mechanisms of mucin action in PLC carcinogenesis are also
conducted [38,42,44,52,53,65] and will be further described in the following chapters of this manuscript.

3. Mucins Expression in Normal Liver

Mucin production was described in the biliary tract (BT) and associated glands (liver, pancreas)
in prenatal [66–73], as well as in postnatal biliary tract development [74–76].

3.1. Mucins and Biliary Tract Development

The human BT is formed from the hepatic diverticulum, a structure which develops from the
embryonic foregut in the 4th week of gestation (WG). The caudal part of the hepatic diverticulum
is modelled from the mesenchyme to form the gallbladder, cystic duct and extrahepatic bile duct
(EBD), while the rostral portion gives rise to the liver and the intrahepatic biliary system [77]. During
liver development, hepatocytes and biliary epithelial cells (cholangiocytes) each arise from a common
progenitor (hepatoblast) [78]. The human EBD is a well-defined tubular structure by the 6th WG,
whereas the intrahepatic biliary system during this period of gestation is represented by the primitive
ductal plate (DP) [70,72,77]. The distal portions of the right and left hepatic ducts develop from the
EBDs and form clearly defined tubular structures by 12 WG [70].

Cholangiocytes of EBD showed presence of neutral and acidic mucins at 23–40 WG. Extrahepatic
peribiliary glands (EPBGs) (emerged from EBDs around 36 WG) also showed strong expression of
neutral and acidic mucins. Apomucin differentiation was also detected in EBD development, through
identification of MUC1 and MUC6 expression in cholangiocytes of EBD and EPG [72].

The human intrahepatic biliary ducts (IBDs) are organized into large, septal, interlobular bile
ducts and bile ductules. Small (S) cells concern both intralobular bile ductular cells and small isolated
biliary cells scattered in hepatic parenchyma [74]. IBDs develop from DP, a double-layered cylindrical
structure located at the interface between hepatoblasts and portal mesenchyme in human foetal
livers. The following stages of IBD development include: DP remodelling, remodelled DP and mature
IBDs [73,77]. Some of the authors did not manage to detect expression of mucin mRNA (MUC1,
MUC2, MUC3, MUC4, MUC5AC, MUC5B, MUC6 and MUC7) at any gestational age [69]. Others
confirmed lack of MUC2 expression throughout the foetal IBD development but described MUC1
expression in the all four of its stages. MUC5AC and MUC6 were only present in the DP [71,73].
Carboxylated and sulphated mucin residues were only detected in mature IBD in foetal livers, while
the DP frequently showed neutral mucins, with much less frequent acidic mucin occurrence [71].
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Similarly, Sasaki et al. described common expression of MUC1 in new bile ducts of the portal tracts,
either at the hilar (corresponding to the large IBDs) or peripheral level (corresponding to the small
IBDs), as well as focal MUC1 expression in DP [79].

The intrahepatic PBGs arise at 7 WG from the immature periportal primordial hepatocytes at
the hepatic hilum and are located around the large IBD. The differentiation of PBGs into mucus
acini and ectopic exocrine pancreatic tissue occurs around 3 months after birth [66,67,79]. PBGs are
histologically divided into intramural and extramural structures. Intramural PBGs consist of simple
tubular glands with large mucin expression, sparsely and irregularly distributed within the ductal wall.
The extramural PBGs are characterized by the presence of excretory units that consist of seromucinous
acini and a conducting system in the periductal tissue. Both PBGs secrete neutral and acid mucins into
the ductal lumen. The PBGs appear in the late foetal period and complete their development about
15 years after birth [67].

In embryonic liver, mRNA of MUC3 was already expressed at 6.5 WG in the perinuclear region of
hepatoblasts. This pattern of expression remained constant until 18 WG. Later, the labelling was weak
and distributed throughout the cytoplasm. MUC1, MUC2, MUC4, MUC5AC, MUC5B, MUC6 and
MUC7 were not detected in hepatoblasts or primordial hepatocytes at any gestational age [69].

3.2. Mucins and Postnatal Liver

The main mucin producing cell type in postnatal liver are cholangiocytes of IBDs, EBDs and
PBGs [38,68,69,74]. The main mucin genes expressed in cholangiocytes were MUC3, MUC6 and MUC5B.
Only weak expression of MUC1, MUC5AC and MUC2 and no expression of MUC4 and MUC7 was
observed [68]. Similarly, highly glycosylated MUC1 was rare and focally expressed in cholangiocytes of
small IBDs [80,81]. However, other authors, using anti-KL-6 mucin (sialylated and hyperglycosylated
form of MUC1), showed the expression of this protein on the apical surface of normal bile duct cells [32].
Other study showed that cholangiocytes of large IBDs constantly expressed MUC3, whereas those
of small IBDs did not. MUC2 and MUC5/6 were absent in the postnatal livers [79]. Later study of
Sasaki et al. showed weak focal cytoplasmic expression of MUC6 in septal IBDs, with no (or only
focal) expression of this mucin in interlobular IBDs, bile ductules and/or S cells [74]. Apart from
cholangiocytes, MUC3 was also found in hepatocytes [68]. No expression of MUC1/KL-6 mucin was
detected in normal hepatic parenchyma (including hepatocytes) [32,38,82,83].

4. Role of Mucins in Hepatobiliary Carcinogenesis

Role of mucins in hepatobiliary epithelial carcinogenesis has been previously suggested
and mainly concerns intraductal papillary neoplasm of the biliary ducts (IPNB) with glandular
involvement [47,50,75,84–91]. Recently, a growing number of works state that mucins can also be
produced by HCC cells that do not exhibit or are yet to undergo, morphological differentiation to
biliary phenotypes [38,52–56].

Primary liver cancer comprises HCC, intrahepatic CC (iCC) and other rare tumours, notably
cHCC-CC, fibrolamellar carcinoma and paediatric hepatoblastoma. PLC is the second leading cause of
cancer-related death worldwide [78,92]. The HCC (~90% of all PLC) and iCC have been described as
independent tumours that originate from distinct cell populations, as well as exhibit distinct histological,
molecular and clinical features but share some of the risk factors and oncogenic pathways [78,92–94].
The iCC exhibits predominant intraductal papillary growth in the bile ducts, known as “papillary” and
“intraductal” types of BT carcinoma (BTC) [88,95,96]. Combined HCC-CC is an uncommon form of
PLC, having features of both hepatocellular and biliary epithelial differentiation, with occurrence of
0.4%–14.2% of PLC cases [97]. It is either classified into the “classical” subtype or a subtype exhibiting
“stem-cell features” [98,99].

Numerous risk factors have been hypothesized to be involved in hepatobiliary carcinogenesis [93–96].
Liver cirrhosis, with or without HBV/HCV-associated chronic infection, is a common risk factor in
HCC and iCC, whereas PSC, biliary duct cysts, hepatolithiasis and parasitic biliary infestation with
flukes are more often noted in iCC [94].
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4.1. Cell Origin of Mucin-Producing Primary Liver Cancer

Several cell types have the longevity and self-renewal ability required to become the cell of PLC
origin. Among them, hepatocytes, cholangiocytes and hepatic stem/progenitor cells (HPCs) can be
distinguished. Two HPC niches, canals of Hering and intrahepatic PBGs, have been described within
the liver [78,100–103]. HPCs (or oval cells) are depicted as bipotential progenitor cells that can give rise
to both hepatocytes and cholangiocytes [78]. Recently, it has been reported that adult hepatocytes can
be a direct origin of HCC, due viral infection (e.g., HBV, HCV) induced transformation and sequential
genomic insults. Large hepatocyte plasticity favours dedifferentiation into hepatocyte precursor cells
that express progenitor cell markers or transdifferentiation into biliary-like cells, which give rise to
iCC. HPCs also give rise to HCC and iCC with progenitor-like features, whereas adult cholangiocytes,
can only give rise to iCC [78].

In practice, HCC most commonly originates from regenerating liver cells with genetic alterations
in liver chronically inflamed due to HBV, and/or HCV. Recently, Matsumoto et al. demonstrated
that proliferating ductal cells (PDCs) expressing EpCAM, one of cancer stem cell markers, also
give rise to HCC in inflamed liver [104]. This confirms the hypothesis of stem/progenitor-derived
hepatocarcinogenesis. There are also some results that indicate the involvement of similar long-term
disease processes in the development of viral hepatitis-associated CC and viral hepatitis-associated
HCC. Both viral hepatitis-associated liver diseases shared common carcinogenesis process and both
possibly arose from the HPCs [105].

It is still discussed which cells are the precursors of the mucin-producing PLC. It is suggested that
intrahepatic PBGs (containing multipotent bile tree stem cells) could be implicated in carcinogenesis
of mucin-producing iCC [91,96,102,103,106]. Mucin expression was also identified in many cells of
EPBGs, which contain cells of mature and immature phenotypes and proliferate in response to bile
duct injury (e.g., induced by virus infection) [106].

It is said that mucin-producing-iCCs have similar origin to hilar and extrahepatic CCs, as
they exhibit numerous morphological, clinical, immunohistochemical and molecular similarities
with this CC subtypes [95,96,102,107]. It has been proven that these CCs can arise from cylindrical
mucin-producing cholangiocytes located in large bile ducts. In the same time, mixed-iCCs had a profile
similar to that of cholangiolocellular carcinoma (CoCCs) [107]. The cellular origin of these tumours
is usually associated with HSCs of canals of Herring [108]. CoCCs are very rare malignant tumours
(1% of all PLCs), previously classified as a subtype of iCC [92] or cHCC-CC [98]. 100% of CoCCs exhibit
hepatocellular differentiation in parts of the tumours and typical expression of HPC markers [108].
In turn, study of Maeno et al. suggests that CoCCs may originate from interlobular ducts of liver rather
than from cholangioles. The positive rate of MUC1 (~7%) in CoCCs was significantly lower than in any
control group (~18%–30%) [109]. Recent studies showed colocalization of MECA-79 (a cholangiocyte
marker) and MUC1 on apical membrane of cholangiocytes with cholangial/ductular differentiation.
Hence, CoCCs are also regarded as a subtype of peripheral-type iCC [110]. On the other hand, the
most recent molecular research indicates that CoCCs are distinct biliary-derived entities associated
with chromosomal stability and active TGF-β signalling, without any traits of the HCCs [111].

4.2. Mucins as a Potential Oncogenic Factors in Primary Liver Cancer

Among all mucins, MUC1 the foremost is proposed as an “oncofoetal” antigen in the hepatobiliary
system [81] and plays key role as an oncogene in human hepatic tumorigenesis [38–42,44,112].

The most commonly described signalling pathways regulated by MUC1 include the Wnt/β-
catenin [38,39], HGF/c-Met [38], TGF-β [39,40,44], MAPK with JNK/AP-1 [39,42] and JAK2/STAT3
signalling pathways [113]. Additionally, functional correlations between MUC1 and NF-κB [39],
insulin [39] and VEGF pathway components were observed [39]. It was shown that MUC1-mediated
protection against irradiation-induced apoptosis is associated with activation of the JAK2/STAT3
signalling pathway and induction of anti-apoptotic proteins Mcl-1 and Bcl-xL [113]. Other studies have
revealed that MUC1 cytoplasmic tail can bind directly to pro-apoptotic proteins Bax or caspase-8 and
regulate growth in HCC cells (SMMC-7721 cells) through Bax-mediated mitochondrial and caspase-8-
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mediated death receptor apoptotic pathways [114]. Mediation of various signalling pathways by MUC1
results in the occurrence basic processes associated with cancer (e.g., increase in cell proliferation,
migration/invasion, survival; inhibition of apoptosis), as well as the whole tumour (e.g., increase in
tumour growth; tumour metastasis, enabled by EMT, etc.) (Figure 1).
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Figure 1. Proposed model of two trans-membrane mucins (MUC1, MUC13) action in promoting
hepatocellular carcinoma (HCC) growth, tumour progression and metastasis, as well as the role of
MUC15 in inhibition of tumour growth and metastases (with own modifications) [38–42,53,56]. The
signalling pathways downstream of the activated Wnt/β-catenin, MAPK with JNK/AP-1, TGF-β with
JNK/pSmad3L/c-Myc and JAK2/STAT3 are known to stimulate cancer cell proliferation, survival,
migration, invasion and inhibit cell apoptosis; whereas TβRI/pSmad3C/p21WAF1 is tumour suppressive
signalling. The inhibitory effect of MUC15 on PI3K/AKT signalling pathway is linked to negative
regulation of metastasis and local growth of HCC cells. Legend: ⇓—regulation;
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Studies by Xu et al. showed that after treatment with two glycosylation inhibitors: tunicamycin
and benzyl-alpha-N-acetylgalactosamine (BAG), MUC1/KL-6 expression was significantly reduced in
iCC cells, cell adhesive properties were decreased and cell invasive abilities were significantly limited
(after BAG treatment) [112]. This indicates that MUC1/KL-6 is responsible for adhesion of iCC cells
and their invasive properties.

Studies by Bozkaya et al., using highly motile and invasive, poorly-differentiated mesenchymal-
like HCC cell lines, describe overexpression of MUC1 and c-Met (HGFR). These results suggest that,
under basal conditions, MUC1 and c-Met interact with each other. Since c-Met is a cell differentiation
marker, co-expression of MUC1 and c-Met in these cell lines might indicate the participation of MUC1
in the EMT process during hepatocarcinogenesis. Additionally, it was proven that the activation of
HGF/c-Met signalling pathway targets MUC1 to reduce its protein level. This action prevents the
down-regulatory effects of MUC1 on HGF/c-Met signalling and increases motility and invasiveness.
The research also indicates that MUC1 is a potential regulator of HGF/c-Met mediated β-catenin
activation and of Myc expression in HCC cells [38].
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Li et al., with the use of stable MUC1 knockdown in SMMC-7721 cells and global gene expression
analysis, showed potential participation of this mucin in hepatocarcinogenesis through regulation
of various signalling pathways. When it comes to the Wnt/β-catenin signalling pathway, they have
proved that a knockdown of MUC1 expression blocked the translocation of β-catenin from the
cytoplasm to the nucleus and inhibited SMMC-7721 proliferation through inhibition of the β-catenin
signalling. Other Wnt-responsive genes regulated by MUC1 included cyclin D1, c-Myc, as well as
other transcription factors, which resulted in inhibition of cell proliferation, induction of the cell cycle
arrest in the S-phase, enhanced apoptosis and significant suppression of tumour growth in vivo. Other
genes that were down-regulated more than 2-fold in MUC1-knockdown clones (MR1-C6 and MR1-D4)
encompassed such signalling pathways as NF-κB, insulin, TGF-β, MAPK and VEGF [39].

Further works explained the co-operation of MUC1 with target genes/molecules of the TGF-β
signalling pathway. It was shown that the MUC1 expression not only enhanced TGF-β1 expression
(mRNA and protein) but also increased luciferase activity driven by a TGF-β promoter, as well
as elevated the activity of JNK and c-Jun [40,44]. In further research, it was proven that MUC1
overexpression suppresses TβRI-mediated pSmad3C signalling (which involves growth inhibition
through up-regulation of p21/WAF1). In the same time, it directly activates JNK to stimulate oncogenic
pSmad3L signalling (which fosters cell proliferation by up-regulating c-Myc). High correlation between
MUC1 and pSmad3L/c-Myc but not pSmad3C/p21 (WAF1), expression was observed also in tissues
from HCC patients [41]. It was also shown that promotion of the migration and invasion of HCC
cells occurs due to autocrine TGF-β levels, induced by MUC1 via JNK/AP-1 signalling pathway.
TGF-β1 expression levels (mRNA, protein), Smad3L (Ser-213) and MMP-9 were significantly elevated
in MUC1-overexpressing cells (Bel-7402-MUC1 and Hep3B-MUC1), compared to the control cells [40].
Participation of MUC1 and JNK/TGF-β signalling in progression and tumorigenesis of HCC was
confirmed by Wang et al. [44]. All of these works support the stimulating influence of MUC1 on
proliferation, migration and invasiveness of HCC cells, acting through TGF-β signalling pathway and
TGF-β-related signalling molecules (Smads) or other transcription factors (c-Jun, c-Myc).

The group of PLC risk factors includes prolonged inflammation and hepatolithiasis [94]. Mucin
hypersecretion and alteration of the mucin profile, such as an aberrant expression of MUC2 and
MUC5AC (which form large polymers), are important constituents of the lithogenesis of hepatolithiasis.
Research conducted on mouse biliary epithelial cell cultures showed 4–5 fold increase in MUC2 and
MUC5AC transcripts, compared to control, induced by LPS treatment, which was mediated via
TNF-α production and activation of PKC in these cells [115]. Similarly, the work of Ishikawa et al.
described aberrant expression of CDX2, which resulted in overexpression of MUC2 in mucinous CCs
and intraductal papillary neoplasia of the liver, often associated with hepatolithiasis [116]. Another
study confirms the observation that MUC2 and MUC5AC overproduction can be associated with
hepatolithiasis and related to inflammation. Yang et al. proved that exogenous PGE2 increased MUC2
and MUC5AC mRNA expression in a dosage-dependent manner, independent of IL-1β and TNF-α,
via EP4-p38MAPK signalling pathway [65]. There are also papers suggesting that the loss of MUC2
gene expression is a critical requirement for the development of HCC. Using different HCC cell lines
(7721, Huh7 and Hep-G2) it was shown that the expression of MUC2 can be activated by 5-Aza-CdR
or TSA (epigenetic inhibitors of MUC2 gene). The effect of 5-Aza-CdR and TSA on MUC2 expression
differed depending on the type of HCC cells. The demethylation of MUC2 was found in all HCC cell
types treated with both epigenetic inhibitors [52].

Recent studies also point at the role of MUC13 in hepatocarcinogenesis, both in in vitro (seven
HCC cell lines and immortalized normal liver cell lines, MIHA and LO2) and mouse in vivo model.
Strong oncogenic activity of this mucin includes promotion of cell growth, colony formation, cell
migration and tumour formation in nude mice. MUC13 was overexpressed in all HCC cell lines
except SMMC7721. MUC13 promoted G1/S phase transition through activation of Wnt signalling,
binding β-catenin and increasing its phosphorylation at Ser552 and Ser675 sites. This action led nuclear
translocation of β-catenin and up-regulation of its downstream target genes (e.g., Axin2, c-Myc and
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CyclinD1) (Figure 1). Knockdown of AKT with shRNA in MUC13-overexpressing cells nullified the
elevated phosphorylation of β-catenin by MUC13 [56].

Contrarily, the studies of MUC15 showed that this mucin negatively regulates metastasis and
local growth of HCC cells in vitro, as well as in vivo. Stable expression of this mucin in HCC cell lines
(SMMC-7721 and HCC-LM3) reduced their proliferation and invasive features, impeding the ability
to form metastatic tumours in mice. This type of mucin may exert its anti-metastatic capabilities
by binding EGFR and accelerating EGFR internalization, thereby promoting EGFR degradation
and inhibiting EGF-induced PI3K-AKT activation. Additionally, MUC15 regulates expression of
MMP-2 and -7 (decrease), as well as of TIMP2 (increase), by blocking PI3K-AKT signalling (Figure 1).
Epigenetic regulation is most probably responsible for lowering expression of MUC15 in HCC cells
(DNA hypermethylation of the MUC15 promoter) [53].

All these results can suggest that several mucins (MUC1/KL-6, MUC2, MUC5AC, MUC13,
MUC15) may be potential targets for HCC treatment. Learning the mechanisms underlying mucins
upregulation under inflammatory stimulation, hepatolithiasis and so forth could particularly help in
early therapeutic decision making in HCC patients [16,38–42,44,53,112].

4.3. Gross Mucin as a Pathological Feature of Biliary Papillary Neoplasms

Mucin production by liver tumour cells was long associated with biliary differentiation. During
primary classification, three types of mucin-producing tumours were categorized: papillary CCs,
biliary cystadenomas and biliary cystadenocarcinomas [117,118]. Pioneering comparative studies
on mucin-producing CCs and non-mucin producing CCs proved that the former occur in 13% of
affected and are characterised by longer survival time [45]. It was confirmed that hepatobiliary
mucinous cystadenoma and cystadenocarcinomas are the precursors of BT tumours which overproduce
and/or oversecrete mucins [75,87,119]. Cystadenomas and cystadenocarcinomas were since reclassified
as “cystic intraductal papillary neoplasm of the intrahepatic bile duct” (M-IPNB, IPMN), “biliary
intraductal tubulopapillary neoplasms” (b-ITPN) and “hepatic (biliary) mucinous cystic neoplasms”
(MCNBs, MCN-L). The presence of an ovarian-like stroma (OLS) has been established to define the
diagnosis of MCN-L [90,93,95,96,120–123].

The latest histopathological classification (2018) details two types of IPNBs: type 1 IPNB (classical
IPNB), which is histologically similar to intraductal papillary mucinous neoplasms of pancreas and
typically develops in the IBDs and type 2 IPNB (so called papillary carcinoma or cholangiocarcinoma),
which has a more complex histological architecture with irregular papillary branching or with foci
of solid-tubular components, typically involving EBDs. The classical IPNB has more or less similar
features to the IPMN. Hence, gross mucin is common (~80%) in type 1 IPNB and relatively rare in
papillary CC (~10%) [124]. It is worth noting that the concept of IPNB is still confusing, requiring
continuous research based on already described pathological neoplasm properties [88,124]. A need
for revision of WHO classification of all ductal adenocarcinomas and subtypes of IPMN is suggested,
also taking validated and recommended diagnostic use of MUC1 antibody, which recognizes fully
glycosylated MUC1, into consideration [125].

Cholangiocarcinoma (currently type 2 IPNB) is also anatomically classified into perihilar and
distal types of iCC [95,96,121,124]. Hilar carcinoma (called Klatskin tumour) and peripheral CC can be
distinguished among iCCs, with both previously noted to exhibit mucin production [95,110]. Both
subtypes of iCC are thought to arise from topologically different IBDs [107]. The perihilar type emerges
from large-sized perihilar intrahepatic segmental and septal bile ducts, lined with mucous-producing
tall cylindrical cholangiocytes [126]. In turn, peripheral type originates in peripheral small-sized
IBDs (interlobular bile ducts, cholangioles/ductules and the canals of Hering) [127], which are lined
with non-mucous-producing cuboidal cholangiocytes [128,129]. The pathological classification of
iCCs divides them into mass-forming (MF), periductal-infiltrating and intraductal-growth types [130].
Perihilar/distal CCs are classified into flat- and nodular-infiltrating, as well as papillary types [95].
Biliary intraepithelial neoplasia (BilIN), a flat lesion, precedes periductal-, flat- and nodular-infiltrating
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CCs, whereas IPNB precedes the intraductal-growth and papillary CCs [95]. The papillary neoplasms in
the biliary tree represent ~4–10% of all biliary epithelial neoplasms [45,85–87,131]. Large heterogeneity
of these neoplasms causes much effort to be focused on their differential diagnostics, including their
relation to pancreatic IPMNs [90,121,124].

There are described cases of MCN-L with biliary communications, as well as MCN-L with
intermediate- to high-grade intraepithelial dysplasia with a dilation of the left hepatic duct [132,133],
including an interesting report on the simultaneous occurrence of these two histologically distinct
entities in the liver (M-IPNB and MCN-L) [134].

4.3.1. Various (Immuno)phenotypes of Mucin-Producing Hepatobiliary Tumours

Quantitative evaluation of mucin production by both types of IPNBs is one of the criteria of the
modern classification of these cancers [124]. In turn, determination of mucin type and its cellular
localization using IHC method helps to evaluate the histological immunophenotypes of IPNBs. WHO
2010 recognizes four different phenotypes of IPNBs (gastric, intestinal, pancreatobiliary and oncocytic)
and recommends analysis of selected mucin (MUC1, MUC2, MUC5AC, MUC6) expression, as well as
evaluation of architectural and cell differentiation patterns, for correct classification [88,93,96]. Some
sources detail only two immunophenotypes of IPNBs: the “pancreatic” which is more similar to
IPMN and the “non-pancreatic” with frequent high-grade dysplasia (papillary CC) [123,135]. Using
the hierarchical clustering and differential IHC analysis for adenocarcinomas of the pancreatobiliary
system, three IHC tumour subtypes were identified, namely: extrahepatic pancreatobiliary, intestinal
and intrahepatic CC [136].

In 2018 classification, type 1 IPNB exhibits gastric or oncocytic phenotype, although pancreatobiliary
and intestinal phenotypes are also seen. Type 2 IPNB (papillary CC) is typically of pancreatobiliary or
intestinal type. As mentioned, high amount of mucin is only common in type 1 IPNB. However, lack
of mucin overproduction does not exclude the possibility of the classification into this type [124].

In further literature review, histological classifications that were valid during the time of source
publication were left unaltered. Hence, for example the IPMN term used in the cited works describes
what is now known as “classical” IPNB (type 1) [124].

Numerous studies describe a detailed profile/pattern of mucins in PLC, which eases their
classification, differential characteristics and prognostics [88,90,119,123,137–139]. While MUC1
expression dominates in the pancreatobiliary phenotype, its small amounts are also detected in
gastric, as well as other (intestinal, oncocytic), phenotypes of IPNB [87,88,140]. It is thought that
aberrant expression of MUC1 can lead to IPNB invasion, leading to tubular adenocarcinoma [87].

MUC2 is a mucin characteristic for intestinal phenotype of IPNBs. Its aberrant expression
may lead to development of intestinal metaplasia and the invasion of IPNB, leading to mucinous
carcinoma [87,88,140].

MUC6 expression is observed in gastric and oncocytic phenotypes, while MUC5AC can be observed
in either of four phenotypes [88]. The expression pattern described as “MUC1+/MUC2-/MUC5AC+”
was characteristic for CCs and pancreatic ductal adenocarcinomas and could distinguish CC from
HCC (negative for all mucins) [137]. In turn, comparison of differentially located liver cystadenomas
(16 arising in the liver and 4 in the EBDs), showed pancreatobiliary (CK7+, CK19+, MUC1+), as well as
intestinal differentiation (CDX2+, CD20+, MUC2+) with OLS features [119].

Immunophenotype characterization of different mucinous BTCs, showed that the gastro-intestinal
phenotype (MUC2+, MUC5AC+ and MUC6+) was more frequently seen in MCN-L and IPMN than
in benign mucinous cystadenomas. Additionally, the expression of MUC1, MUC2, MUC5AC and
MUC6 was significantly more common in IPMN than in MCN-L. Differential expression of MUC1
was observed only in malignant cases of both types of tumours [139]. Other authors confirmed
higher mucin production in IPNBs (72%) (currently type 1 IPNB) compared to the papillary CCs
(7%) (type 2 IPNB). Gastric-type and oncocytic-type tumours were only detected in IPNBs (type 1).
The expression of MUC1, MUC2 and MUC6 differed significantly between both types of IPNBs and
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non-papillary CCs [123]. Results concerning gross mucin expression support one of the main criteria of
IPNB classification [124], while studies of particular apomucins allowed for more detailed differential
diagnostics of both subtypes. Another study comparing different CCs showed that, among ICCs,
~61% only contained mucin-producing CC features (M-CCs). Others displayed histological diversity,
showing focal hepatocytic differentiation, as well as ductular areas (mixed-CCs). Expression of MUC1
was significantly up-regulated in hilar CCs and M-CCs, compared with mixed-CCs and CoCCs. Study
on biliary/HPCs and hepatocytic markers could indicate cellular origin of iCC subtypes (Muc-CCs and
hilar CCs form mucin-producing cholangiocytes, whereas mixed-CCs and CoCCs from HPCs) [107].

In the Far East, in aetiology of iCC and HCC, a large role is played by HBV and HCV
infections [99,105,128,141,142]. It was shown that N-cadherin was a marker of iCC subgroup associated
with viral hepatitis, characterized by cholangiolar differentiation. MUC2 expression was more frequently
found in N-cadherin-negative CCs, while the expression of MUC1 was similar in both groups of
tumours [128].

Rates of mucus secretion and ductal MUC1 expression were also compared between iCC and
HCC, showing higher rate and expression of MUC1 in the former [143].

Mucin expression was also analysed in different groups of biliary IPN and pancreatic IPMN.
Mucin hypersecretion was significantly less frequent in type 1 and 2 IPNB (50%, 15.3%, respectively)
than in IPMN of the pancreas (83%). It was shown that the intestinal subtype of IPNB was more
frequently positive for MUC1 and less frequently positive for MUC2, MUC5AC and CDX2 (a MUC2
regulating transcription factor), compared to each subtype of pancreatic IPMN [90].

4.3.2. Differential Tissue Expression of Mucins in Primary Liver Cancers

The dominating mucin type, expressed in most PLC cases, is undoubtedly MUC1 (pan-epithelial
mucin), with other detected mucins including MUC2, MUC3, MUC5AC and MUC6. Expression of
these mucins is detected in pre-cancerous lesions of liver and BT, CCs, cHCC-CC, CoCC, as well as in
HCC [81,82,84,86–88,96,112,123,135,138,144]. The subcellular localization of MUC1 in PLC includes
both cell membranes and the cytoplasm of neoplastic liver and/or biliary cells [32,110] (Figure 2).

Among precursors and early lesions of CCs, MUC1 positive staining was observed in Meyenburg
complex (VMC)-like duct, with MUC6 expression detected in Epithelial Membranous Antigen (EMA)-
luminal type of bile duct adenoma (BDA). Both of these lesions arose in chronic liver diseases [145].
In chronic B and/or C hepatitis, increased expression of MUC6 was observed in proliferating bile
ductules and intralobular S cells, which correlated with the degree of active necroinflammation [74].

Analysis of different glycoforms of MUC1 in various cystic liver diseases allowed for suggestions
concerning cystogenesis in the liver, from IBDs through biliary microhamartomas, to hepatic cysts.
Common expression of „normal” MUC1 in epithelial cells lining cysts and IBDs, suggests that
cholangiocytes expressing MUC1 are related to the whole cystogenic process in the studied diseases.
The highly-glycosylated glycoform of MUC1 (“mature” form) present in ~half of hepatic cysts studied,
may be related to the late cystogenetic process in liver cystogenesis [81]. Later research on biliary cystic
tumours with bile duct communication, show expression of MUC1 and MUC2 in the neoplastic biliary
epithelium in most of the cases [86]. Other literature data describe strong mucin expression (alcian
blue-positive) in all of the cases of cystic-micropapillary (C-P) lesions of PBGs and only some of the
cystic lesions. MUC1 expression was negative in C-P and cystic lesions, while that of the MUC5AC
was more common in C-P than in cystic lesions of PBGs. This suggest that the C-P lesions of PBGs
may be the precursors of biliary epithelial neoplasms [89]. Yonezawa et al. had reported that increase
in MUC1 expression was correlated with increasing grades of biliary intraepithelial neoplasia (BilIN).
The high expression of MUC1 was observed in iCCs. Negative expression of MUC2 in any grades of
BilINs, could help in differentiating BilIN from mucin-producing bile duct tumour (MPBT)-columnar
type/IPNB-intestinal type. High expression of MUC4 considered iCCs and carcinomas of EBDs.
MUC5AC expression was present in all of the studied pancreatic and biliary neoplastic tissues [146].
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Figure 2. Immunohistochemical localization of MUC1 and MUC5AC in the control colon (C), 
control liver (L) and hepatocellular carcinoma (HCC) samples. (A) MUC1 membranous localization 
in goblet cells of the normal colonic crypt; (B) MUC1-immunopositive biliary cells of interlobular 
ducts of the normal liver; (C) cytoplasmic expression of MUC1 in HCC neoplastic cells; (D) 
cytoplasmic localization of MUC5AC in numerous goblet cells of the control colonic crypts; (E) 
negative IHC reaction for MUC5AC in normal liver; (F) MUC5AC-immunopositive scattered 
neoplastic HCC cells. New polymer-based immunohistochemistry with 3,3’-Diaminobenzidine 
(DAB) as a chromogen. Haematoxylin counterstained. Objective × 40 (A-F) (our unpublished data). 
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Figure 2. Immunohistochemical localization of MUC1 and MUC5AC in the control colon (C), control
liver (L) and hepatocellular carcinoma (HCC) samples. (A) MUC1 membranous localization in goblet
cells of the normal colonic crypt; (B) MUC1-immunopositive biliary cells of interlobular ducts of
the normal liver; (C) cytoplasmic expression of MUC1 in HCC neoplastic cells; (D) cytoplasmic
localization of MUC5AC in numerous goblet cells of the control colonic crypts; (E) negative IHC
reaction for MUC5AC in normal liver; (F) MUC5AC-immunopositive scattered neoplastic HCC cells.
New polymer-based immunohistochemistry with 3,3′-Diaminobenzidine (DAB) as a chromogen.
Haematoxylin counterstained. Objective × 40 (A–F) (our unpublished data).

Studies of Sasaki et al. concerning CCs showed strong expression of MUC1, with only focal
MUC2 expression. Common and aberrant expression of MUC5/6 in biliary epithelial dysplasia
and in CCs, suggests that biliary epithelial cells gain a gastric phenotype during carcinogenesis [84].
In studies of Higashi et al., expression of MUC1 was more common in mass forming (MF) type of
CCs (85–95%) than in bile duct cyst adenocarcinoma (BDCC). In contrast, BDCC, intraductal growth
type and/or periductal infiltrating type of CCs showed significantly higher MUC2 expression rates
than MF-CCs (86%, 67%, 25%, respectively) [47]. Other research, comparing different subtypes of CCs,
confirmed that the most abundantly represented mucins in these cancers were MUC1 (~66%) and
MUC5AC (~61%), followed by MUC2 (~24%) and MUC6 (~14%) [144]. Mall et al. showed extensive
expression of MUC1 (>50%) in 44% and MUC5AC in 46% of CCs cases. Extensive MUC1 expression
was correlated with CC metastasis [138]. Descriptions of some of the clinical cases indicate coexistence
of strong MUC5AC-positivity in perihilar CCs and extensive MUC6-positivity in C-P neoplasm of
PBGs, suggesting different origin of these neoplasms [50].
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Mucins can also be produced by cHCC-CCs - tumours characterized by large invasiveness and
short overall survival (OS) [46,97,147]. In some of the clinical cHCC-CC cases, mucin production
was observed in both the HCC and the CC areas of these tumours [147]. Ng et al. described mucin
production in 76% of cHCC-CC [46], while in research of Xu et al., KL-6/MUC1 expression was present
in all CCs and CC areas of cHCC-CC tissues but not in HCC area [112]. Similarly, Xu et al. showed
glandular formation accompanied by mucin production, representing iCC areas in cHCC-CC, in more
than 80% of the cases [51]. A clinical case of HBV-positive patient with cHCC-CC was described, with
positive expression of MUC1, MUC2, MUC5AC and MUC6, as well as stem cells features and DP
malformations [99]. Apical membrane colocalization of MECA-79 sulphated glycans and MUC1 was
reported in cholangiolocellular carcinoma (CoCC), which indicates that MUC1 serves as a scaffold
protein for MECA-79 sulphated glycans. This would confirm the cholangiolar/ductular differentiation,
with the possibility that MUC1 could serve as a useful marker of this subtype of cHCC-CC [110].

Mucin production was also reported in hepatolithiasis [75,80,84–86,116]. Focal expression of
MUC1 (33% cases), MUC2 (64%) and MUC5 (89%) was detected in large IBDs with hepatolithiasis.
Strong expression of MUC3 and MUC6, as well as focal expression of MUC2 and MUC5, were
accompanied by markedly proliferated intramural and extramural PBGs. According to authors,
more commonly represented mucins, for example MUC2 and MUC5, could be involved in the
pathogenesis of hepatolithiasis [75]. Other authors characterized three different mucin patterns
in cholangiocarcinogenetic pathways in hepatolithiasis. Increased expression of MUC1 in BilIN
(MUC2−/CK7+/CK20− pattern) and IPNB (MUC2+/CK7+/CK20+) is associated with tubular
adenocarcinoma, while colloid carcinoma in IPNB is characterized by MUC1-negativity and less
advanced pathologic stages [86].

4.4. Serum/Bile Levels of Mucins in Primary Liver Cancers

With introduction of molecular techniques, it is now possible to examine the role of mucins as
diagnostic-prognostic markers not only in tissues but also in serum and/or bile [33]. Such studies in
PLC concern mostly MUC1 and MUC5AC. Human MUC1/KL-6 in HCC patients was even described
as a tumour marker. Significantly higher mean serum levels of KL-6 in HCC (556 ± 467 U/L) were
detected, in comparison with non-HCC groups either with (391± 176 U/L) or without (361 ± 161 U/L)
liver cirrhosis [148]. Significantly elevated KL-6 serum level was also observed in older (>60 years)
HCV-positive patients with HCC. The HCC rate was higher (37.5%) in the patients with elevated
KL-6 than with normal KL-6 group (~8%) [149]. When the MUC1/KL-6 levels in sera from various
liver cancer patients were compared, significantly higher levels were noted in CC patients than in
HCC, metastatic and healthy individuals. The cut-of value of 248 U/mL could distinguish CC patients
from HCC patients [150]. Other multicentre studies in Japan indicate Wisteria floribunda agglutinin
(WFA)-sialylated MUC1 as a new glycoprotein marker of CC. Higher levels of WFA-MUC1 were
observed in BTC/iCC than in benign BT diseases. Superiority of this form of MUC1 over carbohydrate
antigen 19-9 (CA19-9) and CEA was proven, when used for the purpose of differential diagnostics of
benign and malignant diseases of the biliary pathways, as well as for stage I and II carcinomas [151].

With the use of immunoblotting marked with antibody against MUC5AC, Wongkham et al.
detected this type of mucin in ~62% of CC patients, as compared with only 3% of patients with
benign hepatobiliary diseases, 10% with hepato-gastrointestinal cancer and none of the healthy
control. Additionally, serum MUC5AC correlated with the tissue expression in CC patients [152]. Use
of the ELISA technique for detection of MUC5AC, allowed for achieving 71% sensitivity and 90%
specificity for discriminating CC patients from the controls [153]. In other study, MUC5AC serum
expression was found more frequently in BTC (44% of patients) than in PSC (14%) [49]. Additionally,
serum MUC5AC was associated with patients with blood type A, larger-sized tumours (>5 cm) and
advanced-stage disease [154]. Quantitative research showed significantly higher serum MUC5AC
levels in BTC patients, compared to those affected with benign biliary disease [155,156]. Additionally,
serum MUC5AC ≥ 14 ng/mL was associated with lymph-node metastasis, tumour stage (IVb) and a
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worse prognosis in BTC patients who underwent surgery, compared with patients with lower levels
of this mucin [155]. Immunoblot analysis confirmed the presence of stronger MUC5AC expression
in serum than in bile of CC patients [156]. Serum MUC5AC levels gave 60.6% sensitivity and 82.3%
specificity at a cut-off of >0.67 ng/mL, while a panel combining PKM2, CYFRA21.1, MUC5AC and
GGT was beneficial in differentiating malignant (CC) from benign biliary disease (PSC), warranting
validation in a prospective trial [157]. From the tested markers, only the serum levels of MUC5AC
were significantly correlated with BTC presence [155].

Based on over 1200 patients, the meta-analysis conducted by Xuan et al. confirmed that serum
MUC5AC is a good diagnostic marker in CCs. However, targeting MUC5AC epitope has a higher
pooled sensitivity than targeting MUC5AC protein (0.77 vs 0.63) [158]. Effectiveness of serum MUC5AC
levels (OR = 4.52) and immunoblot levels (OR = 2.61) as diagnostic biomarkers in Thai population
(OR = 8.32) was confirmed in another meta-analysis [159].

Few works consider expression of mucins (e.g., MUC4, MUC5AC, MUC1/KL-6) in bile of BTC
patients, indicating their role in diagnosis and therapeutic strategies. Matull et al. showed a 1.9-fold
increase (95% CI: 1.69–2.33) in MUC4 mRNA and a 3.8-fold increase (95% CI: 3.33–4.43) in MUC5AC
mRNA expression levels in BTC bile samples, compared to benign biliary conditions (95% CI: 0.86–1.16;
95% CI: 0.83–1.21, respectively) [49]. Additionally, evaluation of serum to bile ratio of MUC5AC
(better than serum level alone) showed excellent diagnostic performance for differentiating CC from
cholangitis and cholelithiasis [156]. Significantly higher concentrations of MUC2 and MUC5AC was
also detected in bile samples from the hepatic ducts affected by intrahepatic calculi, as compared
with the unaffected hepatic duct of patients with hepatolithiasis [65]. Recent study of Onoyama et al.
showed increased KL-6 concentration of bile (34.6 ± 51.6 U/mL) in BTC, compared to benign biliary
disease (5.2± 3.9 U/mL). The authors noted that bile KL-6 concentration to bile cytology measurements,
the sensitivity for the diagnosis of BTC was increased significantly [160].

4.5. Mucins as Prognostic Factors in Primary Liver Cancers

While most of the clinical results indicates prognostic role of MUC1 and MUC2 expression [161],
the number of works pointing at a role of other mucins (e.g., MUC4, MUC5AC, MUC13, MUC15,
MUC16) in PLC increases [53,54,64,162,163].

Singular studies conducted on different subtypes of CC (invasive iCC, MF-CC; extrahepatic
CC) [47,76,82,145,164], as well as extensive meta-analysis (3425 patients) confirmed that increased
MUC1 expression (including that of its more sialylated glycoform) was significantly associated
with poor OS in patients with GI tract carcinomas, including CC [in fixed-effect model (FEM):
HR = 2.52, 95%CI: 1.42–4.49, PFEM = 0.252; and at random-effect model (REM): HR = 2.34, 95%CI:
1.30–4.22, PREM = 0.244] [161]. Additionally, it was proven that patients with the cytoplasmic pattern of
MUC1 expression showed significantly lower survival rates [48,82]. MUC1 overproduction was most
commonly detected in poorly differentiated CCs, correlating with T category, gross type of intra- and
extrahepatic CC [144], metastasis of lymph nodes, portal canal emboli and post-operational recurrence
of the carcinomas. MUC1-positive patients showed faster metastasis, as well as shorter OS, compared
to those that were MUC-1 negative [82].

As opposed to MUC1, positive expression of non-sialylated forms of MUC2 in two subtypes of
iCC was a favourable prognostic indicator [47]. In turn, Ling et al. indicated that decreased expression
of MUC2 (−∆∆Ct < 0) was significantly correlated with poor OS (HR = 0.238, 95% CI: 0.13–0.43).
Moreover, MUC2 mRNA and promoter methylation significantly correlated with OS after surgery in
HCC patients [52].

When it comes to other mucin types, it was demonstrated that tissue expression of MUC4 can be a
significant independent factor for poor prognosis and is a useful marker to predict the outcome of the
patients with iCC-MF [76] and EBD carcinoma [162–164]. The survival of the patients with high MUC4
expression was significantly worse than that of the patients with low expression. Only in iCC-MF,
double positive expression of MUC4 and ErbB2 showed a shorter cumulative survival rate compared
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to non-expressing tumours [76]. Large meta-analysis (~2000 patients) concerning serum MUC4 levels
confirmed usefulness of this prognostic marker in cancers, including BTC. Significant association was
found between elevated MUC4 expression and poorer OS (HR: 2.41, 95% CI: 1.69–3.42) [162].

It was also proven that serum MUC5AC could be a marker of bad prognosis in CC patients [154,155].
Patients with positive serum MUC5AC had a 2.5-fold higher risk of death compared to those that
were deemed MUC5AC-negative. Additionally, positive serum MUC5AC was associated with more
advanced-stage of the disease and larger tumours (>5 cm) [154]. Quantitative research showed significantly
higher serum MUC5AC levels in BTC patients, compared with benign biliary disease [155,156].
Additionally, serum MUC5AC ≥ 14 ng/mL was associated with lymph-node metastasis, tumour
stage (IVb) and a worse prognosis in BTC patients who underwent surgery, compared to patients
with lower levels of this mucin [155]. The results of the abovementioned research are confirmed
by a meta-analysis, proving that MUC5AC is a promising prognostic factor for cancer, especially
for that of biliary and GI origin and is more suitable for predicting cancer prognoses in Asians.
The overexpression of MUC5AC was found to be significantly associated with a poor prognosis in the
biliary subgroup (HR: 1.83, 95%CI: 1.269–2.639) and the GI group (HR: 1.44, 95%CI: 1.069–1.949) [163].

In addition, MUC13 and MUC15 seem to be new, promising prognostic factors in HCC [53,54,56].
In the case of MUC13, overexpression of this type mucin was significantly associated with poor OS
and poor DFS rate [56]. When it comes to MUC15, lower tissue expression was significantly correlated
with shorter OS and relapse time [53], as well as poor clinical prognosis of the patients [54].

MUC16 expression was positive in 48% of the MF-CC samples and was indicated as a prognostic
factor of poor survival in patients [64].

4.6. Mucins in Liver Cirrhosis

The role of mucins in liver cirrhosis is mostly confirmed by clinical works, usually concerning
MUC1 [80,82,165]. In studies of mucin expression in various hepatobiliary diseases, MUC1 was
expressed in different frequency in all types of pathological lesions, especially in cases of destructive
cholangitis in PBC and hepatic duct injuries in chronic hepatitis [80]. Yuan et al. detected MUC1
expression in only 4/20 cirrhotic liver tissues, with lower expression observed in cirrhotic tissue,
compared to that affected with PLC [82]. In other study, the levels of both MUC1 and c-Met expression
in cirrhotic samples were significantly higher than in normal tissue and lower than in HCC samples.
Cirrhotic liver tissue showed weak, diffuse cytoplasmic MUC1 staining [38].

Elevated serum MUC1/KL-6 expression was observed in patients with various chronic liver
diseases, mainly associated with HCV infection [166]. Higher levels of KL-6 were observed in cirrhotic
patients (377.6 ± 212.1 U/mL) than in chronic hepatitis patients (283.5 ± 131.4 U/mL), both without
interstitial pneumonia. The authors concluded that KL-6 reflects hepatic fibrosis better than pulmonary
fibrosis [166].

Elevated MUC16 (CA125) levels were also reported in patients with liver cirrhosis associated with
ascites [165,167]. A retrospective study of Edula et al. noted CA125 levels elevation in 85% of adult
patients with cirrhosis. The higher level of CA125 was correlated with more advanced degree of liver
decompensation [165,168].

4.7. Mucins in Hepatocellular Carcinoma – In Vivo Studies

In the current classification of HCC, based on molecular features, three categories of HCC
are distinguished, including proliferation-progenitor, proliferation-TGF-β and Wnt-catenin β1.
The proliferation-progenitor group of HCC is generally associated with more aggressive phenotype
and poor outcome of patients [78]. This classification does not take quantitatively or qualitatively
altered mucin production into account. Based on histological HCC properties, three main forms of this
cancer are recognized: pure, mixed and motley [168]. Evaluation of mucin expression turned out to
be very useful in morphological classification of the subtypes of this heterogenous cancer in human,
especially when it comes to mixed/combined HCC-CC. In WHO 2010 classification, cHCC-CCs are
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divided into classic and those with stem cell features. The classic cHCC-CC has typical HCC and CC
areas [98]. For the CC area, its IHC profile includes positive staining for mucin, which is essential to
demonstrate the biliary component, CK7, CK19 and AE1 [98,169]. According to the recently published
research on genetic characteristics of early stage HBV-associated HCC, among the eight most commonly
mutated genes in this cancer is MUC16. The mutation was heterozygous, leading to sequence changes
of the corresponding aa in the encoded protein [170].

Considering tissue expression of different mucins in HCC, MUC1, MUC2 and MUC5AC were
most commonly investigated [38,52,82,83,137]. Currently, other mucins are also included in studies, for
example MUC13 or MUC15 [42,54,56]. Studies of Lau et al., conducted on different types of primary
cancers, did not show MUC1, MUC2 or MUC5AC positive expression in HCC [137]. Later works
described increased expression of the MUC2 gene in only ~31% of the HCC patients, with mean
expression lower (mean −∆Ct = −4.70; 95% CI, −5.88–−3.53) than that in non-HCC tissues (mean

−∆Ct = −2.98; 95% CI, −3.99–−1.97). Moreover, the MUC2 mRNA expression was lower in HCC
patients with MUC2 promoter hypermethylation. It was also reported that the MUC2 promoter was
significantly more often hypermethylated in HCCs, than in non-tumour samples (~62% vs. ~19%,
respectively). From a clinical point of view, the negative correlations between MUC2 mRNA, HBV
viral load and AFP in HCC were especially important. The study suggests that the loss of MUC2
mRNA and hypermethylation could be poor prognostic factors in HCC [52].

Comparisons of mucin expression in HCC and CC gave mixed results [38,82,83]. In one of
the studies, no significant differences between these two cancer types were found, suggesting that
MUC1 gene expression was not associated with histological classification of the hepatic tumours [82].
Meanwhile, analysis of KL-6/MUC1 expression in patients with CC, HCC and cHCC-CC, allowed
to distinguish CC (positive in all cases) and cHCC-CC (positive in CC areas) from HCC (negative in
all cases) [83]. In the study of Bozkaya et al. the expression levels of MUC1 and c-Met in HCC were
greater than in both normal and cirrhotic liver tissues. MUC1 staining was mainly cytoplasmic in
tumour cells. [38]. Other authors reported presence of the extracellular myxoid/mucinous material in
hepatic adenomas and HCCs. Extraordinary morphology of these mucin producing hepatic tumours,
their characteristic clinical properties, as well as lack of morphological and IHC properties of biliary
differentiation, suggest presence of unique variants of these PLCs [171].

In the current literature, we can find confirmation of these suggestions, as mucin producing
was also described in HCC that contained intracellular and extracellular myxoid matrix without
evidence of biliary differentiation. This study confirmed the expression of MUC5AC and MUC6, as
well as negative expression of MUC1 and MUC2 throughout the tumour, with the final diagnosis
indicating mucin producing HCC [55]. Contrary to Salaria et al., [171] who only detected myxoid
material extracellularly, this research mostly localized mucins intracellularly (in a contained region
of the tumour), confirming the possibility of production of these glycoproteins by the HCC cells.
Authors discuss the possibility of detection of mutated mucins produced by HCC cells simultaneously
exhibiting biliary cells markers (CK7 and CK19) [55].

Finally, there are studies on classification of mucin-producing PLC (including HCC), which aim
to improve differential diagnostics, better characterize cellular origin of these heterogenous tumours,
as well as ease therapeutic decisions. It is known that cHCC-CC exhibits poorer prognosis than
HCC, as well as different treatment modalities [168]. Evaluation of MUC1 expression is used as one
of the cholangiocyte markers in the CC component. It was reported that ordinary HCC includes
cholangiocyte marker-positive areas [172]. Research on HCC lesions no larger than 5 cm showed
presence of cholangiocyte markers: CK7 (in 75%), CK19 (22%), the hepatic stem/progenitor cell
marker (C-kit – ~12%) and mucin production (MUC1 - ~12%). The small-size of cells positive for
these markers and formation of small foci, could rather suggest transdifferentiation of HCC cells than
malignant transformation of stem/progenitor cells [172]. Later studies of the same group confirmed
the expression of MUC1 in HCC. Depending on the size of the studied HCCs, a significant difference
in positive ratio of MUC1 was observed between S3 HCC group (tumour size 5.0–8.0 cm) (~46%) and
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both S1 (tumour size <2.0 cm) (~7.0%) and S2 groups (2.0–5.0 cm) (~9.0%). The positive ratio of MUC1
of the poorly differentiated HCC group was significantly higher than those of the well-differentiated
and moderately differentiated HCC groups. The authors concluded that HCC can acquire the markers
positive for cholangiocytes and stem/progenitor cells, during HCC progression [173]. Results of
both works support the transdifferentiation process as a formation mechanism of the classical type of
cHCC-CC [172,173]. Other authors describe dual tumour phenotype in patients with classical HCC
that expresses cholangiocyte markers. This subtype of the tumour, present in ~10% of total HCCs,
exhibits highly malignant behaviour (lower OS and RFS), compared to pure HCC. The combination
of IHC intensities of CK19 and MUC1 was significantly associated with tumour size, microvascular
invasion and satellite nodule formation [174].

There are two other mucins in the group of new, promising prognostic HCC markers: MUC13 [56]
and MUC15 [53,54]. In the case of MUC13, overexpression was detected in 44% of HCC cases and was
significantly associated with tumour size, stage, encapsulation, venous invasion and poor outcome.
The overexpression of MUC13 was significantly associated with HBV DNA copy number. Moreover,
MUC13 overexpression was significantly associated with nuclear translocation of β-catenin in HCC
samples, playing a pivotal role in the development and progression of HCC through activation of Wnt
signalling pathway [56]. When it comes to MUC15, statistically significant decrease in expression of
this mucin was noted in most of the HCC patients, compared to adjacent non-tumour tissue [53,54].
In addition, lowered expression of MUC15 was significantly correlated with the TNM stage, intrahepatic
or lymphatic metastasis, portal vein thrombosis [54], high levels of AFP, vascular invasion, lack of
encapsulation [53] and poor tumour differentiation [53,54]. Decreased MUC15 expression in HCC was
a factor of poor clinical prognosis in HCC patients [53,54].

Summary of the results on tissue expression, serum/bile level of mucins in precursors and early
lesions of CC, HCC, as well as other types of PLC, with their possible role in pathogenesis, diagnosis
and prognosis, were presented in Table 1.
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Table 1. Summary of results regarding tissue (T) expression, serum (S) and bile (B) concentration of mucins in precursors and early lesions of CC, biliary cystic
tumours, CCs, HCCs, as well as other types of PLC in vivo with their possible role in pathogenesis, diagnosis and prognosis.

Type of Mucin (A),
Source of Mucin (B),

Score of Expression (C)

Type of Hepatobiliary Tract Pathology
[No of Ref.]

A B C Precursors
of CC *

Biliary Cystic
Tumours ** Cholangiocarcinomas Hepato-Lithiasis Liver Cirrhosis HCCs cHCC-CCs, coCCs

MUC1
T

+1 [90,123,146] [86,145,146] [32,83,123] [80] [82] [38,172], � [173] [32,83,99,109,110,112], ↑# [174]

+2 [75] [47,131] [88,138] [75] [38] [38,173] nd

+3 [80] [81]
[47,146], ↑# [48], ↑�,# [82],

C# [48,82], [84,114],
↑♣,� [144], ↑# [161,164]

nd [80] [38], ↑�,# [82] [84]

(−) nd nd nd [32,55,83,112,137] nd

S (+)
nt

↑ [150,151]
nt

↑ [165] ↑ [148,167]
nt

B (+) ↑ [160] nt

MUC2
T

+1 [90,116,123] [86] [84,88,123,138,144] [116] nd [99]

+2 [85] [131] [47] nd [52] [84]

+3 [75] [47,146] [47,146] [75] nd

(−) [86,146] nd ↓# [47,52] nd [55,137], ↓# [52] nd

S/B (+) nt

MUC3
T

+1 [75,84,138] nd [84] [75] nd

+2 nd [84]

+3 nd [84] [84] nd

(−) nd

S/B (+) nt

MUC4
T

+1 [146] nd [76,138] nd

+2 nd

+3 nd [146], ↑# [76,164] nd

(−) nd

S (+)
nt

↑# [162]
nt

B (+) ↑ [49]

MUC5AC
T

+1 [90,116] [131,139] [84,88,123,128] nd [55] nd

+2 [85] nd [138] nd

+3 [75,123,146] [89,146] [84,144,146] nd

(−) nd nd nd [137] nd

S (+)
nt

↑ [49,152,154–156,158,159],
↑� [154,155], ↑# [155,163] nt

B (+) ↑ [49]
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Table 1. Cont.

Type of Mucin (A),
Source of Mucin (B),

Score of Expression (C)

Type of Hepatobiliary Tract Pathology
[No of Ref.]

A B C Precursors
of CC *

Biliary Cystic
Tumours ** Cholangiocarcinomas Hepato-Lithiasis Liver Cirrhosis HCCs cHCC-CCs, coCCs

MUC6
T

+1 [74,75] [131,139] [88,123,138,144] [75] nd [55] [84,99]

+2 nd nd [85] nd

+3 [123] nd [84] nd

(−) nd

S/B + nt

MUC13
T

+1 nd

+2 nd [56] nd

+3 nd ↑♣,# [56] nd

(−) nd

S/B (+) nt

MUC15
T

+1;+2;+3 nd

(−) nd ↓♣,�,# [53,54] nd

S/B (+) nt

MUC16
T

+1 nd

+2 nd [64] nd

+3 nd ↑# [64] nd

(−) nd

S (+) nt ↑ [165,167], ↑� [165] nt

B (+) nt

Legend: * including chronic hepatitis, BilIN, IPNB, ITPN-B, MCNB, BDA, biliary adenofibroma and biliary microhamartoma; ** including cystadenomas and cystadenocarcinomas;
(+) positive S/B concentration; +1<25% cases with positive T expression; +2≥25–50% positive cases; +3>50% positive cases; (−)—negative expression; C—cytoplasmic expression;
↑/↓—significant increased/decreased T/S concentration as related to control groups; ♣—significant association between mucin expression and cancer differentiation; �—association
between mucin expression and more advanced clinical stage of cancer (TNM, tumour size, venous infiltration, microsatellite nodules, metastases, etc.); #—significant correlation with poor
prognosis (OS, DFS) and/or cancer recurrence; CC—cholangiocarcinoma; cHCC-CC—combined HCC-CC; coCC—cholangiolocellular carcinoma; HCC—hepatocellular carcinoma; nd—no
data; nt—no tested; no of ref.—number of references in order to citation (for details, see text).
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5. The Main Headlines of the Review and Conclusions

The research of mucin expression in precursor lesions of CC, HCC and other subtypes of PLC,
conducted on in vivo and in vitro models allowed for:

1. indication that although the main producer of mucins in PLC are biliary epithelial cells
(cholangiocytes), these glycoproteins can also be produced by neoplastic hepatocytes;

2. proving that, during hepatobiliary carcinogenesis, some mucins are aberrantly overexpressed
(e.g., MUC1), while expression of other mucins decreases (e.g., MUC2);

3. characterization of changes in mucins subcellular localization (e.g., cytoplasmic expression of
MUC1 in place of membranous) accompanying carcinogenesis;

4. demonstration of the qualitative glycoprotein changes, including different patterns of mucin
glycosylation in hepatobiliary carcinogenesis (e.g., sialylation of MUC1 associated with invasive
growth of neoplasm);

5. defining that the malignant transformation of liver cells (cholangiocytes, hepatocytes) is
associated with oncogenic functions of human mucins (e.g., MUC1, MUC13, MUC15);

6. closer examination of the mechanisms of mucin action, as well as their participation in the most
important pathways of hepatic carcinogenesis;

7. characterization of the stages of liver cystogenesis;
8. determination of the role of mucins in the initiation and progression of PLC;
9. immunophenotype characterization of different types of hepatobiliary mucinous lesions, starting

from precursor lesions, ending on invasive PLC (e.g., gain of gastric apomucin phenotype in iCC
during carcinogenesis);

10. hypothesizing on the cellular origins of rare PLC types;
11. gaining the possibility for early PLC detection in a high-risk groups or suspected patients;
12. determination of histo- and immunohistochemical panel of mucins of the biggest diagnostic-

prognostic role in PLC (including HCC);
13. improvement of modern PLC classification, including detailing of the hepatic tumour subtypes.

Concluding, it can be stated that the evaluation of mucin expression in primary liver cancer has
both research and clinical value. Mucins may act as oncogenes and tumour-promoting (e.g., MUC1),
and/or tumour-suppressing factors (e.g., MUC15). Given their role in promoting PLC progression,
both classic (MUC1, MUC2, MUC4, MUC5AC, MUC6) and currently tested mucins (e.g., MUC13,
MUC15, MUC16) have been proposed to be important diagnostic and prognostic markers. Estimation
of mucin expression and explaining the mechanisms of action requires further studies also in the
context of new targeted therapies.
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Abbreviations

Aa amino acids
AE1/AE3 a so-called pancytokeratin cocktail (it is missing CK17 and CK18)
AFP alpha-fetoprotein
Akt (AKT) protein kinase B; serine/threonine protein kinase
AP-1 Activation Protein 1
Bax bcl-2-like protein 4; pro-apoptotic protein from the Bcl-2 protein family
BDA bile duct adenoma
BilIN biliary intraepithelial neoplasia
b-ITPN biliary intraductal tubulopapillary neoplasms
BTC biliary tract carcinoma
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CA125 Cancer antigen 125, a synonym of MUC16
CA15-3 Cancer antigen 15-3, is synonym of MUC1
CC cholangiocarcinoma/cholangiocellular carcinoma
CD cluster of differentiation, for example CD227; CD340
CDX2 Caudal Type Homeobox 2
CEA carcinoembryonic antigen
CI confidence interval
CK7, -19 cytokeratin 7, -19
c-Met tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR)
CXCL12 C-X-C motif chemokine 12 or stromal cell-derived factor 1 (SDF1)
CYFRA21.1 cytokeratin 19 fragment
DAB 3,3′-Diaminobenzidine
DFS disease-free survival
EBDs extrahepatic biliary ducts
ECM extracellular matrix
ECs endothelial cells
EGF/R Epidermal Growth Factor/Receptor
EMA Epithelial Membranous Antigen
EMT Epithelial-Mesenchymal Transition
EpCAM Epithelial Cell Adhesion Molecule
EPG extrahepatic peribiliary glands
ErbB2 Receptor tyrosine-protein kinase 2, also known as CD340
ERK1/2 extracellular signal-regulated kinase 1

2
GGT gamma-glutamyltransferase
HBV/HCV hepatitis B/C virus
HCC hepatocellular carcinoma
HGF Hepatocyte Growth Factor
HR hazard ratio
HSCs hepatic stellate cells
IBDs intrahepatic biliary ducts
iCC intrahepatic cholangiocarcinoma
IHC immunohistochemistry
IL interleukin
IPMN; M-IPNB cystic intraductal papillary neoplasm of the intrahepatic bile duct
JAK/STAT Janus kinase, Signal Transducer and Activator of Transcription protein
JNK c-Jun N-terminal kinase
LPS lipopolysaccharide, a gram-negative bacterial component
MAPK Mitogen-activated Protein Kinase (originally called ERK)
MCNBs, MCN-L hepatic (biliary) mucinous cystic neoplasms
MMP2, -7, -9 matrix metalloproteinase 2, -7, -9
MUC mucin
Myc v-myc myelocytomatosis viral oncogene homolog (avian)
NF-κB Nuclear Factor Kappa-light-chain-enhancer of Activated B cells
OLS ovarian-like stroma
OR Odds Ratio
OS overall survival
PBC primary biliary cirrhosis
PBGs peribiliary glands
PFS progression-free survival
PI3K phosphatidylinositol 3-kinase
PKC protein kinase C
PKM2 pyruvate kinase M2
PSC primary sclerosing cholangitis
RFS recurrence-free survival
SEA Sea Urchin Sperm Protein, Enterokinase and Agrin
shRNA a short hairpin RNA or small hairpin RNA
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TβRI TGF-β type I receptor
TGF-α, β Transforming Growth Factor α, β
TIMP2 tissue inhibitors of metalloproteinase 2
TNF-α Tumour Necrosis Factor α
TNM classification of malignant tumours (T—tumour; N—lymph nodes; M—metastasis)
VEGF Vascular Endothelial Growth Factor
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