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The adjoint-based sensitivity analyses well explored
in hydrodynamic stability studies are extended to
calculate the sensitivity of forces acting on an aerofoil
with respect to wall transpiration. The magnitude
of the sensitivity quantifies the controllability of
the force, and the distribution of the sensitivity
represents a most effective control when the control
magnitude is small enough. Since the sensitivity to
streamwise control is one order smaller than that to
the surface-normal one, the work is concentrated on
the normal control. In direct numerical simulations
of flow around a NACA0024 aerofoil, the unsteady
controls are far less effective than the steady control
owing to the lock-in effect. At a momentum coefficient
of 0.0008 and a maximum control velocity of 3.6%
of the free-stream velocity, the steady surface-normal
control reduces drag by 20% or enhances lift by up
to 140% at Re = 1000. A suction around the low-
pressure region on the upper surface upstream of the
separation point is found to reduce drag and enhance
lift. At higher Reynolds numbers, the uncontrolled
flow becomes three dimensional and the sensitivity
diverges owing to the chaotic dynamics of the flow.
Then the mechanism identified at lower Reynolds
numbers is exploited to obtain the control, which is
localized and can be generated by a limited number of
actuators. The control to reduce drag or enhance lift is
found to suppress unsteadiness, e.g. vortex shedding
and three-dimensional developments. For example, at
Re = 2000 and α = 10◦, the control with a momentum
coefficient of 0.0001 reduces drag by 20%, enhances lift
by up to 200% and leads to a steady controlled flow.
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1. Introduction
Flow over aircraft wings or turbine blades at a high angle of attack is commonly associated with
boundary-layer separations and unsteady vortex shedding, which would cause vortex-induced
vibration, potential damage of structures and a serious increase of the mean drag and the lift
fluctuation. Numerous flow control strategies have been proposed to control the stability of the
boundary layers, vortex shedding in the wake, or the drag and lift forces acting on the body,
by means of either active or passive control [1]. Active control, which involves energy input, is
commonly achieved by generating non-zero velocity on the surface of a solid body, while other
active control techniques exist, such as using near-wall forcing to reduce turbulence drag [2],
generating travelling waves on the rear surface of a cylinder to suppress vortex shedding [3],
and exciting electrodes to generate plasma sheets and modify the near wake of a cylinder [4].
In the rest of this section, the wall-normal transpiration control, which is also the focus of the
current work, is reviewed in §1a, and the sensitivity analyses used to calculate the control are
introduced in §1b.

(a) Literature review of the wall-normal control
The wall-normal control, i.e. blowing or suction normal to the surface, can be categorized as
steady, low-frequency, high-frequency and time-dependent but non-periodic controls depending
on the frequency of the wall forcing. The steady control refers to steady blowing/suction, while
the low- and high-frequency controls refer to periodic oscillations of the wall-normal velocity
component which can be generated by synthetic jets [5]. These three types of normal control are
open-loop control techniques, while the last one, i.e. the time-dependent but non-periodic control,
is often associated with feedback control. Since the control addressed in this work is based on
fixed control objectives and can be regarded as an open-loop control, only the first three types of
normal control are reviewed in the following.

Steady normal control introduced from the base of a solid body has been widely used to control
wake stabilities and vortex shedding [6,7]. For the control of forces, Delaunay & Kaiktsis [8] used
base blowing to control the flow around a circular cylinder. They achieved a 14% reduction
of drag at a maximum control velocity of approximately 0.37 (normalized by the free-stream
velocity as will be used in the following) at Reynolds number Re = 90 and observed that most
of the reduction is attributed to the pressure component. Kametani & Fukagata [9] found that
uniform blowing (or suction) with a relative control velocity of 0.01 reduces (or increases) friction
drag in a boundary-layer flow at Re = 3000. Kim & Choi [10] applied steady blowing/suction
varying sinusoidally in the spanwise direction on the upper and lower surfaces of a cylinder
and observed that a symmetric (‘in-phase’) control forcing reduces drag significantly and also
suppresses vortex shedding more efficiently than base bleeding. They achieved about 20% drag
reduction at a maximum relative control velocity 0.1 at Re = 100. The mechanism of this control is
attributed to the phase mismatch in the spanwise direction, similar to effects induced by spanwise
geometry variation [11,12].

The low-frequency normal control refers to periodic blowing and suction at frequencies
commensurate with natural frequencies of the flow. Wu et al. [13] discussed two natural
frequencies, i.e. shear layer frequency and vortex shedding frequency, in flow around a
NACA0012 aerofoil at a large angle of attack (20◦ ≤ α ≤ 30◦). They achieved a 70% lift
enhancement accompanied by an over 20% increase of drag at a maximum relative control
velocity of 0.42 and control frequencies around the latter. Raju et al. [14] identified three natural
frequencies corresponding to the shear layer, separation bubble and wake regions in two-
dimensional simulations to control separation in flow around a NACA4418 aerofoil at Re = 40 000
and α = 18◦. They suggested that the control around the separation bubble frequency, which
would be close to the vortex shedding frequency at a large angle of attack as presented by Wu
et al. [13], is the most effective to diminish separation. Imposing control at this optimal frequency,
they observed a 1% increase of lift and a 39% reduction of drag at a maximum relative control
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velocity 0.1 and a momentum coefficient (relative momentum of the control with respect to the
free stream) of 1.2 × 10−4 − 1.9 × 10−4. A similar result was observed in another study of flow
around a thick elliptic plate [15]. For controls at shear layer frequencies, Hong [16] used synthetic
jets with frequencies in the lower range of Tollmien–Schlichting waves to activate boundary-layer
instabilities so as to prevent laminar separation and accelerate laminar–turbulence transition.

The high-frequency normal control refers to control at frequencies one order larger than
natural frequencies of the flow. Therefore, the control effects are decoupled from instabilities of
the uncontrolled flow. At such high frequencies, the control generates localized concentrations of
‘trapped’ vorticity, and subsequently alters the shape of the surface as passive control devices
[17]. Jeon et al. [18] observed nearly 50% drag reduction in flow around a sphere at Re = 105

under the control of synthetic jets with an optimal frequency around 16 times the uncontrolled
vortex shedding frequency and a maximum relative control velocity 0.1. The mechanism of drag
reduction is attributed to the delay of the main separation owing to the formation of a bubble
and reattachment upstream of the main separation. This control mechanism can be considered
as altering the body surface; a similar control effect was achieved by placing a protuberance
with various shapes upstream of the separation points in a cylinder flow [19]. Unlike the steady
and low-frequency controls, the mechanism of high-frequency control associated with trapped
vortices is nonlinear.

The majority of the control forcing discussed above is generated by localized control actuators,
with a few exceptions, e.g. optimally distributed control across the entire body surface or rigid
rotation of a circular solid body. In this work, the control is calculated by scaling the sensitivity
of forces acting on a solid body with respect to surface forcing. This control is optimal in the
linear sense (the magnitude of the control velocity is small enough) and therefore the nonlinear
control mechanisms associated with the generation of trapped vortices in the high-frequency
normal control will not be addressed. Since the sensitivity is distributed across the whole
surface, the control is continuous instead of concentrated on a limited number of segments
of the body surface. It is noted that, even though the exact form of this control may not be
physically realizable, the study highlights localized regions where discrete control strategies can
be developed, as presented in §4f.

(b) Introduction of sensitivity analyses
Most sensitivity studies in fluid dynamics have targeted the sensitivity of kinetic energy with
respect to external forcing, which is modelled as source terms of the linearized Navier–Stokes
(NS) equation [20–22]. The calculated optimal external forcing leads to maximum energy growth
and therefore facilitates understanding of fluid physics, e.g. stabilities or non-normal noise
amplifications. Similar studies have been conducted to calculate the optimal initial perturbation,
which is the initial condition of the linearized NS equation and induces the largest energy growth
over a given time horizon [23]. For boundary conditions, the methodology to calculate optimal
(most energetic) Dirichlet-type boundary conditions has been established and used to compute
optimal inflow conditions in stenotic flow and vortex flow [24,25]. It is noted that most of the
studies of optimal perturbations, including initial perturbations, external forcing and boundary
perturbations, addressed in the literature, have targeted perturbation energy growth and the
term ‘optimal’ is synonymous with ‘most energetic’. This most energetic study has been recently
extended to investigate the sensitivity of forces or flow separations to external forcing [26,27].

Among the three types of perturbations, i.e. external forcing, initial and boundary
perturbations, the last one is an intuitive option for active flow control. Most of the physical
controls are introduced on the solid surface and are therefore in the form of boundary
perturbations to the uncontrolled flow; external forcing can be generated by extra small cylinders
representing a passive control [21,27]; initial conditions can be convected out of the domain after
a finite time interval and therefore cannot be used as a sustainable and reliable control.

The sensitivity of forces acting on a solid body with respect to the boundary perturbation
can be scaled as a control, which is most effective to modify the forces in the linear sense.
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The methodology to calculate this sensitivity or control can be derived from that to compute
the most energetic boundary velocity, by modifying the objective function from the (boundary
perturbation) induced energy to induced forces. The calculation of the optimal control involves
a single integration of an adjoint equation, which has been extensively used in hydrodynamic
studies [23] and optimization of geometry or control parameters [28]. The adjoint equation used in
this work is two dimensional and its computational cost is close to the two-dimensional linearized
NS equation. Owing to the linear assumptions of this sensitivity study, there are no iterative calls
on the adjoint equation. Therefore, the computational cost of the sensitivity or the control is close
to a two-dimensional direct numerical simulation (DNS).

In this work, an aerofoil flow is adopted as an example to illustrate the sensitivity and the
associated control. In the following, the methodology to calculate the sensitivity and the control
is introduced in §2; the numerical method, discretization and convergence are discussed in §3; the
sensitivity and nonlinear control effects of the control are presented in §4; finally, the conclusion
is drawn in §5.

2. Methodology

(a) Governing equations
The controlled flow can be decomposed as the sum of an uncontrolled flow, which is synonymous
with base flow in hydrodynamic stability and other perturbation studies, and a control-induced
flow, i.e. (û, p̂) = (U, P) + (u, p), where û, U and u are total, uncontrolled and control-induced
velocity terms, respectively, and p̂, P and p are total, uncontrolled and control-induced pressure
terms, respectively.

The total controlled flow (û, p̂) and the uncontrolled flow (U, P) satisfy the NS equation. If the
control is small enough, so does the control-induced flow. Then the control-induced velocity and
pressure can be governed by the linearized NS equation,

∂tu + U ·V u + u ·V U + Vp − Re−1V2u = 0, with V · u = 0,

or more compactly as
∂tu − L(u) = 0, (2.1)

where L is a linearized operator. The initial condition of u is set to zero, corresponding to a
zero control-induced flow at the beginning of the simulation. For boundary conditions, on the
inflow and far-field boundaries, zero Dirichlet and computed Neumann conditions are adopted
for velocity and pressure, respectively [29]; on the outflow boundary, a zero Neumann velocity
condition normal to the boundary and zero Dirichlet pressure condition are implemented; on the
controlled boundary referring to the surface of the body where the control is introduced, Dirichlet
and computed Neumann conditions are implemented for velocity and pressure, respectively.

To simplify notations, define scalar products on the temporal domain [0, τ ], spatial domain Ω

and its controlled boundary C

(a, b) =
∫
Ω

a · b dΩ , 〈a, b〉 = τ−1
∫ τ

0

∫
Ω

a · b dΩ dt,

[d, e] =
∫

C
d · e dC, {d, e} = τ−1

∫ τ

0

∫
C

d · e dC dt,

where a, b ∈ Ω × [0, τ ] and d, e ∈ C × [0, τ ].

(b) Surface-velocity control
In this work, three types of surface-velocity control will be studied, i.e. normal control
confined to the surface-normal direction, streamwise control constrained to the surface-tangential
(streamwise) direction, and a combined control with both surface-normal and streamwise
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components. To reduce the dimension of the control after temporal–spatial discretization, the
temporal and spatial dependence for the three types is decomposed as

u(C, t) = G(t)un(C)n, u(C, t) = G(t)um(C)m and u(C, t) = G(t)unm(C), (2.2)

where un(C) and um(C) are the spatial dependence of the control on the normal and streamwise
directions, respectively; unm(C) is a vector denoting the spatial dependence of the combined
control containing a normal component and a streamwise component; n and m denote the
unit outward normal and streamwise vectors on the controlled surface, respectively; G(t) is a
prescribed temporal-dependence function defined as

G(t) = (1 − exp(−σ1t2)) exp(iωt), (2.3)

where the first term on the right ensures u(C, 0) = 0 so as to avoid discontinuity in the numerical
simulation at t = 0, considering that a zero initial condition is adopted for the control-induced
velocity u; σ1 is a relaxation factor and σ1 = 100 is adopted throughout this work; ω acts as the
frequency of the control provided that the final time τ is large enough.

In the calculation of the control, the temporal dependence is prescribed and the spatial
dependence un(C), um(C) and unm(C) are referred to as the control at frequency ω. To evaluate
the magnitude of the control, a boundary norm ‖ · ‖b, also denoted as b-norm in the following, is
introduced. This norm is defined as the square root of the square integration of the control along
the controlled boundary, e.g. for the normal control

‖un‖b = [un, un]1/2. (2.4)

(c) Force acting on the aerofoil
Similar to the velocity and pressure terms, the force acting on a solid body can also be decomposed
into two components, i.e. an uncontrolled force and a control-induced force, as f̂ = F + f .

The force acting on a closed surface without boundary control is well known (e.g. [30]):

F(C) =
∫

C
(Pn − Re−1∂nU) dC. (2.5)

When the control is imposed, the force becomes

f̂ =
∫

C
(p̂n − Re−1∂nû + ûû · n) dC, (2.6)

as derived in appendix A. The three terms integrated on the right-hand side denote the pressure,
viscous and thrust forces, respectively. Subtracting the uncontrolled force from the controlled one,
one obtains the control-induced force

f =
∫

C
(pn − Re−1∂nu) dC. (2.7)

It is noted that the pressure and viscous forces are first-order functions of the control-induced
variables, while the thrust force is a second-order function. Therefore, based on the linear
assumption (i.e. the magnitude of the control and control-induced variables are small compared
with the uncontrolled ones), the thrust force is neglected in the above equation.

Since the uncontrolled force is constant with respect to the control, the following studies will
be concentrated on the control-induced force. Because the force is commonly time-dependent, it
is more useful to consider the (quasi) mean control-induced force, whose component in direction
K can be written as

f̄ K = τ−1
∫ τ

0
f · KR(t) dt = {pn − Re−1∂nu, KR(t)}, (2.8)

where R(t) = 1 − exp−σ2(t−τ )2
is a numerical factor introduced to remove the incompatibility

of initial and boundary conditions of the adjoint equation (see §2d) and σ2 = 100 is adopted
throughout this work. It is seen that, as the final time τ → ∞, the influence of R on f̄ K tends
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to be negligible and f̄ K tends to the time-averaged force in direction K. Over the parameters
considered in this work, a further increase of σ does not result in any significant change of the
result. If K = (cosα, sinα)T, where α denotes the angle of attack, f̄ K is the mean control-induced
drag; if K = (−sinα, cosα)T, f̄ K becomes the mean control-induced lift.

Since all the variables involved in the governing equations have been non-dimensionalized,
the force coefficient is two times the force. To simplify notations, the forces instead of force
coefficients are used in the following.

(d) Sensitivity of force to control
To derive the sensitivity of (mean control-induced) force with respect to control, an adjoint
method is applied. Starting from the linearized NS equation and considering integration by parts
and the divergence theorem [31], there is

−〈u∗, ∂tu − L(u)〉 = 〈u, ∂tu∗ + L∗(u∗)〉 − τ−1(uτ , u∗
τ ) + τ−1(u0, u∗

0)

+ τ−1
∫ τ

0

∫
∂Ω

n · [−U(u · u∗) + up∗ − u∗p + Re−1(Vu · u∗ − Vu∗ · u)] d∂Ω dt,

(2.9)

where ∂Ω represents all the boundaries of the computational domain; superscript ∗ denotes the
adjoint variables; and u∗

τ and uτ are the adjoint and control-induced velocity vectors at t = τ ,
respectively. Here, L∗ is an adjoint operator of L and correspondingly ∂tu∗ + L∗(u∗) = 0 is the
adjoint equation extensively used in investigations of receptivity and non-normality [31–33]. This
adjoint operator can be expanded as

L∗(u∗) = U · Vu∗ − VU · u∗ − Vp∗ + Re−1V2u∗ and V · u∗ = 0.

On both the inflow and far-field boundaries, zero Dirichlet and computed Neumann conditions
are used for adjoint velocity and pressure, respectively; on the outflow, a mixed velocity boundary
condition Re−1∂nu∗ + n · Uu∗ = 0 and a zero Dirichlet pressure condition are implemented [25];
on the controlled boundary, Dirichlet and computed Neumann conditions are used for adjoint
velocity and pressure terms, respectively. Considering the sign of the viscous term and the time
derivative term, this equation should be initialized at t = τ and integrated backwards to t = 0.

Since u satisfies the linearized NS equation and its initial condition is zero, 〈u∗, ∂tu −
L(u)〉 = 0 and (u0, u∗

0) = 0. Then if the adjoint variables are solutions of the adjoint equation
∂tu∗ + L∗(u∗) = 0 initialized by zero initial condition u∗

τ = 0, all the terms in (2.9) are zero except
the last one. The choice of boundary conditions for the adjoint variables ensures that the
integration over the inflow, outflow and far-field boundaries in this last term is zero. Therefore,
(2.9) can be reduced to

{pn − Re−1∂nu, u∗} = {p∗n − Re−1∂nu∗, u}. (2.10)

Combining (2.8) and (2.10), the mean control-induced force can be reformulated as

f̄ K = {p∗n − Re−1∂nu∗, u}

by setting the adjoint velocity boundary condition on the controlled boundary as u∗ = KR(t). Here,
the relaxation factor R(t) induces u∗(τ ) = 0, which is compatible with the zero initial condition of
the adjoint velocity.

Considering the definition of the Gâteaux differential, the gradient of the force with respect to
the three types of control can be expressed as

Vun f̄ K = τ−1
∫ τ

0
Gn · (p∗n − Re−1∂nu∗) dt, (2.11)
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Vum f̄ K = τ−1
∫ τ

0
Gm · (p∗n − Re−1∂nu∗) dt (2.12)

and Vunm f̄ K = τ−1
∫ τ

0
G(p∗n − Re−1∂nu∗) dt. (2.13)

To calculate these gradients, the uncontrolled flow should be computed first through DNS and
then the adjoint variables are solved by integrating the adjoint equation. These gradients are
distributed around the surface of the body and can be interpreted as the sensitivity of force
to control.

(e) Control effects
For control with a small enough given b-norm, the mean control-induced force reaches maximum
when the distribution of the control coincides with the sensitivity presented above. Therefore,
the distribution of the most effective control can be obtained by scaling the sensitivity. Below,
the surface-normal control is adopted as an example to demonstrate this relation between the
sensitivity and the control.

Any surface control can be decomposed into two components, one parallel with the sensitivity
and one normal to it. The parallel component can be calculated by projecting the control to the
sensitivity,

up = [un, Vun f̄ K]

[Vun f̄ K, Vun f̄ K]
Vun f̄ K.

Since [un, Vun f̄ K] ≤ ‖Vun f̄ K‖b‖un‖b, it can be derived that ‖up‖b ≤ ‖un‖b. Then according to the
definition of the gradient Vun f̄ K, the mean control-induced force is

f̄ K = [un, Vun f̄ K] = [up, Vun f̄ K]. (2.14)

Then if [un, Vun f̄ K] = 0, un is normal to the sensitivity and the mean control-induced force is
zero. If [un, Vun f̄ K] > 0, up is in the same direction as the sensitivity and f̄ K = ‖Vun f̄ K‖b‖up‖b.
If [un, Vun f̄ K] < 0, up is in the opposite direction to the sensitivity and f̄ K = −‖Vun f̄ K‖b‖up‖b.

Since ‖up‖b ≤ ‖un‖b, the force reaches maximum/minimum when un = up (maximum
‖Vun f̄ K‖b‖un‖b when un is in the same direction as the sensitivity and minimum −‖Vun f̄ K‖b‖un‖b
when in the opposite direction). Therefore, the b-norm of the sensitivity quantifies the
controllability of the force and the distribution of the sensitivity around the body is parallel
with the (linearly) most effective control. The corresponding control effect, evaluated by the mean
control-induced force, is the product of the b-norm of the sensitivity and the b-norm of the control.

Owing to the linear assumption, this control can be obtained by integrating the adjoint
equation once without iteratively calling the governing equations as in nonlinear optimal flow
control. The drawback of this approach is that it only yields the most effective control at small
b-norms.

3. Discretization and convergence
Since the proposed sensitivity/control methodology requires the controlled surface to be smooth,
a sharp trailing edge corresponding to infinite curvature does not fit the current methodology
(unless eliminating control around the trailing edge by excluding the trailing edge segment
from the controlled surface). Thus a relatively thick aerofoil, i.e. NACA0024, is adopted, since
its trailing edge can be closed with a smaller curvature and therefore is smoother than thinner
aerofoils. Owing to this trailing edge modification, the chord length is reduced to 0.95. The
leading edge of the aerofoil is located at (x, y) = (0, 0), the inflow, outflow and far-field boundaries



8

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150618

...................................................

40

20

0

–20

y

–40

0.4

0.2

0

–0.2

–0.4

0 100 –0.5
x

50 1.51.00.5
x

0

(a) (b)

Figure 1. Spectral element decomposition of the computational domain around themodifiedNACA0024 aerofoil. (a) Thewhole
domain and (b) the subdomain close to the aerofoil.

are located at x = −30, x = 145 and y = ±50, respectively. The whole surface of the aerofoil is
considered as the controlled boundary C. Since the aerofoil is symmetric, only positive angles of
attack, i.e. 0◦ ≤ α ≤ 20◦, are considered. Therefore, the upper surface of the aerofoil is the suction
side and the lower surface is the pressure side. The Reynolds number is defined using the free-
stream velocity and the original chord length before rounding the trailing edge. Considering
the requirement of computational resources, four relatively small Reynolds numbers, i.e. 500,
1000, 2000 and 5000, where the flow patterns are typical at α = 10◦, are adopted. These Reynolds
numbers are much smaller than those for flow around even small-scale wind turbine blades or
aircraft wings. However, it is expected that the result of the low Reynolds number flow and the
trend at increasing Reynolds number could shed light on the understanding of large Reynolds
number flow.

Spectral elements employing piecewise continuous nodal-based polynomial expansions are
adopted for spatial discretization. Time integration is carried out using a velocity-correction
scheme [34]. The same numerics are adopted to integrate the NS equation and the adjoint
equation using a well-validated numerical code which has been used in DNS and hydrodynamic
stability studies of vortex flow and flow around solid bodies [25,35]. The overall two-dimensional
spectral element decomposition consisting of 5815 spectral elements and a close-up view around
the aerofoil are shown in figure 1. For three-dimensional simulations, Fourier decomposition
is conducted in the spanwise direction, corresponding to implementing periodic spanwise
boundary conditions [36].

The initial and boundary conditions for the linearized NS equation and the adjoint equation
have been stated in §2. In DNS, the free-stream velocity is specified on the inflow and far-field
boundaries; a Dirichlet velocity condition is adopted on the aerofoil; zero Neumann velocity
and zero Dirichlet pressure conditions are used on the outflow boundaries. Again a computed
Neumann pressure condition is adopted if the velocity condition is of the Dirichlet-type.

As discussed above, the uncontrolled velocity is required in the integration of the linearized
NS equation and the adjoint equation. Since the uncontrolled flow is time-dependent, its velocity
vector is saved over each prescribed time interval dT. In the integration of the linearized NS
equation and the adjoint equation, the saved uncontrolled velocity vector is read into memory
and reconstructed at every time step through a third-order Lagrangian interpolation [37].

Convergences of the b-norm of the sensitivity of the drag to the normal control are tested at
Re = 5000, the largest Reynolds number considered in this work, as shown in table 1. It is noted
that the b-norm of the sensitivity has converged to three significant figures at the polynomial
order used to expand each spectral element P = 5. Then the polynomial order is fixed at P = 5
to check the convergences of the norm with respect to the time interval to save the uncontrolled
flow, and the time step to integrate the governing equations, denoted as dT and dt, respectively.
The norm has converged to three significant figures when dT is halved from 1.25 × 10−2 to 6.25 ×
10−3, or when dt is halved from 2.5 × 10−4 to 1.25 × 10−4. Therefore, P = 5, dT = 1.25 × 10−2 and
dt = 2.5 × 10−4 are adopted in the following studies.
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Figure 2. Convergence of the sensitivity of the drag to the normal control at Re= 5000, α = 10◦ and various final times τ .
The sensitivity has been normalized to have b-norm 0.02 and is plotted based on the aerofoil. The surface-normal deviation of
the sensitivity curves from the aerofoil denotes the local magnitude of the sensitivity. A deviation to the aerofoil (in direction n)
represents positive sensitivity and vice versa. This convention will be used in all the following plots of distributions of variables
along the aerofoil.

Table 1. Convergence of the b-norm of the sensitivity of the drag to the normal control in flow past the modified NACA0024
aerofoil. The Reynolds number, angle of attack and final time are Re= 5000, α = 10◦ and τ = 10, respectively.P , dT and
dt are the polynomial order used to expand each spectral element, the time interval to save the uncontrolled flow and the
time step to integrate the governing equations, respectively. ‖ · ‖b denotes the b-norm as defined in (2.4); un represents the
surface-normal control; f̄ K is the mean control-induced drag with K = (cosα, sinα)T.

P dT dt ‖Vun f̄ K‖b
2 1.25 × 10−2 2.5 × 10−4 3.6840

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 1.25 × 10−2 2.5 × 10−4 3.3628
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1.25 × 10−2 2.5 × 10−4 3.3081
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 1.25 × 10−2 2.5 × 10−4 3.3025
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 1.25 × 10−2 2.5 × 10−4 3.3011
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 1.25 × 10−2 2.5 × 10−4 3.3002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 6.25 × 10−3 2.5 × 10−4 3.3027
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 1.25 × 10−2 1.25 × 10−4 3.3018


As discussed above, a larger final time τ is appreciated since it suppresses the numerical
relaxation effects associated with R and G, but apparently it also increases the computational
costs. Three final times, i.e. τ = 10, 15 and 20, are tested and the b-norms of the sensitivities
are 3.3025, 3.1517 and 3.18025, respectively. These b-norms do not converge very well owing to
the relaxation factors. The convergence of the distribution of the sensitivity with respect to τ is
further inspected, as shown in figure 2. To illustrate the distribution of sensitivities along the
aerofoil, the sensitivities have been normalized to have b-norm 0.02 and therefore the sensitivity
curves can be represented as C + 0.02Vun f̄ K/[Vun f̄ K, Vun f̄ K]1/2. The surface outward normal n
defines the positive direction of the sensitivity, so sensitivity inside (or outside) the aerofoil is
positive (or negative). The distribution of the sensitivity has reached good convergence at τ = 10
for increasing τ , even though its b-norm, which is a function of the relaxation factors and also
the final time, is still oscillating with respect to τ . Considering that a larger τ helps to exclude
the transient effects at the beginning of the control as well as the relaxation factor effects, τ = 20,
which is close to the limit of the available computational resources, is adopted in the following
investigations if not otherwise stated.
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4. Results
In this section, the uncontrolled flow is presented in §4a, the magnitude and distribution of the
sensitivity are demonstrated in §4b,c, respectively, the control effect of the scaled sensitivity is
discussed in §4d and the dominant control mechanisms are identified in §4e, and exploited to
control three-dimensional flow in §4f.

(a) Two-dimensional uncontrolled flow
Owing to the computational cost, only the two-dimensional adjoint equation is considered in
this work. Therefore, two-dimensional uncontrolled base flows are required to calculate the
sensitivity of forces to boundary control. These uncontrolled flows can be obtained by saving the
flow field over every time interval dT after the solution becomes periodic in two-dimensional
DNS (the range of Reynolds numbers and angles of attack considered in this work ensures
that a periodic state exists). Figure 3 illustrates the contour of spanwise vorticity for the two-
dimensional uncontrolled flow at an angle of attack α = 10◦, time t = 0 (the time to start saving the
uncontrolled flow) and Reynolds numbers Re = 500, 1000, 2000 and 5000. For Reynolds number
higher than 5000, a periodic two-dimensional uncontrolled solution is not obtained at α = 10◦,
owing to the high sensitivity of the flow to numerical noise. These four Reynolds numbers are
chosen since they correspond to four typical (vortex shedding) flow patterns; at Re = 500, the
unsteady vortex shedding takes place in the wake and the flow close to the aerofoil is almost
steady; at Re = 1000, the unsteady shedding reaches the base of the aerofoil; at Re = 2000, vortex
shedding occurs above the trailing edge of the aerofoil; at Re = 5000, the shear layer above the
suction side breaks into vortices around the middle of the chord.

(b) Magnitude of the sensitivity
For two-dimensional uncontrolled flow, only two-dimensional sensitivity with spanwise
wavenumber zero deserves consideration. This is because, based on the linear assumption,
Fourier modes with different spanwise wavenumbers are decoupled and modes with non-
zero spanwise wavenumbers induce zero force after integrating along the spanwise direction.
This work is concentrated at Re = 1000 and α = 10◦, where the base flow is two dimensional
(asymptotically stable to perturbations with non-zero spanwise wavenumbers), while other
Reynolds numbers and angles of attack are also investigated to illustrate the parameter effects.

As stated above, three types of control are tested: one restricted to the surface-normal
direction (the streamwise component is zero), one constraint to the streamwise direction (normal
component is zero), and one with both surface-normal and streamwise components. The
sensitivities of forces with respect to these three types of control can be calculated from (2.11)–
(2.13). The b-norm of the sensitivity at Re = 1000 and α = 10◦ is presented in figure 4. For all
three cases, the b-norm of the sensitivity of lift is much larger than that of drag, indicating that
lift can be more effectively modified by boundary control. The b-norm reaches local maxima at
frequency ω = 0, ω = 4.45 and ω = 8.90. The first one corresponds to a steady control, the second
one is the dominant vortex shedding frequency in the uncontrolled flow and the third one is
a higher harmonic. The sensitivity with respect to normal control is much larger than that to
the streamwise control and only slightly smaller than the combined control. This observation
indicates that, when the control magnitude is small, surface-normal control is much more effective
than streamwise control.

In physical experiments, the normal and streamwise controls are generated by different
actuators: normal control by jet or synthetic jet and streamwise control by rotation of a segment
of the surface, which is intuitively more difficult to implement than that by jet/synthetic jet.
Considering the control effectiveness and physical implementations, the following studies will
be concentrated on the normal control.
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Figure 3. Contours of spanwise vorticity for the uncontrolled flow atα = 10◦ and (a) Re= 500, (b) Re= 1000, (c) Re= 2000
and (d) Re= 5000, respectively. Contour levels are [−12,−6,−3, 3, 6, 12], as will be used in all the following contour plots if
not otherwise stated. (Online version in colour.)
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Figure 4. The b-norm of sensitivity of (a) drag and (b) lift forces with respect to normal, streamwise and combined (normal
and streamwise) controls at Re= 1000 andα = 10◦.

Firstly, the Reynolds number is fixed at Re = 1000 and effects of the angle of attack and
control frequencies on the sensitivity are investigated, as shown in figure 5. Again the b-norm
of the sensitivity of lift is much higher than that of drag. Over the parameters considered, the
b-norm reaches a global maximum at ω = 0 and local maxima at the dominant frequency of the
uncontrolled forces (indicated by thick dashed lines in the figure) and higher harmonics. The
b-norm increases with the angle of attack, suggesting that the boundary layer separation and
shear layer break-up taking place at higher angles of attack result in a more sensitive flow, where
the forces can be more effectively modified by boundary control.

Then the angle of attack is fixed at α = 10◦ to investigate the Reynolds number effect. The
b-norm of the sensitivity at four Reynolds numbers, i.e. 500, 1000, 2000 and 5000, where the
uncontrolled flow structures are presented in figure 3, are displayed in figure 6. The dominant
frequencies for uncontrolled forces are 3.4, 4.5, 4.9 and 4.2 for these four cases. It is seen that
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Figure 6. The b-norm of sensitivities of (a) drag and (b) lift forces with respect to normal control at α = 10◦ and various
Reynolds numbers.

the local maxima of the sensitivity take place at zero frequency, dominant frequency of the force
and higher harmonics. At higher Reynolds numbers, where the flow becomes more unsteady,
featuring flow separation and vortex shedding (figure 3), the forces become increasingly sensitive
to boundary control.

(c) Distribution of the sensitivity
After discussing the magnitudes of sensitivities, their distributions around the aerofoil are
presented. For clarity, the aerofoil surface is divided into four segments: upper leading edge,
upper trailing edge, lower leading edge and lower trailing edge, referring to the segment on
the suction side from the leading edge to the separation point, the upper surface downstream
of the separation point, the forepart of the pressure side and the rear part of the pressure
side, respectively. The distributions of three sensitivities whose b-norms reach local maxima
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Figure 7. Distribution of sensitivities of (a) drag and (b) lift forces with respect to normal control at Re= 1000 andα = 10◦.
The sensitivities are normalized to have b-norm 0.02 and are plotted based on the aerofoil.
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Figure 8. Distribution of sensitivities of drag with respect to normal control, normalized to have b-norm 0.02. (a) ω = 0,
Re= 1000 and various α; solid circles denote the separation points at α = 0◦, 10◦ and 16◦ from right to left. (b) ω = 0,
α = 10◦ and various Re; solid circles denote the separation points at Re= 500, 1000, 2000 and 5000 from right to left.

with respect to the frequency at Re = 1000 and α = 10◦ are illustrated in figure 7. Similarly to
figure 2, the sensitivities are normalized to have b-norm 0.02 and so the curves representing the
sensitivities in figure 7 can be expressed as C + 0.02Vun f̄ K/[Vun f̄ K, Vun f̄ K]1/2. The deviation of
these curves away from the aerofoil denotes the local sign and strength of the sensitivity. For
example, the dashed curve in figure 7a, which represents the distribution of the sensitivity at
ω = 0, shows strong negative (corresponding to blowing) sensitivities around the upper leading
edge, weak positive (corresponding to suction) sensitivities around the upper trailing edge and
the lower leading edge, and weak negative sensitivities around the lower trailing edge.

Comparing the distribution of sensitivities of drag and lift at Re = 1000 and α = 10◦, the steady
sensitivities are almost opposite while the two non-zero-frequency sensitivities are positively
correlated. This observation suggests that the steady control to increase lift (in the same direction
as the sensitivity) would reduce drag, and the control to reduce drag (in the opposite direction
to the sensitivity) would increase lift. On the contrary, for the unsteady control, an increase of lift
is associated with an increase of drag, and a drag reduction is accompanied by a lift reduction.
The most effective control is concentrated on the upper leading edge, where blowing increases
lift and reduces drag, and the lower trailing edge, where blowing enhances both lift and drag by
increasing the effective angle of attack, similar to the control effect of a flap. The mechanisms of
these controls will be analysed in detail in §4e.

Then the frequency is fixed at ω = 0, which induces the highest sensitivity, as shown in figure 5,
and the variation of sensitivities with the angle of attack is studied, as illustrated in figure 8a.
The separation points on the suction side of the aerofoil corresponding to a zero shear stress
are marked by filled circles on the surface of the aerofoil. The sensitivity of drag is symmetric
with respect to the x-axis at α = 0. This sensitivity consists of two parts, suction on the leading
edge and blowing upstream of the separation points, both of which tend to ‘squash the surface’
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Figure 9. Correlation between sensitivities of lift and drag at Re= 1000.

and generate a bluffer body. As the angle of attack increases, the sensitivity becomes asymmetric
and more localized around the upper leading edge and the lower trailing edge in the form of
blowing. The most sensitive region on the aerofoil is always upstream of the separation point
over the parameters considered, as has been observed in several investigations of control of flow
separation [14,26,38,39].

The distributions of sensitivity at ω = 0, α = 10◦ and various Reynolds numbers are presented
in figure 8b. At larger Reynolds numbers, the sensitivity of drag becomes more localized around
the upper leading edge upstream of the separation point, similar to the trend at increasing angles
of attack. It can be expected that, at even larger Reynolds numbers, the sensitivity will be restricted
to an even smaller segment on the aerofoil and therefore facilitates the implementation of control
in physical experiments. On the lower surface, the sensitivity does not change significantly at
increasing Reynolds numbers. This is unlike the trend at increasing angles of attack, where the
forces become more sensitive to trailing edge control.

Practically, the aim of control can be the reduction of drag or the increase of lift. The correlation
between the control of lift and control of drag can be calculated as

ρ = [sL, sD]√
[sD, sD][sL, sL]

, (4.1)

where sL and sD denotes the sensitivities of lift and drag, respectively. A positive correlation
indicates that the lift and drag are increased (or decreased) simultaneously; a negative correlation
suggests that it is possible to increase lift and reduce drag; a zero correlation can be interpreted as
the decoupling of the control of lift and drag, e.g. drag is unchanged when lift is increased.

From figure 9, the sensitivities of lift and drag are highly correlated at non-zero frequencies.
However, for the zero-frequency case, at a small angle of attack, the correlation is zero, because the
sensitivity of lift is antisymmetric while the sensitivity of drag is symmetric. At angles of attack
around 10◦, the correlation is negative, since the upper leading edge becomes the dominantly
sensitive region and a suction in this region increases lift and reduces drag. For higher angles of
attack, the correlation becomes positive, because the lower trailing edge becomes dominant and a
control in this region changes the effective angle of attack and increases (or reduces) lift and drag
simultaneously.

(d) Nonlinear control effects
As discussed in §2e, the control can be obtained by scaling the sensitivity:

un = b
Vun f̄ K√

[Vun f̄ K, Vun f̄ K]
, (4.2)
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Figure 10. (a–d) Mean control-induced forces from linear and nonlinear calculations atω = 0,α = 10◦ and Re= 1000. b is
a scale factor, its absolute value is the b-norm of the control and b= 0 corresponds to the uncontrolled condition.

where b is a scale factor and |b| represents the b-norm of the control un. If |b| is small enough, the
controlled force is a linear function of b. If b exceeds the ‘linear range’, the control-induced flow
would not be small enough and the controlled force is no longer linear with respect to b. This
‘linear range’ of b can be obtained by increasing |b| from a small enough value and testing the
controlled force through DNS. A momentum coefficient, defined as the square integration of the
control around the controlled boundary and the controlled time interval divided by the dynamic
pressure of the uncontrolled flow, has been widely used in the literature to evaluate the magnitude
of the control. This momentum coefficient is approximately 2b2 for ω = 0 and b2 for ω �= 0.

The Reynolds number and angle of attack are fixed at Re = 1000, α = 10◦ and two typical
control frequencies, ω = 0 and ω = 4.45 (the dominant frequency of forces), are adopted. As shown
in figure 6, these two frequencies correspond to two local maxima of the sensitivity and so
represent the most effective controls.

The nonlinear saturation of the control is shown in figure 10, where the forces induced by the
control from ‘linear’ and ‘nonlinear’ calculations are plotted together. The ‘linear’ result can be
obtained from (2.14) and (4.2) as

f̄ K = [un, Vun f̄ K] = b‖Vun f̄ K‖b, (4.3)

while the nonlinear result is obtained by subtracting the mean uncontrolled force, calculated
through DNS with no-slip boundary conditions on the aerofoil, from the mean controlled force,
calculated through DNS with boundary condition G(t)un(C)n on the aerofoil.
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From the steady control as shown in figure 10a,b, for small |b|, the linear and nonlinear results
agree very well for all the cases considered. As |b| increases, the nonlinear results deviate from
the linear prediction and the linear range of the control with respect to lift is much higher than
that to drag. The nonlinear saturation reduces the linear predicted control effects, except that, at
positive b for the control of lift, the nonlinear interaction of the control-induced flow strengthens
the control effect. Considering that the mean uncontrolled drag and lift forces are 0.108 and 0.082,
respectively, at b = 0.02, the control changes drag by 20%. It is noted that at b = 0.02, corresponding
to a momentum coefficient of 0.0008, the maximum surface-normal control velocity is less than
0.036, suggesting that a well-distributed control force is effective to modify the forces even in the
linear range.

The unsteady control at ω = 4.45 is presented in figure 10c,d. At around b = 0.002, the nonlinear
control effects start to deviate from the linear results for both the lift and drag forces; at b = −0.005,
the control effects are reversed from the linear expectation. This is because the two controls at
b = 0.005 and b = −0.005 have the same distribution (with opposite phase), and the controlled
flows are ‘locked-in’ to the control and exhibit the same flow patterns but with opposite phases.
Therefore, even though the two controls, one at ω = 0 and another at ω = 4.45, have close
control effectiveness as indicated from the b-norm of the sensitivity, the steady control has a
much wider ‘linear range’ and acts as an effective control even at large magnitudes. On the
contrary, the unsteady control is only effective when the control magnitude is one order smaller
owing to the nonlinear lock-in effect. Thus the following study will be concentrated on the
steady control.

The control-induced force shown in figure 10 only represents the mean force, while the time
development of the controlled force is shown in figure 11a. Since the control effects on lift and
drag are similar, only the controlled drag is presented in the rest of this section. After an initial
transient period, for all the cases considered, the controlled forces reach periodic states. Clearly,
b = 0 corresponds to the uncontrolled case. At b = −0.05, the controlled drag is almost steady, and
at increasing b, the drag increases in both mean value and oscillation magnitude, suggesting that
the mean drag and flow unsteadiness are controlled simultaneously.

The controlled forces are decomposed into pressure, viscous and thrust forces (equation (2.6)),
as shown in figure 11b. Owing to the choice of small values of |b|, the thrust force, which is a
second-order function of the control, is negligible (less than 1% of the total force over the cases
studied) and is not plotted. It is seen that the change of the viscous force is much smaller than
that of the pressure force, revealing that the control modifies the force mainly by changing the
pressure distribution around the aerofoil.

Figure 12 illustrates the distribution of the control-induced pressure. Similar to the sensitivity,
the controlled pressure curves can be expressed as C + 0.1pn, where the factor 0.1 is used to scale
the control-induced pressure so that the pressure curves can be plotted based on the aerofoil.
Here, the pressure distribution is time-averaged over 10 ≤ t ≤ 20 instead of the full time period
in order to exclude the transient effects at the beginning of the control (figure 11). Therefore, if
the pressure curve is inside the aerofoil (aligning with n), the control-induced pressure is positive
or the control increases the pressure, and vice versa. For example, at b = 0.05, the pressure curve
around the upper leading edge is inside the aerofoil, which can be interpreted as an increase
of pressure due to control. At negative values of b, which reduce drag, the pressure around the
upper leading edge reduces and pressure around the trailing edge increases. Details of the control
mechanism and pressure distributions will be discussed in §4e.

The flow patterns under the control with respect to drag are illustrated in figure 13. As
observed in the development of controlled forces in figure 11, the flow tends to be steady at
b = −0.05. At negative b, the shear layer above the upper surface is attracted to the boundary by
the suction control and the separation is delayed. At positive b, the shear layer is blown away from
the boundary (attracted to bend towards the surface by control around the upper trailing edge)
and the separation is promoted. Owing to the control effects on separation, vortex shedding is
correspondingly suppressed (or promoted) at negative (or positive) b, further indicating that the
mean drag and flow fluctuations are controlled simultaneously.
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(c) b= 0.02 and (d) b= 0.05. The control is scaled from the sensitivity with respect to drag. (Online version in colour.)
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Figure 14. Schematic plots of (a) uncontrolled and (b) controlled flow. The control is scaled from the sensitivity to drag at
Re= 1000, α = 10◦, ω = 0 and b= 0.05. The arrows denote the direction of the control. P1, P2, P3, P4 and P5 represent
the uncontrolled pressure at the upper leading edge, upper trailing edge, lower leading edge, lower trailing edge and base
regions, respectively. Superscripts+ and− represent an increase and decrease in the pressure owing to the boundary control,
respectively. Solid and dashed lines are contour lines of spanwise vorticity−6 and 6, respectively. Thin lines with arrows are
streamlines around the suction side. (Online version in colour.)

(e) Control mechanisms
To analyse the control mechanisms, the control with respect to drag at Re = 1000, α = 10◦, ω = 0
and b = 0.05 is adopted. The pressure change, control velocity, flow vorticity contours and
streamlines are plotted together in figure 14. The aerofoil is divided into five parts, upper leading
edge, upper trailing edge, lower leading edge, lower trailing edge and base regions. The first
four parts have been defined before, and the last one referring to the trailing edge region is
introduced since the pressure in this region is critical to drag. The uncontrolled pressures around
these five regions are represented by P1, P2, P3, P4 and P5, respectively, as marked in figure 14a.
An increase or decrease in these pressures owing to the control is denoted by superscript + and
−, respectively.

It is seen that the control mainly consists of three parts, i.e. suction around the upper trailing
edge, blowing around the lower trailing edge and blowing around the upper leading edge. The
first component attracts the separating shear layer associated with low pressure to the surface and
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Figure 15. Three-dimensional control effects on (a) drag and (b) lift at Re= 2000 andα = 10◦. The control is imposed around
the upper leading edge in the form of blowing (positive b) or suction (negative b).

therefore reduces pressure on the upper surface downstream of the separation point. The second
one pushes the lower shear layer away, promotes separation and increases the effective angle of
attack. The third one is located in the most sensitive region for both lift and drag as identified
above, i.e. the segment on the upper surface upstream of the separation point, where the pressure
reaches local minimum. The control imposed slightly upstream of the separation point has been
shown to be effective to eliminate separation and unsteadiness in both DNS and experimental
works for boundary layer, aerofoil and cylinder flows [10,14,38]. In this low-pressure region,
blowing increases the local pressure and suction reduces the pressure.

(f) Three-dimensional control effects of upper leading edge blowing/suction
The study presented above has been focused on the case with Re = 1000 and α = 10◦, where the
uncontrolled flow is obtained from two-dimensional DNS. In this section, the angle of attack
is fixed at α = 10◦ and higher Reynolds numbers are adopted to activate three-dimensional
development of the flow. In the integration of the three-dimensional adjoint equation, the
adjoint variables and subsequently the sensitivity diverge owing to the chaotic dynamics of the
uncontrolled base flow, as observed in the present study as well as in a flow past a cylinder at
Re = 500 [30]. Therefore, in three-dimensional conditions, the control mechanisms identified in
two-dimensional studies are exploited to obtain the control without solving the adjoint equation.
As discussed above, suction around the upper leading edge upstream of the separation point
can be expected to reduce drag and enhance lift effectively. Therefore, suction/blowing located
around the upper leading edge upstream of the separation point is adopted as the control.
As captured in figure 8b, this control maximizes at (x, y) = (0.21, 0.12) and spans from (x, y) =
(0.02, 0.04) to (x, y) = (0.42, 0.11) at Re = 2000, and maximizes at (x, y) = (0.16, 0.11) and spans from
(x, y) = (0.01, 0.03) to (0.24, 0.12) at Re = 5000.

The controlled and uncontrolled flows can be obtained through three-dimensional DNS, where
the spanwise boundary conditions are set to periodic, and conditions on all the other boundaries
are the same as in two-dimensional simulations. The spanwise length is set to L = 1, which has
been tested to be long enough to accommodate three-dimensional instabilities, and 64 Fourier
modes with spanwise wavenumbers 0, 2π , 4π , 6π , . . . , 126π , are calculated.

The controlled drag/lift forces at Re = 2000 are illustrated in figure 15. At b = −0.01, where the
maximum control in the form of suction is 5% of the free-stream velocity, the drag is reduced by
20% and the lift is enhanced by 200%. As for the reduction (or enhancement) of drag (or lift), the
oscillation of the force reduces correspondingly. This simultaneous control of the force magnitude



20

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150618

...................................................

(a) (b)

(c) (d )

(e) ( f )

Figure 16. Iso-surfaces of spanwise vorticity−10 and 10 (coloured by pressure) of the controlled flow at ω = 0, α = 10◦,
t = 10 and (Re, b)= (2000,−0.01), (5000,−0.01), (2000, 0), (5000, 0), (2000, 0.01) and (5000, 0.01) for (a–f ), respectively.
(Online version in colour.)

and oscillation has also been observed in two-dimensional conditions. It is worth noting that there
is a strong transient drag increase at positive values of b, suggesting potential applications of this
control in vehicle deceleration or braking.

The corresponding three-dimensional structures at Re = 2000 and Re = 5000 are illustrated in
figure 16. It is noted that, for the uncontrolled flow, the dominant spanwise wavenumber is
6π at Re = 2000, while at Re = 5000 the wake flow becomes fully turbulent and no dominant
three-dimensional waves can be identified. For b < 0, the suction around the upper leading
edge suppresses boundary-layer separation and reduces unsteadiness (e.g. three-dimensional
developments and two-dimensional vortex shedding). At b = −0.01 and Re = 2000, the controlled
flow becomes almost steady and stable to three-dimensional perturbations, as can be seen in
figure 16c and proved in an extra set of Floquet analyses. For b > 0, the flow becomes increasingly
unsteady and turbulent owing to the promotion of separation and vortex shedding.

5. Conclusion
The sensitivity of forces with respect to boundary control in an aerofoil flow is investigated.
Instead of studying control generated by a finite number of actuators, this work is concentrated
on the optimal distributions of the control around the aerofoil. This distributed control has been
recently investigated in bluff body flow using streamwise body-surface control [40,41]. In the
condition that the control velocity is small enough, the most effective control and the expected
(linear) control effects can be obtained by scaling the sensitivity. The calculation of this control
involves a single integration of the adjoint of the linearized NS equation, without iterative calling
of the governing equations as used in nonlinear optimal control [40,42]. The uncontrolled velocity
is required in the integration of the adjoint, and therefore a DNS of the uncontrolled flow is
conducted and the velocity history is saved.
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A NACA0024 aerofoil is adopted and is closed with a round trailing edge to satisfy the
smooth-surface constraint of the sensitivity methodology, even though a sharp trailing edge
can be accommodated by suppressing control around the trailing edge. The study is focused on
the case with Re = 1000 and α = 10◦, at which the uncontrolled flow is two-dimensional, and is
also extended to other parameters, e.g. 500 ≤ Re ≤ 5000 and 0 ≤ α ≤ 20◦. The three-dimensional
effects are investigated by adopting Fourier expansion in the spanwise direction at Re ≥ 2000 and
α = 10◦, where the uncontrolled flow is unstable to three-dimensional disturbances.

The sensitivities of forces with respect to streamwise, normal and combined (both streamwise
and normal) controls are calculated. The magnitude of the sensitivity is measured by a b-norm,
defined as the square root of the square integration of the sensitivity around the aerofoil. The
sensitivity b-norm quantifies the controllability of the force, and the distribution of the sensitivity
represents a control. Over all the parameters considered, the sensitivity of lift is much larger than
that of drag. It is also noted that the sensitivity to streamwise control is much smaller than that to
normal control and that the sensitivity to the combined control is only slightly larger than that to
normal control. Considering that the normal and streamwise controls are generated by completely
different physical actuators and that the streamwise control is far less effective than the normal
control, this work focuses on the normal control.

The b-norm of the sensitivity reaches local maxima at the zero frequency, the dominant
frequency of the uncontrolled forces and higher harmonics. At the first frequency, the sensitivities
of drag and lift are negatively correlated while at the other two they are positively correlated.
As the Reynolds number or angle of attack increases, the shape of the sensitivity becomes
increasingly localized around the upper leading edge and lower trailing edge. This localization
indicates that, at large angle of attack or Reynolds number, an effective control can be generated
by a limited number of actuators installed around the most sensitive segment on the aerofoil.

A control most effective to modify the force in the linear sense can be obtained by scaling the
sensitivity. The linear range of the control, in which the control effect matches the prediction from
the linear sensitivity study, is tested through DNS. The linear range for unsteady controls is one
order smaller than that for steady controls, suggesting that, for the linear control mechanism, a
steady control is much more effective than an unsteady control. For the steady control, at b-norm
0.02, corresponding to a maximum surface-normal velocity of 3.6% of the free-stream velocity, the
control reduces drag by up to 20% or increases lift by up to 140% at Re = 1000. Decomposing the
force into pressure, viscous and thrust terms, it is seen that the control effect mainly acts on the
pressure term. Therefore, the control mechanism relies largely on the redistribution of pressure
around the aerofoil.

The region upstream of the separation point around the upper leading edge is identified as
the most sensitive region [10,14,38], and suction in this region reduces drag and increases lift.
This mechanism is further exploited to generate the control for three-dimensional turbulent flow,
where the sensitivity diverges owing to the chaotic dynamics of the flow. An upper leading edge
suction with a momentum coefficient of 0.01 is found to reduce drag by up to 20% and increase
lift by 200%. In both two- and three-dimensional controls, drag reduction is associated with the
reduction of flow unsteadiness and subsequently the oscillation of forces.
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Appendix A. Derivation of equation (2.6)
The velocity vector around the surface of a solid body can be decomposed in the Cartesian
coordinates as ûx, ûy and ûz, or as a surface-normal component (ûn), a streamwise component
(ûm) and a spanwise component (ûz):

û = ûxi + ûyj + ûzk = ûnn + ûmm + ûzk, (A 1)



22

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150618

...................................................

where i, j, k, n and m are units in the x, y, z, outward surface-normal and streamwise directions,
respectively. n and m can be decomposed as n = nxi + nyj and m = mxi + myj, where mx = ny and
my = −nx. Correspondingly, there are ûn = ûxnx + ûyny, ûm = ûxmx + ûymy, ûx = ûmmx + ûnnx

and ûy = ûmmy + ûnny. In this work, it is assumed that the controlled boundary is a concave and
closed surface (curve) and ûx, ûy, mx and my are differentiable.

The force acting on the surface of the solid body C can be written as

f̂ =
∫

C
(p̂n − τ̂ · n + ûûn) dS, (A 2)

where the three terms integrated represent pressure, viscous and thrust terms; τ̂ is the viscous
shear stress and

τ̂ · n = Re−1

[
2∂xûx ∂yûx + ∂xûy

∂yûx + ∂xûy 2∂yûy

]
·

[
nx

ny

]
. (A 3)

Through standard algebraic manipulations, there is

nx∂xûx + ny∂xûy = ∂xûn − ûm(mx∂xnx + my∂xny). (A 4)

In this derivation, nx∂xnx + ny∂xny = ∂x(n2
x + n2

y)/2 = 0 has been used. Similarly, there are

nx∂yûx + ny∂yûy = ∂yûn − ûm(mx∂ynx + my∂yny). (A 5)

Substitute (A 4) and (A 5) into (A 3) to reach

τ̂ · n = Re−1[∂nû + Vûn − ûmm · (Vn)T]. (A 6)

Then substitute (A 6) into (A 2) to obtain

f̂ =
∫

C
(p̂n − Re−1∂nû + ûûn) dS + Re−1

∫
C

−Vûn + ûmm · (Vn)T dS. (A 7)

In the following, it will be presented that the second term after the equality, which involves an
integration over the closed curve C, is zero.

From the divergence-free condition, it can be derived that

∂nûn + ∂mûm + ûn(∂xnx + ∂yny) + ûm(∂xmx + ∂ymy) = 0.

Therefore, one has∫
C

Vûn dS =
∫

C
n∂nûn + m∂mûn dS =

∫
C

∂m(ûnm − ûmn) dS

∫
C

−ûn[∂mm + (∂xnx + ∂yny)n)] + ûm[∂mn − (∂xmx + ∂ymy)n] dS. (A 8)

Since the perturbation boundary is assumed to be a closed surface, there is∫
C

∂m(ûnm − ûmn) dS = 0. (A 9)

Through standard algorithm manipulations, there is

∂mm + (∂xnx + ∂yny)n = 0 (A 10)

and
∂mn − (∂xmx + ∂ymy)n = m · (Vn)T. (A 11)

Substitute (A 9)–(A 11) into (A 8) to reach∫
C

−Vûn + ûmm · (Vn)T dS = 0. (A 12)

Substitute (A 12) into (A 7) to obtain the controlled force

f̂ =
∫

C
(p̂n − Re−1∂nû + ûûn) dS.
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