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We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of
devicesmodelled by using piecewise linear (PWL) representations.We propose an adaptation of themodified spheres path tracking
algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits
composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that
HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy
trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking
algorithm with a simple and highly accurate procedure based on the parametric straight line equation.

1. Introduction

The circuit simulation tools are constantly improved in order
to cope with the challenges due to the new fabrication
technologies. Among the circuit analysis methodologies, the
direct current (DC) analysis is highlighted as one of the
most important because it describes the static behaviour of
the circuits. As a result of the DC analysis of nonlinear
circuits, one obtains a nonlinear algebraic equations system
(NAES). The most common method applied to solve such
equations is the Newton-Raphson method (NRM). However,
it is common that NRM fails due to its well-known problems
of convergence: oscillation and divergence to infinity, among
others. In fact, NRM has a local convergence only, which

means that if the starting point is not close enough to the
sought solution the method will probably diverge. What is
more, if the circuit under analysis is multistable, then NRM
will not be helpful because it can locate only one solution
per simulation, ignoring the existence of more solutions.
Therefore, the homotopy continuationmethod (HCM) [1–37]
arises as an alternative to NRM due to its characteristics: to
find multiple operating points and better convergence [38].

In recent years, the PWL modelling technique gained
popularity as a tool for circuit simulation and other related
areas [39, 40]. The basic idea is to replace traditional models
by their piecewise linear (PWL) representations [41–44]. The
main advantages are reduction of equations complexity, the
straightforward inclusion of empirical models, and potential
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replacing of piecewise models by their unified PWL repre-
sentation. Several methodologies have been proposed to find
multiple solutions of PWL circuits [45–57].

However such methodologies exhibit some drawbacks
like the requirement of several initial points to find multiple
solutions [53, 54], the use of implicit PWL models [55, 56],
and the need of expressing the circuit equations in terms
of the linear complementary problem (LCP) that implies
computing model state variables [57]. Therefore, in order
to circumvent the aforementioned disadvantages, we explore
the application of HCM methods in combination with an
adaptation of the modified spheres algorithm (MSA) [37] for
the DC analysis of PWL circuits.

This paper is organized as follows. A brief description
of PWL modelling is presented in Section 2. In Section 3,
we introduce the proposed HCM and its path following
technique (MSA). In Section 4, four case studies of nonlinear
circuits are presented and solved by using a HCM method.
Numerical simulations and a discussion about the results are
provided in Section 5. Finally, a concluding remark is given
in Section 6.

2. Brief Description of PWL Modelling

A mathematical model approach, widely used in nonlinear
circuit analysis, is the so-called piecewise linear (PWL).
The aim of this kind of modeling is to approximate the
nonlinear behavior of a circuit element by using a set of
linear mappings.This means transforming a single nonlinear
equation into a finite number of linear equations. One of the
first piecewise linear models was provided by Chua and Kang
in [58]. Another proposal was presented by Van Bokhoven
in [59]. Subsequent contributions were the extension of the
Chua model reported by Guzelis and Goknar in [60] and
the parametric proposal given by Vandenberghe et al. in
[61], among others. While there are diverse proposals of
PWL models, they can be classified into two classes. The
first one contains explicit models. For this class of models,
the output vector can be obtained by just substituting the
input vector into the model.The second one contains models
which are implicit. In such models the output vector cannot
be obtained directly. In contrast, an algorithm has to be
performed by which the output vector is computed [62]. The
more representative examples of explicit and implicit PWL
descriptions are the canonical model of Chua1 and the model
of Bokhoven1, respectively.

The formal definition of the Chua1 model is expressed as
follows.

Theorem 1. Any one-dimensional piecewise linear curve with
𝐿 segments and 𝜎 break points 𝛽

1
< 𝛽
2

< ⋅ ⋅ ⋅ < 𝛽
𝜎
can be

represented by the expression

𝑦 (𝑥) = 𝑎 + 𝑏𝑥 +

𝜎

∑

𝑖=1

𝑐
𝑖

𝑥 − 𝛽
𝑖

 , (1)

where the model parameters can be computed by

𝑎 = 𝑦 (0) −

𝜎

∑

𝑖=1

𝑐
𝑖

𝛽𝑖
 ,

𝑏 =
𝐽
(1)

+ 𝐽
(𝜎+1)

2
,

𝑐
𝑖
=

𝐽
(𝑖+1)

− 𝐽
(𝑖)

2
, 𝑖 = 1, 2, . . . , 𝜎,

(2)

with 𝐽
(𝑖) denoting the slope of the 𝑖th constitutive segment in the

piecewise linear curve.

Meanwhile, the Bokhoven1 model is expressed by a state
variable system defined in formulation of LCP. For further
details about LCP, the reader is referred to [63].

The main factor that motivates the use of PWL models
is the simplicity of their structure, which is linear in each
region of the domain.However, in terms of circuit analysis the
use of piecewise linear models means transforming a single
nonlinear equation into several linear equations that could
easily be solved by standard methods from linear algebra.
The problem lies now in the extremely large number of
linear regions to be discarded to determine the entire set of
circuit solutions. Unfortunately, this task requires enormous
computational resources. To overcome that problem several
methodologies and algorithms have been proposed. For
example, Chua and Ying [64] reported an efficient method
where the number of linear simultaneous equations to be
solved could be decreased by a sign test. The same idea is
improved by Yamamura and Ochiai in [65] where linear
programming techniques are applied and a more efficient
sign test algorithm is also reported. Katzenelson presents an
algorithm based on Newton’s homotopy in [53], and more
recently Tadeusiewicz and Kuczyński offered a method that
combines the homotopy concept and the theory known as a
linear complementary problem [57].

3. The Proposed Homotopy Scheme
The equilibrium equation to describe the DC behaviour is
obtained using the Kirchhoff laws, resulting in

f (x) = 0, f ∈ R
𝑛
→ R

𝑛
, (3)

where x represents the electrical variables of the circuit and 𝑛

the number of variables.
Homotopy methods are based on the fact that solutions

are connected by a curve denominated “solution curve” or
“homotopy curve.” Such curve is induced by including an
extra parameter in the original NAES, resulting in

H (f (x) , 𝜆) = 0, H ∈ R
𝑛
×R → R

𝑛
, (4)

where 𝜆 is the homotopy parameter andH−1(0) the family of
solutions that conforms the homotopy path.

An example of homotopy formulation is Newton’s homo-
topy

H (f (x) , 𝜆) = f (x) + (𝜆 − 1) f (x
𝑖
) = 0, (5)

where x
𝑖
is the starting point of the trajectory.
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(a) General homotopy curve (b) Piecewise linear homotopy curve

Figure 1: Solution curves with spheres [37].

This system has the following properties.

(1) At the starting point 𝜆 = 0,

H (f (x) , 0) = f (x) − f (x
𝑖
) = 0, (6)

where the homotopy system admits at least the solu-
tion x

𝑖
.

(2) Thedeformation continues until crossing𝜆 = 1where

H (f (x) , 1) = f (x) = 0; (7)

that is, the homotopy is reduced to (3).

Thus, the original problem becomes a numerical continu-
ation problem [4, 5, 12, 13, 21, 25–28], where the continuation
variable is the homotopy parameter 𝜆. The homotopy map
creates a continuous line that crosses several times 𝜆 = 1

depending on the number of operating points. A drawback
of the homotopy methods is that there is no generalized
methodology to guarantee that a single homotopy path
possesses all the operating points of any given nonlinear
circuit. In contrast,HCMcan locatemultiple operating points
in comparison to NRM that can fail to find even a single
operating point.

3.1. Modified Spheres Algorithm. Once the equilibrium equa-
tion and homotopy map are constructed, a new problem
emerges: the homotopy trajectory should be traced in order
to detect the roots. It is well known from the literature that if
the path tracking algorithm is not correctly implemented, the
simulation may fail to detect any root even though the roots
are, in fact, along the curve [4, 5, 12, 13, 21, 25–28]. For the case
of PWL circuits, the problem for the path tracking algorithm
lies in the prediction stage, because most of the predictor
mechanisms are based on the tangent of the homotopy curve.
If we consider that the derivative of PWL functions is not
defined at the break points, then the tangent of the homotopy
curve can not be evaluated at such points. Therefore, we
propose adapting the modified spheres algorithm (MSA) for
the path following of the homotopy curves of PWL circuits,
which is not based on the use of tangents of the trajectory.

The homotopy formulation contains 𝑛 equations and
(𝑛 + 1) variables, where 𝑥

𝑖
(𝑖 = 1, . . . , 𝑛) represent the

variables of the system and 𝑥
𝑛+1

is the homotopy parameter

𝜆. Nevertheless, if we add the equation that describes a sphere
[2, 3, 13, 37, 66] with center at 𝑐 (initial point of the trajectory)
and radius 𝑟 expressed by

𝑆 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛+1
) = (𝑥

1
− 𝑐
1
)
2

+ (𝑥
2
− 𝑐
2
)
2

+ ⋅ ⋅ ⋅ + (𝑥
𝑛+1

− 𝑐
𝑛+1

)
2

− 𝑟
2
= 0,

(8)

then, it is possible to apply a regular NRM to solve the
homotopy formulation.

Therefore, using (4) and (8), we formulate the augmented
system as

𝐻
1
(𝑓
1
(𝑥) , 𝜆) = 0,

𝐻
2
(𝑓
2
(𝑥) , 𝜆) = 0,

...

𝐻
𝑛
(𝑓
𝑛
(𝑥) , 𝜆) = 0,

𝑆 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝜆) = 0.

(9)

The solution curve can be traced by solving (9) for each
hypersphere and updating the center of the hypersphere in
each iteration step.The hyperspheres (𝑆

1
, 𝑆
2
, . . .) are allocated

successively as shown in Figure 1(a); at each step the solution
obtained is used as the center of the new sphere. In the same
fashion, Figure 1(b) depicts the application ofMSA algorithm
for the path tracking of PWL curves.

The proposed adaptation of the MSA scheme [37] for the
Newton homotopy applied to PWL circuits is described as
follows.

(i) Predictor: we use points 𝑂
1
and 𝑂

2
to predict the

point 𝑘
1
. The next predictor point and successive

points are obtained as depicted in Figure 2(a).
(ii) Corrector: after calculating the point predictor (𝑘

1
), a

corrected point (𝑂
3
) is calculated by solving (9). This

procedure is detailed in [37]. Nonetheless, if we con-
sider that—for this work—the homotopy trajectory
is described as a PWL curve, then the corrector step
will require most of the time one iteration to correct
the prediction over straight lines, except at the break
points, where it will require more steps to correct the
curve (see Figure 2(b)).
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Figure 2: Spheres algorithm [37].

(iii) There is a potential issue called reversion phenom-
enon that provokes a backward tracing. In [37] a strat-
egy based on gradients and angles of the intersection
of the sphere along the trajectory is proposed.

(iv) Find zero strategy [12, 22]: the finding zero strategy
should start after the trajectory crosses 𝜆 = 1. This
procedure requires detecting the two points (A and
B) before and after 𝜆 = 1 as depicted in Figure 3.

(v) Interpolation of operating points [12, 22]: traditional
schemes of path tracking algorithms require the appli-
cation of complicatedmultidimensional interpolation
algorithms as those reported in [37]. Nonetheless,
as we will show in the cases study section, the
homotopy trajectory of PWL circuits is also a PWL
curve. Therefore, we propose using the formula of
a parametric straight line to interpolate the solution
at 𝜆 = 1. Using the points 𝐴 and 𝐵, we create two
vectors A and B, respectively, resulting in the follow-
ing equation:

B + 𝑡 (B − A) = 0, (10)
where 𝑡 is the parameter that describes the 𝑛 + 1-
dimensional straight line. To perform the interpola-
tion, we obtain the value of 𝑡 that induces 𝜆 = 1 and
update the rest of the equations to obtain the
sought solution 𝑆

∗
(see Figure 3). This process can be

repeated each time the homotopy trajectory crosses
𝜆 = 1.

(vi) Improving accuracy for final solutions also known as
fine tuning [22]: traditional path following schemes
including the ones reported for the MSA scheme
[13, 37] require extra steps of NRM to improve the
accuracy of the interpolated solutions. However, the
aforementioned interpolation step can theoretically
obtain a highly accurate solution. The reason relies
on the fact that the homotopy curve crosses exactly
over the roots of the equilibrium equation; then, the
straight line (10) also crosses over the exact solution.

0 0.5 1 1.5

x

𝜆

4

2

0

−2

S∗

A

B

Figure 3: Interpolation procedure using a parametric straight line.

4. Cases Study

In the present section, we will solve four case studies [64]
to show the usefulness of the proposed method to perform
the DC analysis of nonlinear circuits composed of devices
modelled using the explicit PWL model (1). For all the cases’
study, we use a constant radius 𝑟 = 0.1 for the hyperspheres.

4.1. Circuit with Two Nonlinear Resistors. The following case
study shows a simple circuit composed of two nonlinear
resistors as depicted in Figure 4. The models of the resistors
𝑅
1
and 𝑅

2
are

𝑅
1
: 𝑖
1
= −

125

8
+

9

8
V
1
+

7

8

V1 + 1
 −

3

2

V1 − 2
 +

3

4

V1 − 5


−
1

8

V1 − 11
 −

9

8

V1 − 13
 + 2

V1 − 15
 ,
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Table 1: Numerical solutions for (12).

Solution Iteration V
1

V
2

MSE = (𝑓
2

1
+ 𝑓
2

2
)/2

𝑆
1

168 1.49999999999 1.49999999998 0
𝑆
2

196 4.00000000122 0.999999999476 2.22𝑒 − 18

𝑆
3

214 5.66666666670 0.666666666664 2.12𝑒 − 20

+

−

9V

R1

R2

V1

V2

i1

i2

+

−

+

−

2Ω

Figure 4: Two nonlinear resistor circuits.

𝑅
2
: 𝑖
2
=

29

4
+

3

2
V
2
−

3

2

V2 + 8
 +

3

2

V2 + 5
 −

3

2

V2 + 3


+
3

2

V2 + 1
 −

3

4

V2 − 3
 −

5

4

V2 − 8
 +

3

2

V2 − 10


+
V2 − 13

 −
5

4

V2 − 16
 +

1

4

V2 − 18
 ,

(11)

described by 7 and 11 PWL segments, respectively.
Using Kirchhoff laws, we obtain

𝑓
1
(V
1
, V
2
) = V
1
+ V
2
+ 2𝑖
1
− 9 = 0,

𝑓
2
(V
1
, V
2
) = V
1
+ V
2
+ 2𝑖
2
− 9 = 0.

(12)

Applying the Newton homotopy to (12) combined with MSA
yields

𝐻
1
(V
1
, V
2
, 𝜆) = 𝑓

1
(V
1
, V
2
) + (𝜆 − 1) 𝑓

1
(V
1,0

, V
2,0

) = 0,

𝐻
2
(V
1
, V
2
, 𝜆) = 𝑓

2
(V
1
, V
2
) + (𝜆 − 1) 𝑓

2
(V
1,0

, V
2,0

) = 0,

𝑆 (V
1
, V
2
, 𝜆) = (V

1
− 𝑐
1
)
2

+ (V
2
− 𝑐
2
)
2

+ (𝜆 − 𝑐
3
)
2

− 𝑟
2
= 0,

(13)

where V
1,0

= −5 and V
2,0

= −4 are the initial point of the
homotopy at 𝜆

0
= 0 and 𝑆(V

1
, V
2
, 𝜆) is the equation of the

hypersphere whose center will be updated at each iteration of
the method.

For the first hypersphere the center is located at 𝑐
1
= V
1,0
,

𝑐
2

= V
2,0
, and 𝑐

3
= 𝜆
0
. The centers of the successive hyper-

spheres are obtained using the aforementioned procedure in
Section 3.1. As a result of MSA algorithm, the three operating
points of the circuit have been located (see Figure 5). In
addition, Table 1 shows the computed solutions, iterations,
and the mean square error (MSE).

4.2. Circuit withThreeNonlinear Resistors. The following case
study shows a circuit composed of three nonlinear resistors as
depicted in Figure 6. The models of 𝑅

1
, 𝑅
2
, and 𝑅

3
resistors

are

𝑅
1
: 𝑖
1
=

5

6

V1 + 6
 −

5

6

V1 − 6
 ,

𝑅
2
: V
2
=

1

6

𝑖2 + 1
 −

1

6

𝑖2 − 5
 ,

𝑅
3
: 𝑖
3
= V
3
−

5

4

V3 − 1
 + 2

V3 − 2
 −

V3 − 3
 ,

(14)

described by 3, 3, and 4 PWL segments, respectively.
Using Kirchhoff laws [64], we obtain

𝑓
1
(V
1
, V
2
, V
3
) = V
1
+ 𝑖
2
+ V
3
− 𝑖
1
− 5 = 0,

𝑓
2
(V
1
, V
2
, V
3
) = 𝑖
2
+ V
3
− V
2
− 5 = 0,

𝑓
3
(V
1
, V
2
, V
3
) = −V

3
− 𝑖
3
+ 5 = 0.

(15)

Next, we apply the Newton homotopy to (15) as done for
the first case study, using V

1,0
= 15, 𝑖

2,0
= −1, and V

3,0
= 15

as the initial point of the homotopy. As a result of tracing the
homotopy path, the three operating points of the circuit have
been located (see Figure 7). In addition, Table 2 shows the
found solutions, iterations, and themean square error (MSE).

4.3. Schmitt Trigger Circuit. Consider the Schmitt trigger cir-
cuit of Figure 8(a), where the bipolar transistors aremodelled
using the simplified Ebers-Moll (see Figure 8(b)) model of
NPN transistors as depicted in Figure 8(c). The PWL model
of five segments of the diodes of all transistors is

𝑖
𝑑
(V
𝑑
) = − 0.05486777833 + 0.1482755558V

𝑑

+ 0.01157779318
V𝑑 − 0.306



+ 0.01181869788
V𝑑 − 0.3375



+ 0.04904536922
V𝑑 − 0.366



+ 0.07583369515
V𝑑 − 0.3875

 .

(16)
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Table 2: Numerical solutions for (15).

Solution Iteration V
1

𝑖
2

V
3

MSE
𝑆
1

137 9.9333333333 2.20000000000 2.86666666667 1.71𝑒 − 22

𝑆
2

382 0.0999999999 2.20000000000 2.86666666666 1.45𝑒 − 22

𝑆
3

610 −10.0666666666 2.20000000000 2.86666666667 3.86𝑒 − 23
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Figure 5: Homotopy path for (13).
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Figure 6: Three nonlinear resistor circuits.
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5

0
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−10

�
1
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𝜆

Figure 7: Projection 𝜆-V
1
of homotopy path for (15).

Using Kirchhoff laws, we obtain

𝑓
1
(V
1
, V
2
) = 3.33 − 1000 (𝑖

𝑑
(V
1
) + 𝑖
𝑑
(V
2
)) − V

1
= 0,

𝑓
2
(V
1
, V
2
) = 4 − 1392𝑖

𝑑
(V
1
) − 1096𝑖

𝑑
(V
2
) − V
2
= 0.

(17)

Then, Newton homotopy is applied in the same fashion
as in the first example, using as starting point V

1,0
= −5 and

V
2,0

= −2 at 𝜆 = 0. The results show that the homotopy tra-
jectory crosses for the three operating points of the Schmitt
trigger circuit as depicted in Figure 9 and Table 3.

4.4. Chua’s Circuit with Nine Solutions. Consider Chua’s cir-
cuit of Figure 10, where the bipolar transistors are modelled
using the simplified Ebers-Moll (see Figure 8(b)) model of
NPN transistors. The PWL model for the diodes of all
transistors is (16).

Using Kirchhoff laws, we obtain

𝑓
1
(V
1
, V
2
, V
3
, V
4
) = 4.36634V

2
+ 6103.168𝑖

𝑑
(V
1
)

+ 2863.168𝑖
𝑑
(V
2
) − 12 = 0,

𝑓
2
(V
1
, V
2
, V
3
, V
4
) = 5.4V

1
+ V
3
+ 3580𝑖

𝑑
(V
1
) + 6620𝑖

𝑑
(V
2
)

+ 700𝑖
𝑑
(V
3
) + 500𝑖

𝑑
(V
4
) − 22 = 0,

𝑓
3
(V
1
, V
2
, V
3
, V
4
) = 4.36634V

4
+ 6103.168𝑖

𝑑
(V
3
)

+ 2863.168𝑖
𝑑
(V
4
) − 12 = 0,

𝑓
4
(V
1
, V
2
, V
3
, V
4
) = V
1
+ 5.4V

3
+ 700𝑖

𝑑
(V
1
)

+ 3580𝑖
𝑑
(V
3
) + 6620𝑖

𝑑
(V
4
) − 22 = 0.

(18)

The Newton homotopy is applied to (18) in the same
way as in the first case study. We trace two trajectories with
the following starting points: 𝑄

1
= [−7, −1, 8, 1] and 𝑄

2
=

[0, −7, 0, 0]. After using the adaptedMSA algorithm, the nine
solutions of the circuit were found (see Figure 11). In addition,
Table 4 shows the found solutions, iterations, and the mean
square error (MSE).
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Table 3: Numerical solutions for (17).

Solution Iteration V
1

V
2

MSE
𝑆
1

59 0.022145787125 0.374592098924 6.11𝑒 − 18

𝑆
2

63 0.348923957274 0.358608185920 1.70𝑒 − 21

𝑆
3

68 0.372176159314 −0.117291118129 5𝑒 − 21
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Figure 8: Schmitt trigger circuit.

5. Numerical Simulation and Discussion

All case studies were successfully solved using the proposed
methodology. For the first three case studies, it was possible
to find within a single trajectory the three operating points
of each problem, and for the last case study, we find the
nine solutions of Chua’s circuit using two starting points.The
high accuracy of the located operating points shows that the
simple interpolation algorithm based on straight lines is a
powerful tool and is simple to implement (see Tables 1–4).
Besides, the accuracy of the interpolate solutions allows us
to discard the stage of applying NRM extra steps to increase
accuracy usually required by path tracking algorithms [4, 5,
12, 13, 21, 25–28]. It is important to remark that the variety of
solved circuits exhibits the high potential of HCM combined
with MSA to solve multistable nonlinear circuits integrated
by devices modelled with explicit PWL representations.

In [53, 54] methods based on the Newton homotopy are
reported, which are capable of locating only one solution per

simulation. Therefore if user requires to find more solutions,
it is necessary to propose some random initial points to per-
form more simulations. Instead, the proposed methodology
is capable of locatingmultiple operating points within a single
path or simulation.

Methods reported in [55, 56] use implicit PWL models.
This implies that the number of linear regions explodes due to
the diode synthesis. Besides, compared to the explicit models,
implicit PWL models require a more complex algorithm to
compute the model state variables. The proposed methodol-
ogy uses an explicit model representation easy to implement.

In [57] a methodology that depends on the specific
circuit topology description of multiport with extracted ideal
diodes is reported. In such methodology, circuit equations
are expressed in terms of the LCP which implies computing
model state variables.The proposedmethodology is based on
a straightforward methodology based on the traditional cir-
cuit analysis tools used to build commercial circuit simulators
and a simple path tracking algorithm easy to implement.
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Table 4: Numerical solutions for (18).

Path Solution Iteration V
1

V
2

V
3

V
4

MSE
𝑄
1

𝑆
1

105 −0.734973033383 0.376723496304 0.318166142629 0.372621919721 1.14𝑒 − 17

𝑄
1

𝑆
2

111 −0.650249656974 0.376723495848 −0.239265377696 0.376723494677 6.64𝑒 − 14

𝑄
1

𝑆
3

235 0.326931131382 0.369666979551 −0.48305281023 0.376723495005 3.61𝑒 − 16

𝑄
1

𝑆
4

243 0.329725453371 0.368724929946 0.324331786706 0.370543296483 6.27𝑒 − 19

𝑄
1

𝑆
5

312 0.386520101863 −4.29094430670 0.337714498625 0.365872023364 6.40𝑒 − 17

𝑄
1

𝑆
6

328 0.388146243604 −4.75726420472 −1.12762657849 0.376723498380 5.69𝑒 − 17

𝑄
2

𝑆
7

58 0.383283219902 −3.63542706051 0.383283217035 −3.63542647848 1.73𝑒 − 16

𝑄
2

𝑆
8

193 0.338139358469 0.364994969864 0.387969158453 −4.68386026807 2.86𝑒 − 19

𝑄
2

𝑆
9

215 −1.19554608083 0.376723498781 0.389904592568 −5.48612114477 2.42𝑒 − 16
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Figure 10: Chua’s circuit with nine solutions.

Further research should be addressed in the following
topics.

(i) Implement a strategy to use the fact that the homo-
topy curves are straight lines to accelerate the homo-
topy simulation.

(ii) Implement a circuit simulator to solve high density
transistor circuits modelled by the PWL technique.

(iii) Replace the Newton homotopy by other methods
as the fixed point homotopy [14], double bounded
homotopy [12, 37], double bounded polynomial
homotopy [11, 36], Newton fixed-point homotopy
[67], 𝑑-homotopy [68], and multiparameter homo-
topy [13, 17], among others. This research can lead
to proposal of better homotopy schemes with better
results in aspects like number of found solutions, CPU
time, and global convergence, among others.

(iv) Theoretically obtain the position of the break points
of the PWL homotopy curve, significantly decreasing
the number of steps. Such research can conduct to a
very fast path tracking scheme.
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3
.

(v) Propose a methodology to obtain an optimal initial
point for the homotopy simulation.This golden start-
ing point will possess the characteristic of producing
a minimum number of iterations and a maximum
number of found solutions or all solutions.

6. Conclusions

In this work, we presented a homotopy scheme based on
the Newton homotopy and a modified MSA path tracking
algorithm, applied to the DC simulation of nonlinear cir-
cuits composed of devices modelled by PWL techniques.
The effectiveness and power of the proposed scheme were
exhibited by the successful solution of all the operating
points of several circuits including devices as nonlinear
resistors, diodes, transistors, and transactors, among oth-
ers. In addition, the high accuracy of the solutions was
reached by applying a simple interpolation technique that
discards the use of Newton-Raphson extra steps to increase
the accuracy of the interpolated solutions. Finally, further
research should be performed to extend the application
of the proposed scheme to very large integrated circuits
(VLSI).
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