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Abstract

Exercise training reduces renin-angiotensin system (RAS) activation, decreases plasma

and tissue oxidative stress and inflammation in hypertension. However, the temporal nature

of these phenomena in response to exercise is unknown. We sought to determine in sponta-

neously hypertensive rats (SHR) and age-matched WKY controls the weekly effects of train-

ing on blood pressure (BP), plasma and left ventricle (LV) Ang II and Ang-(1–7) content

(HPLC), LV oxidative stress (DHE staining), gene and protein expression (qPCR and WB)

of pro-inflammatory cytokines, antioxidant enzymes and their consequence on hyperten-

sion-induced cardiac remodeling. SHR and WKY were submitted to aerobic training (T) or

maintained sedentary (S) for 8 weeks; measurements were made at weeks 0, 1, 2, 4 and 8.

Hypertension-induced cardiac hypertrophy was accompanied by acute plasma Ang II

increase with amplified responses during the late phase of LV hypertrophy. Similar pattern

was observed for oxidative stress markers, TNF alpha and interleukin-1β, associated with

cardiomyocytes’ diameter enlargement and collagen deposition. SHR-T exhibited prompt

and marked decrease in LV Ang II content (T1 vs T4 in WKY-T), normalized oxidative stress

(T2), augmented antioxidant defense (T4) and reduced both collagen deposition and inflam-

matory profile (T8), without changing cardiomyocytes’ diameter and LV hypertrophy. These

changes were accompanied by decreased plasma Ang II content (T2-T4) and reduced BP

(T8). SHR-T and WKY-T showed parallel increases in LV and plasma Ang-(1–7) content.

Our data indicate that early training-induced downregulation of LV ACE-AngII-AT1 receptor

axis is a crucial mechanism to reduce oxidative/pro-inflammatory profile and improve antiox-

idant defense in SHR-T, showing in addition this effect precedes plasma RAS deactivation.
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Introduction

Hypertension is a major reversible risk factor for cardiovascular disease worldwide [1]. Hyper-

activity of the renin-angiotensin system (RAS) with imbalance between ACE-Ang II-AT1

receptor axis and its counter regulatory ACE2-Ang-(1–7)-Mas receptor axis is a hallmark of

chronic hypertension leading to functional deficits and structural organ damage [2–7]. Several

studies have shown that high circulating and tissue Ang II levels are potent stimuli to increase

reactive oxygen species (ROS) and pro-inflammatory cytokines’ expression that further acti-

vate oxidative stress and the expression of several RAS components, perpetuating a deleterious

positive feedback mechanism [4,5,8–10]. In the heart, these hypertension-induced responses

are accompanied by fibrosis, myocardial hypertrophy and deleterious cardiac remodeling

[11,12].

Accumulating experimental evidence has also shown that exercise training, a non-pharma-

cological tool, is very effective in improving autonomic control, downregulating RAS, reduc-

ing oxidative stress and inflammation, thereby contributing to blood pressure lowering

[4,5,7,8,10,13–15]. Although regular physical activity is highly recommended for the treatment

of hypertension [1,16,17], the precise mechanisms by which exercise training improves cardio-

vascular control are not completely understood. Increasing evidence has shown that hyperten-

sive hearts respond to exercise training with reduced ROS availability, increased antioxidant

capacity, decreased inflammation and reduced fibrosis [8,17–21]. However, some controver-

sial effects have been described in RAS expression/activity in the LV and plasma of trained

rats. Gomes Filho et al (2008) described decreased plasma Ang II without Ang-(1–7) content

changes and increased LV Ang-(1–7) levels and MAS receptor expression without changes in

tissue Ang II levels. Fernandes et al (2011) confirmed the increased Ang-(1–7) levels and aug-

mented ACE2 activity in the trained heart but reported reduced LV ACE expression/activity

with diminished Ang II levels in the presence of increased AT1 receptor expression. In general,

these observations were made at the end of an exercise training protocol. To our knowledge

there is no information on the sequential changes driven by exercise on heart structure and

function and little is known about differential responses between normotensive and hyperten-

sive conditions. Since previous studies showed that plastic changes in brain autonomic areas

preceded exercise-induced functional responses [10] and that training-induced downregula-

tion of the RAS in the brain and vessels is a prompt response with changes in precursor and

receptors occurring at different time span [4,7], we hypothesized that exercise would differen-

tially affect hormonal control and LV structure and function. Therefore, in the present study,

we analyzed in spontaneously hypertensive rats (SHR) and age-matched normotensive con-

trols the temporal effects of aerobic training on plasma and LV Ang II and Ang-(1–7) content.

Additionally, we analyzed in the LV of both strains the time course changes induced by train-

ing on oxidative stress, pro-inflammatory profile, antioxidant defense and their consequence

on hypertension-induced cardiac remodeling.

Materials and methods

All surgical procedures and experimental protocols used were in accordance with the Ethical

Principles in Animal Research adopted by the Brazilian College of Animal Experimentation,

and were approved by the Institutional Animal Care and Use Committee of the University of

São Paulo (CEUA, protocol number 188; page 115, Book 2).

Animals and training protocols

Male SHR and WKY rats, aged 11–12 weeks at the beginning of the protocols, were obtained

from colonies maintained at the Institute of Biomedical Sciences of the University of São
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Paulo, Brazil and housed in the Animal Facilities of the Department of Physiology & Biophys-

ics, Biomedical Sciences Institute at a controlled room temperature, with a 12:12 h light:dark

cycle and free access to tap water and food. Rats preselected for their ability to walk/run in a

treadmill (Inbramed, KT-300, Porto Alegre, Brazil) were submitted to graded exercise testing

on a flat treadmill starting with 0.3 km/h, with increments of 0.3 km/h every 3 min, up to the

exhaustion, defined as the moment the rat stopped running, lying on the treadmill floor. Maxi-

mal exercise tests were used to calculate the intensity of aerobic training (T, 50–60% of maxi-

mal exercise capacity). Rats with equal performance were allocated to low-to-moderate T

protocol (running sessions of 1 h/day, 5 days/week, 0% inclination) or kept sedentary (S) dur-

ing 8 weeks [7]. Maximal exercise tests were repeated at weeks 4 and 8 to adjust training inten-

sity and quantify the training effects at the end of protocols, respectively. We excluded from

the analysis rats that did not run or stopped running during the T protocol.

Arterial catheterization and cardiovascular recordings

At established time points (weeks 0, 1, 2, 4 and 8 for T-groups and weeks 0 and 8 for S groups),

rats (12-18/sub-group) were anesthetized with ketamine plus xylazine (100 mg.kg-1 + 20 mg.

kg-1, ip.) for chronic catheterization of the femoral artery. Rats were treated with antibiotic and

analgesic and allowed to recover for 1 day. Resting values of pulsatile arterial pressure (AP)

and heart rate (HR) were recorded in conscious freely moving rats on the following day, at

least 24 hours after the last training session [10]. AP was acquired on a beat-to-beat basis for

~40 min (2 kHz sampling frequency, IBM/PC computer, Lab Chart Pro, AD Instruments,

Bella Vista, Australia) after the stabilization of cardiovascular parameters. HR was determined

from pulse interval between two systolic peaks.

Blood and tissue sampling

After functional measurements rats were deeply anesthetized (sodium pentobarbital 60 mg.kg-1

ip.) and the thorax was opened to access the heart immediately after the respiratory arrest. Two

ml of blood was taken from the LV with a heparinized syringe. Rats were then submitted to

transcardiac perfusion with KCl 14 mM (heart was stopped in diastole) diluted in sterile saline

for 5 minutes. The heart was removed; the LV was isolated, weighed and cut transversely in the

middle. Half of the LV was fixed for 24 h in formalin 4% and stored in alcohol 90% for morpho-

metric analysis. The other half was stored at -80o for biomolecular studies or immersed in tissue

freezing medium for analysis of the oxidative stress.

Angiotensin measurement

Angiotensins were extracted from the LV and plasma as previously described [22,23]. LV tis-

sue was weighed and homogenized with 100 mmol/L PB, pH 7.2, containing 340 mmol/L

sucrose, 300 mmol/L NaCl and a mix of proteases inhibitors (Complete Mini Roche). Protease

inhibitors were also added to plasma (50 μl in 500 μl). Samples were centrifuged at 15,000 rpm,

4˚C during 20 minutes and then concentrated in C18 Sep-pak columns previously activated

with methanol (5 ml), tetrahydrofuran (5 ml), hexane (5 ml), methano (5 ml) and water (10

ml). Using ethanol, acetic acid and water (90:4:6) the peptides were then eluted. Next, the elu-

tions were lyophilized and suspended in 500 μl of mobile phase A: 5% acetonitrile (50 ml) in

0.1% orthphosforic acid (1 ml). The peptides were separated in a reverse-phase B: 95% acetoni-

trile in H3PO4 0.1% in a flow of 1.5 ml/min during 40 min in the Milton Roy System, consti-

tuted of two constaMetric 3000 pumps, a UV detector spectral Monitor 3100, a programmer

GM 4000 and a mixer. Reverse phase HPLC was used to measure the angiotensins. Synthetic

standards were used and peptide detection was carried out at 214 nm. The results were
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corrected by weight or volume and angiotensins’ content were expressed in pmol/g (LV) or

pg/ml (plasma).

Quantitative real-time PCR

mRNA expression was analyzed by the qPCR, as described previously [10,24]. Briefly, total

RNA was extracted using TRizol1 reagent according to the manufacturer’s instructions (Invi-

trogen Life technologies, CA, USA) and measured by NanoDrop Spectrophotometer (Nano-

Drop Techonologies, USA). Total RNA was treated with RNase-free DNAse I (Invitrogen Life

Technology) and 2 μg of RNA were reverse transcribed in a reaction containing oligo-dT

(100 μg/mL), 10 mmol/L of 20-deoxynucleoside 50-triphosphate, 5× First-Strand buffer, and

2 μL of 200-U Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase (Invitrogen

Life Technology). Two μL of each reverse transcription product was amplified in a reaction

buffer containing 5 μL of SYBR Green PCR master mix (Applied Biosystems) and 900 nmol/L

of one of the primers listed in the Table 1, at a final volume of 10 μL per sample. The reaction

conditions consisted of 40 cycles (2 min at 50˚C and 2 min at 95˚C, 15 s denaturation at 95˚C,

60 s annealing at 60˚C). The relative mRNAs’ expression (target gene/reporter gene) was ana-

lyzed by ΔΔCt method [25] and reported as arbitrary units. Hypoxanthine phosphoribosyl

transferase (HPRT) was used as the reporter gene.

Catalase activity determination

Catalase activity was measured by a colorimetric assay using Amplex Red Catalase Assay Kit

(Molecular Probes) according the instructions provided by the manufacturer. Briefly, hearts

Table 1. Sense and antisense sequences of primers used.

Gene Forward Primer Reverse Primer

Sod1 TTGGAGACCTGGGCAATGT TCCACCTTTGCCCAAGTCA

Nqo1 TCAGCGCTTGACACTACGA TCTTCAGAGCCTCCACAGC

Prdx1 CTTCCCACCCTCCCTGAAG CCCAGTTCCCGCAGACTTA

Txn AGACGTGGATGACTGCCAG GCACCAGAGAACTCCCCAA

Ho-1 TGGCACATTTCCCTCACCA GCCTCTACCGACCACAGTT

Catalase GGCTCACACACCTTCAAGC TGTGCAAGTCTTCCTGCCT

Gpx AGTGCGAGGTGAATGGTGA ACTTGGGGTCGGTCATGAG

TNF alpha TGCCTCAGCCTCTTCTCATT CCCATTTGGGAACTTCTCCT

Il1b CTGTGACTCGTGGGATGATG GGGATTTTGTCGTTGCTTGT

Il10 CCTGCTCTTACTGGCTGGAG TGTCCAGCTGGTCCTTCTTT

Myh6 CACCAACCTGTCCAAGTTCC ATCGTGGATTTTCTGCTTGG

Myh7 AAACTGAAAACGGCAAGACG TGACGGTGACACAGAAGAGG

Nppa AGGGCTTCTTCCTCTTCCTG CCAGGTGGTCTAGCAGGTTC

Acta GTCGGTATGGGTCAGAAGGA TGTCGTCCCAGTTGGTGATA

Col1a1 TTGACCCTAACCAAGGATGC CACCCCTTCTGCGTTGTATT

Col3a1 AACGTGGCTCTAATGGCATC CATCTTTTCCAGGAGGTCCA

Hprt TTTTGCTGACCTGCTGGATTAC TACTTTTATGTCCCCCGTTGA

Genes are named according to the official nomenclature on NCBI gene database. Sod1, superoxide dismutase 1; Nqo1, NAD(P)H dehydrogenase quinine;

Prdx1, peroxiredoxin; Txn, thioredoxin; Ho-1, hemioxigenase 1; Gpx, glutathione peroxidase; TNF alpha, tumor necrosis factor alpha; Il1b, interleukin-1β;

Il10, interleukin-10; Myh6, myosin heavy chain, α isoform; Myh7, myosin heavy chain, β isoform; Nppa, atrial natriuretic peptide; Acta, α-actin; Colla1,

collagen I; Col3a1, collagen III; Hprt, hypoxanthine phosphoribosyl transferase.

https://doi.org/10.1371/journal.pone.0189535.t001
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were homogenized in lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.1%

SDS), supplemented with 1 mM phenylmethylsulfonyl fluoride, 1 μg/ml pepstatin A, 1 μg/ml

leupeptin, 1 μg/ml aprotinin (Sigma-Aldrich), 10 mM sodium fluorate (AnalaR Normapur;

VWR, Leuven, Belgium), and 1 mM sodium orthovanadate (Alfa Aesar, Ward Hill, MA).

Supernatants were transferred to microtubes and protein concentrations were determined

using the DC protein assay kit (Bio-Rad Laboratories, Hercules, CA). For the assay, 15 μg of

total protein were used.

Detection of reactive oxygen species (ROS) in the left ventricle

The oxidation-sensitive fluorescent dye dihydroethidium (DHE) was used to evaluate ROS

content in situ, as previously described [26]. LV embedded in tissue freezing medium and fro-

zen was cut in a cryostat (Leica CM 1850; Nussloch, Germany). Transverse LV sections

(14 μm) were disposed on glass slides and allowed to reach the equilibrium (30 min at 37˚C in

phosphate-buffered saline, PBS). The sections were then incubated with DHE (50 μM DHE in

PBS; Sigma Aldrich) at 37˚C for 30 min in the dark; control sections received an identical vol-

ume of PBS. Fluorescent images were subsequently obtained with an optical microscope (200x

magnification, Leica DFC 300 FX, Wetzlar, Germany). Both total and background pixel inten-

sity were measured and used to correct the DHE intensity of each image. Quantification of

DHE intensity was carried out using ImageJ software (Wayne Rasband, National Institutes of

Health, USA) and expressed in arbitrary units.

Morphological and morphometric analysis in the LV

Cardiac hypertrophy was evaluated in SHR and WKY groups during T and S protocols by the

LV weight / tibia length ratio and the relative fibrosis area. It was confirmed at the end of pro-

tocols by the measurement of myocytes’ diameter. For this proposal, tissue was immersed in

10% buffered formalin and fixed for 24 h. LV was embedded in paraffin, cut into 5 μm sections

at the level of the papillary muscle and subsequently stained with either hematoxylin-eosin

(HE for cellular structure visualization and measurement of myocytes’ diameter) or picrosirius

red (to measure the relative fibrosis area). Under visual inspection (KS 300, Zeiss light micro-

scope with 400X or 200X magnification for myocytes or fibrosis quantification, respectively) 2

randomly selected sections from each animal were acquired and quantified.

Diameter was measured in cardiomyocytes with visible nuclei and intact cellular mem-

branes. The width of individually isolated cardiomyocytes was manually traced across the mid-

dle of the nucleus, displayed on a viewing screen with a digitizing pad and determined by a

computer-assisted image analysis system. Diameter was quantified in approximately 80 myo-

cytes/rat, 3–4 rats/subgroup). Myocardial interstitial relative fibrosis area was also determined

in 20 visual fields/rat. Collagen fibers were identified by the red-stained area and the collagen

content was obtained by the ratio between the collagen fibers’ area and the total surface area.

These analyses were carried out by ImageJ software (NIH, USA). The observer was blinded to

the experimental groups.

Electrophoretic gel mobility assay

LV nuclear extracts were prepared as previously described with minor modifications [27].

Double-stranded oligonucleotide containing the nuclear factor-kappaB (NF-κB, consensus

sequence from Promega 50AGTTGAGGGGACTTTCCCAGGC-30), was end-labeled with γ-

32P-ATP using T4 polynucleotide kinase. Unincorporated nucleotides were removed by pass-

ing the reaction mixture through a Sephadex G-25 spin column (Amersham-Pharmacia, Swe-

den). Purified 32P-labeled probe (30,000 cpm) was incubated in 20 μl with 10 μg of LV nuclear
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extracts in a binding reaction mixture containing 50 mM NaCl, 0.5 mM ethylenediaminetetra-

acetic acid (EDTA), 0.5 mM dithiothreitol (DTT), 4% glycerol, 10 mM Tris–HCl (pH 7.5) and

0.05 μg poly (dI-dC) for 30 min at room temperature. DNA–protein complexes were separated

by electrophoresis through a 6% non-denaturing acrylamide:bis-acrylamide (37.5:1) gel in

0.5 × Tris-borate/EDTA for 2 h at 150 V. Gels were vacuum dried for 1 h at 80˚C and exposed

to X-ray film at −80˚C. The bands were quantified by ImageJ software (NIH of Health, USA).

Statistical analysis

Results are expressed as mean±SEM. Differences in treadmill performance between groups

(SHR and WKY) and conditions were analyzed by 2-way ANOVA for repeated measure-

ments (time). Differences in functional measurements, angiotensin content, oxidative

stress, inflammatory profile, antioxidant defense and heart remodeling were analyzed by

factorial ANOVA. Fisher was used as the post-hoc test. Differences were considered signifi-

cant at P<0.05.

Results

Effects of aerobic training on treadmill performance and resting arterial

pressure and heart rate in SHR and WKY

In spite of a better aerobic performance exhibited by the SHR (vs. age-matched controls) from

the beginning of protocols, exercise training similarly increased the treadmill performance in

both groups, with significant changes being observed after 4 and 8 weeks of training (Table 2).

Notice that the performance gain between weeks 8 and 0 was similar in both strains. In con-

trast, SHR and WKY kept sedentary did not exhibit significant changes on attained treadmill

speed after the 8 experimental weeks.

SHR were already hypertensive and exhibited increased HR at the beginning of protocols,

showing an additional mean AP (MAP) increase during the 8-weeks sedentary protocol

(Table 3). In the SHR, ageing-induced MAP increase was completely blocked by exercise train-

ing, which was accompanied by resting bradycardia, significant since the 4th week (T4).

Trained WKY only showed resting bradycardia from T4 up to T8, without any change in MAP

levels. (Table 3).

Table 2. Sequential changes on treadmill performance in normotensive (WKY) and spontaneously hypertensive rats (SHR) submitted to sedentary

(S) or training (T) protocols.

WKY-S WKY-T SHR-S SHR-T

Treadmill speed (km/h)

week 0 1.20±0.08 1.20±0.06 1.78±0.09* 1.79±0.06*

week 4 1.30±0.14 1.80±0.07†# 1.80±0.08* 2.30±0.06*†#

week 8 1.35±0.07 2.01±0.11†# 1.60±0.10* 2.70±0.13*†#

Performance gain (km/h) 0.07±0.04 +0.73±0.22†# -0.20±0.17 0.85±0.18†#

Values are means ± SEM. Performance gain was calculated by the difference in attained velocity between weeks 8 and 0. For each strain (S+T) n

corresponds to ~70–76 rats at week 0, ~36–40 rats at week 4, ~24–28 rats at week 8.

Significances (p < 0.05) are

* vs WKY.

† vs week 0.

# vs sedentary.

https://doi.org/10.1371/journal.pone.0189535.t002
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Temporal effect of aerobic training on plasma and heart angiotensin

content in SHR and WKY

At the beginning of experiments, SHR-S when compared to age-matched controls exhibited

high plasma Ang II content, but similar plasma Ang (1–7) levels (Fig 1A and 1B). At that time

LV Ang II as well as Ang (1–7) content were similar between strains (Fig 1D and 1E). Except

Table 3. Temporal changes on resting mean arterial pressure (MAP) and heart rate (HR) in normotensive (WKY) and spontaneously hypertensive

rats (SHR) submitted to sedentary (S) or training (T) protocols.

Groups MAP (mmHg) HR (b.min-1)

WKY SHR WKY SHR

T0 = S0 115 ± 1 162 ± 1* 330 ± 8 358 ± 7*

T1 112 ± 2 165 ± 3* 318 ± 4 347 ± 5*

T2 112 ± 2 165 ± 4* 317 ± 11 355 ± 4*

T4 114 ± 2 161 ± 4* 304 ± 8† 340 ± 7*†

T8 119 ± 1 161 ± 3*# 308 ± 7#† 326 ± 7*#†

S8 117 ± 2 187 ± 3*† 335 ± 11 402 ± 9*†

Values are means ± SEM. MAP and HR were measured in 8 to 10 animals/groups. Significances (p < 0.05) are

* vs WKY.

† vs week 0.

# vs S8.

https://doi.org/10.1371/journal.pone.0189535.t003

Fig 1. Training-induced changes in plasma and tissue angiotensin’s content. Time course changes of angiotensin II (Ang II, A and D) and

angiotensin-(1–7) [(Ang-(1–7), B and E] content and their ratio (C and F) in the plasma (A, B, C) and left ventricle (LV, D, E, F) of sedentary (S) and

trained (T) SHR and WKY during the 8 weeks’ protocols. Angiotensin peptides were measured in 6 to 8 animals/group. Significance is P<0.05 * vs

WKY; † vs week 0; # T8 vs S8.

https://doi.org/10.1371/journal.pone.0189535.g001
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for the increased LV Ang II in the SHR-S, plasma and tissue content of angiotensin peptides was

unchanged in both strains during the 8-weeks sedentary protocol. Training promptly reduced

and nearly normalized LV (T1) and plasma Ang II (T2) of hypertensive rats, values that were

maintained up to the end of the training protocol (Fig 1A and 1D). Training also reduced plasma

and LV Ang II content of normotensive rats, but only after 4 weeks of exercise training. On the

other hand, both SHR-T and WKY-T showed significant and similar increases of plasma and LV

Ang (1–7) content (from the 1st-2nd week on, Fig 1B and 1E). At the beginning of protocols, Ang

II / Ang (1–7) ratio was similar for plasma and LV in both strains. However, it was higher in SHR

vs WKY in sedentary groups at the 8th experimental week (Fig 1C and 1F). Interestingly, while

plasma Ang II / Ang (1–7) ratio was gradually and similarly reduced by aerobic training in both

strains, LV Ang II / Ang (1–7) ratio was quickly reduced in the trained SHR (T1), a value attained

by the WKY-T only after 4 weeks of training (Fig 1F). The prompt and specific reduction of Ang

II content within the LV of the SHR suggests its possible causal effect in driving several beneficial

adaptations induced by exercise training in the hypertensive heart [28–30].

Temporal effects of aerobic training on heart oxidative stress in SHR and

WKY

Although it is known that training effectively reduces both RAS and oxidative stress in several

tissues [4,7,8,10,14], there is a paucity of information on the timing and/or volume of training

for these effects to be established. Since heart Ang II hyperactivity was rapidly abrogated in the

trained SHR, we next analyzed the time-course changes of reactive oxygen species (ROS, Fig 2A

Fig 2. Sequential changes on heart oxidative stress and antioxidant defense. Temporal changes of reactive oxygen species (A, illustrative

photomicrographs; scale bars = 50 μm; B, quantification of dihydroethidium staining, DHE) and catalase expression (C) and activity (D) in the left

ventricle of sedentary (S) and trained (T) SHR and WKY during the 8 weeks’ protocols. DHE staining was measured in 4 rats/group (approximately

12–15 visual fields/rat); catalase expression and activity were evaluated in 4 to 6 rats/group. Significance is P<0.05 * vs WKY; † vs week 0; # T8 vs

S8.

https://doi.org/10.1371/journal.pone.0189535.g002
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and 2B) within the LV. Dihydroethidium staining was significantly higher in the SHR-S0 when

compared to WKY-S0 and continued to increase during the 8-weeks sedentary protocol. ROS

bioavailability in the LV of trained SHR was markedly reduced and completely normalized at

T2 (Fig 2B). No significant changes were observed in the LV dihydroethidium staining of the

normotensive groups.

Although recent studies have investigated antioxidant systems in hypertension and its role

to oppose oxidative stress [31,32], very few is known about their response to exercise training

in the heart of hypertensive individuals. Therefore, we also analyzed in the LV of both strains

the effects of aerobic training on several antioxidant enzymes. At the beginning of protocols,

SHR-S vs. WKY-S showed increased mRNA expression of superoxide dismutase, glutathione

peroxidase and peroxiredoxin (Fig 3A, 3B and 3D) but similar expression of catalase, NAD(P)

H dehydrogenase quinone, thioredoxin and hemioxigenase (Fig 2C and Fig 3C, 3E and 3F).

Except for a significant reduction of peroxiredoxin mRNA in SHR-S8 and an increase in thior-

edoxin mRNA in both SHR-S8 and WKY-S8, no gene expression changes were observed in

both sedentary groups. In contrast, training effectively augmented superoxide dismutase, glu-

tathione peroxidase, NAD(P)H dehydrogenase quinone, thioredoxin and peroxiredoxin

expression in both strains, but catalase mRNA expression only in the trained SHR (Fig 3A–3E

and Fig 2C). The specific training-induced improvement of catalase expression in SHR was

confirmed by the measurement of catalase activity in the LV: a significant increase was

observed from T4 up to T8 (Fig 2D).

Fig 3. Temporal changes in left ventricle gene expression in normotensive (WKY) and spontaneously hypertensive rats (SHR) exposed to

sedentary (S) or training (T) protocols. Superoxide dismutase 1 (Sod1, A), glutathione peroxidase (Gpx, B), NAD(P)H dehydrogenase quinone (Nqo, C),

peroxiredoxin (Prdx, D), thioredoxin (Txn, E), hemioxigenase 1 (Ho-1, F), myosin heavy chain, α isoform (Myh6, G), myosin heavy chain, β isoform (Myh7, H)

genes’ expression was measured in 4 to 6 rats/group. Significances (p < 0.05) is * vs WKY; † vs week 0; # vs S8.

https://doi.org/10.1371/journal.pone.0189535.g003
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Temporal effects of aerobic training on heart inflammatory profile in SHR

and WKY

Training reduces the low grade inflammation that characterizes hypertension [8,10,18]. There-

fore, we sought to identify the temporal changes on pro-inflammatory profile of hypertensive

rats (and their normotensive control) submitted to aerobic training. We analyzed the effects of

training on both NF-kB translocation to the nucleus and the gene expression of pro-inflamma-

tory and anti-inflammatory cytokines in the LV. At the beginning of the protocols, only TNF

alpha was significantly elevated in SHR-S when compared to WKY-S (Fig 4C). In SHR kept

sedentary, NF-kB showed a progressive increase during the 8 experimental weeks (Fig 4A and

4B), which was accompanied by a further increase in TNF alpha expression and a late but sig-

nificant increase in interleukin-1β gene expression (Fig 4C and 4D). During the 1st week of

training, SHR showed a transient increase of NF-kB translocation to the nucleus simulta-

neously to the augmented gene expression of pro-inflammatory cytokines (T1-T2, Fig 4A–4D).

From T4 up to T8, NF-kB activity was reduced and TNF alpha and interleukin-1β expression

were back to control levels, attaining at the end of protocols values significantly lower than

respective sedentary controls. Simultaneously with the reduced expression of pro-inflamma-

tory cytokines, training induced a significant gene expression of interleukin-10 in the LV of

trained SHR (T8, Fig 4E). Notice that no significant effects were observed in WKY rats submit-

ted to the same training protocol (Fig 4A–4E).

Fig 4. Training-induced changes on NF-kB, pro- and anti-inflammatory cytokines in the heart. Temporal changes of NF-kB translocation to

the nucleus (A, gel shift assay for the p65 NF-kB monomer; B, measurements of optical density), TNF alpha (C), interleukin-1β (Il1b, D) and

interleukin-10 (Il10, E) mRNA expression in the left ventricle of sedentary (S) and trained (T) SHR and WKY during the 8 weeks’ protocols. NF-kB

translocation was measured in 5 rats/group and genes’ expression in 4 to 6 rats/group. Significance is P<0.05 * vs WKY; † vs week 0; # T8 vs S8.

https://doi.org/10.1371/journal.pone.0189535.g004
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Temporal effects of aerobic training on cardiac remodeling in SHR and

WKY

We also analyzed the time course changes induced by training on cardiac remodeling of hyper-

tensive rats. Body weight and LV weight of the SHR and WKY during S and T protocols are

presented in Table 4.

SHR-S when compared to WKY-S exhibited significant LV hypertrophy during the 8 exper-

imental weeks, as indicated by LV weight/tibia length ratio (Fig 5A). In both strains, LV

weight/tibia length ratio was even higher at the end of the 8 experimental weeks. These effects

were confirmed by cardiomyocytes’ diameter measurement at the end of protocols (Fig 5B and

5C). Exercise training did not change these parameters.

Gene expression of α and β isoforms of myosin heavy chain (Fig 3G and 3H), collagen I

and collagen III (Fig 6C and 6D), atrial natriuretic peptide and α-actin (Fig 5D and 5E) were

higher in SHR-S0 vs WKY-S0 and not significantly changed during the sedentary protocol,

except by a small reduction in collagen I in SHR-S8. Exercise training caused a slight transient

changes in mRNA expression of myosin heavy chain (both isoforms), but significant increases

on atrial natriuretic peptide and α-actin expression in the LV of the trained SHR when com-

pared to respective sedentary controls (Fig 5D and 5E). Transient changes with a tendency for

collagen I and collagen III mRNA expression to decrease were observed in the trained SHR

(Fig 6C and 6D). Measurement of collagen content within the LV confirmed these observa-

tions showing the ability of training to significantly reduce the collagen content in trained

SHR (T8, Fig 6A and 6B). WKY-T also exhibited slight increases in gene expression of myosin

heavy chain, atrial natriuretic peptide and collagen I and III during training, but no significant

changes when compared to respective sedentary controls (Fig 3G and 3H, Fig 5D, Fig 6C and

6D). Coherently, no significant change on collagen protein expression was observed in the

trained WKY.

Discussion

Low-to-moderate exercise training is cardiovascular-protective and associated with reduced

blood pressure in hypertension. Here we elucidate some mechanisms underlying these phe-

nomena with focus on temporal relationships between the effects of exercise training on RAS

activation, redox status and inflammatory responses in a rat model of spontaneous hyperten-

sion. Major findings from our study demonstrate that, i) reduced Ang II–ACE–AT1 receptor

axis is the main effect to rapidly attenuate RAS hyperactivity in the heart; ii) this early

Table 4. Sequential changes on body weight (BW) and left ventricle (LV) weight in normotensive (WKY) and spontaneously hypertensive rats

(SHR) submitted to sedentary (S) or training (T) protocols.

Groups LV weight (mg) BW (g)

WKY SHR WKY SHR

T0 = S0 611 ± 30 768 ± 25* 255 ± 12 257 ± 7

T1 667 ± 21 776 ± 31* 270 ± 7 258 ± 7

T2 680 ± 26 813 ± 16* 283 ± 7 275 ± 5

T4 723 ± 18† 851 ± 15*† 297 ± 7† 290 ± 4†

T8 811 ± 13† 923 ± 34*† 333 ± 8† 303 ± 8*†

S8 792 ± 16† 919 ± 15*† 342 ± 7† 321 ± 4*†

Values are means ± SEM. LV weight and BW were measured in 8 to 10 rats/groups. Significances (p < 0.05) are

* vs WKY.

† vs week 0.

https://doi.org/10.1371/journal.pone.0189535.t004
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withdrawal of the vasoconstrictor, pro-oxidative, pro-inflammatory and proliferative RAS axis

is essential to counterbalance the initial transient exercise-induced increase of pro-inflamma-

tory cytokines in the left ventricle of the trained SHR; iii) exercise training abrogates age-

related translocation of NF-kB to the nucleus and the augmented expression of TNF alpha and

interleukin-1β in the LV of sedentary SHR; iv) training augments cardiac antioxidant capacity,

in part through increased catalase expression; and v) anti-oxidative and anti-inflammatory

effects driven by aerobic training are accompanied by a significant reduction in cardiac colla-

gen content without changing hypertension-induced left ventricle hypertrophy. In addition,

our data show a different timing for plasma and heart hypertension-induced activation

(increased circulating Ang II content precedes that of LV content) and training-induced deac-

tivation (LV downregulation precedes plasma Ang II reduction) of the RAS axis.

The association between hypertension, RAS hyperactivity, oxidative stress and inflamma-

tion has been confirmed in experimental and clinical conditions [3,33–35]. Chronic hyperten-

sion is typically associated with cardiac hypertrophy and deleterious remodeling of the LV

[8,13,21], processes that are Ang II-dependent. Most of these earlier studies focused on 1-time

point to evaluate the cardiac status. Here we extend those studies, examining the processes

involved in the development of hypertension and cardiac hypertrophy in response to exercise

in a time- and age-dependent manner. Our data showed in sedentary SHR aged 3 months that

hyperactivity of the vasoconstrictor axis of the circulating RAS (with a near normal vasodilator

axis) preceded RAS activation in the LV, which only exhibited increased Ang II content (again

with a normal Ang-(1–7) levels) in SHR aged 5 months. Precocious activation of the RAS has

already been suggested by our previous findings showing significant increases of Ang II con-

tent in renal, carotid, femoral and thoracic aorta of the sedentary SHR aged 3 months [7].

Fig 5. Sequential training-induced effects on cardiac remodeling. Time-related changes of left ventricle hypertrophy, as measured by

LV/tibia length ratio (A), cardiomyocytes’ diameter at the end of protocols (B, illustrative photomicrographs, scale bars = 50μm; C,

quantitative data), atrial natriuretic peptide (Nppa, D) and α-actin (Acta1, E) mRNA tissue expression in sedentary (S) and trained (T) SHR

and WKY during the 8 weeks’ protocols. Cardiomyocytes’ diameter was measured in 3 to 4 rats/group (approximately 80 myocytes/rat) and

gene expression in 4 to 6 rats/group. Significance is P<0.05 * vs WKY; † vs week 0; # T8 vs S8.

https://doi.org/10.1371/journal.pone.0189535.g005
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Indeed, all RAS components have been shown to be independently expressed in different tis-

sues as well as in the heart [3,12]. Here we revealed that high plasma Ang II and normal plasma

and heart Ang (1–7) levels were kept constant from 3 up to 5 months of age, while LV Ang II

augmented markedly in the sedentary SHR. This effect is accompanied by further increases in

the oxidative stress, pro-inflammatory cytokines expression and collagen content, all them

contributing to further LV hypertrophy observed in SHR from 3 up to 5 months. Our data also

showed that these responses occurred simultaneously and should be related to Ang II changes

since both plasma and LV levels of Ang-(1–7) were kept constant during the 8-weeks sedentary

protocol.

Experimental and clinical studies suggest a relevant role for Ang II hyperactivity in hyper-

tension-induced organ damage, since it is a potent vasoconstrictor, pro-oxidative, pro-inflam-

matory and proliferative stimulus [33,34]. Interestingly, besides the higher circulating Ang II

content in the sedentary SHR at the beginning of protocols, tissue Ang II was not elevated in

the hypertrophied LV, which already exhibited increased dihydroethidium staining, elevated

TNF alpha expression and augmented collagen synthesis. Indeed, LV ROS production by Ang

II-activated NOX complexes in cell membranes is not the only source for oxidative stress gen-

eration, since mitochondria, peroxisomes and endoplasmic reticulum are active sources as

well [36]. On the other hand, activation of NAD(P)H oxidase by local Ang II seems to be

responsible for the further increase in ROS bioavailability observed in the heart from 3 to 5

months, which was accompanied by additional increase in pro-inflammatory cytokines

expression, collagen deposition and LV hypertrophy. As showed before, both Ang II and oxi-

dative stress are potent stimuli for the low grade inflammation as well as collagen deposition

[21,37], other important hallmark of hypertension.

Fig 6. Training-induced changes on cardiac collagen expression. Changes of collagen content over time (A, illustrative

photomicrographs, scale bars = 50μm; B quantitative data) and collagen I (C) and collagen III (D) mRNA expression in the left ventricle of

sedentary (S) and trained (T) SHR and WKY during the 8 weeks’ protocols. Collagen content (picrossirius red) was measured in 3 to 4 rats/

group (~20 visual fields/rat) and gene expression in 4 to 6 rats/group Significance is P<0.05 * vs WKY; † vs week 0; # T8 vs S8.

https://doi.org/10.1371/journal.pone.0189535.g006
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Cardiac hypertrophy in the sedentary SHR was characterized by increased expression of fetal

genes, increased expression of cardiac contractile proteins (with a larger increment in β than in

α isoform of myosin heavy chain), augmented cardiomyocytes diameter and elevated collagen

deposition, effects that occur early during cardiac remodeling. These hypertension-induced

changes observed in SHR during development are similar to those previously described in the

heart of ageing Sprague-Dawley rats and Long-Evans rats submitted to renovascular hyperten-

sion [38,39] and show comparable changes in cardiac contractile proteins and cellular responses

[13,38]. We also observed that LV deleterious remodeling in the sedentary SHR was associated

with increased antioxidant defenses (augmented superoxide dismutase 1, glutathione peroxi-

dase and peroxiredoxin vs. WKY-S), which may reflect a compensatory response to pathological

stress.

It is important to note that RAS, oxidative stress and pro-inflammatory cytokines act as a

deleterious positive feedback cycle that would accelerate organ damage if therapeutic interven-

tions are not provided [40]. In fact, several pharmacological therapies and life style changes

have been employed to treat hypertension and ameliorate its adverse effects [17,35,41]. Exercise

training, a non-pharmacological tool that partially reduce pressure levels has been shown to

change the balance between vasoconstrictor and vasodilator RAS axes, to decrease both oxida-

tive stress and pro-inflammatory profile and to minimize organ damage in hypertensive condi-

tions [14,16,17]. However, observations made only at the end of experiments as well as the

different training protocols used (type of exercise, duration, volume and/or training intensity)

have generate some controversial results in the literature, most of them related to exercise-

induced RAS responses [6,42,43]. This study comparing SHR and age-matched normotensive

controls reported original data on time-course changes induced by low to moderate aerobic

training on RAS peptides’ content in plasma and heart, as well as on sequential changes of LV

oxidative stress, inflammation, remodeling and antioxidant defense. Our data confirmed previ-

ous observations that both deactivation of vasoconstrictor and facilitation of vasodilator axis

contribute to training-induced Ang II/Ang-(1–7) ratio fall [6,42], revealing in addition that the

downregulation of the ACE-Ang II-AT1 receptor axis in the trained SHR is the main effect to

promptly knock down RAS hyperactivity in the heart (1st week) and plasma (2nd week of train-

ing). Similar, but late Ang II content reductions were also observed in the trained WKY (after

the 4th week of training for both plasma and LV content). On the other hand, significant and

progressive augmentation of Ang-(1–7) since the 1st week of training in plasma and LV

occurred simultaneously in both groups, with a slightly lower LV response in the trained SHR.

A recent review investigating the relation of acute and chronic exercise with blood pressure and

RAS components confirmed our observation that training can stimulate ACE2-Ang-(1–7)-Mas

receptor axis in parallel with the inhibition of ACE-Ang II-AT1 receptor pathway [44]. Notice

that although Ang II/Ang-(1–7) ratio decrease was caused by changes in both vasoconstrictor

and vasodilator axes, the marked and quick reduction of the vasoconstrictor axis was the main

determinant of the prompt Ang II/Ang (1–7) ratio reduction, highlighting the important role of

low-to-moderate exercise training in blocking the expression/activity of the ACE-Ang II-AT1

receptor RAS axis in the LV of the SHR. In addition, a recent study comparing low versus high

volume of chronic aerobic exercise on RAS axes in a diet-induced obesity rat model showed

that only the high, not the low volume exercise, was able to shift RAS balance towards the vaso-

dilator axis [45].

The rapid training-induced reduction of Ang II/Ang (1–7) ratio was accompanied by a sim-

ilar temporal decrease in ROS bioavailability in the LV. Our findings confirmed previous

observations on the attenuation of oxidative stress by AT1 receptors blockade and Mas recep-

tor activation [20] and on the decrease in the expression of gp91phox and p47phox NADPH-oxi-

dase subunits by aerobic training [8,10]. They showed in addition that normalization of LV
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oxidative stress occurred in parallel with that of RAS changes, being complete in 2 weeks of

training. Our data also confirmed previous observations that exercise training increases anti-

oxidant enzymes’ expression [46–48], showing in addition that increased expression of antiox-

idant defense is a late effect only observed after 4–8 weeks of training. Interestingly, training

augments gene expression of several antioxidant enzymes in both strains, but increased cata-

lase expression (gene and protein) is a specific training-induced antioxidant defense observed

only in the LV of the SHR. Notice that with exception of the catalase response to exercise, our

results on antioxidant defense were based on gene expression data. Further studies are neces-

sary to confirm the effects of training on protein expression and/or antioxidant enzymes

activity.

Single bouts of exercise increase redox signaling and inflammation in skeletal muscle and

heart while regular exercise decreases both [49–51]. However, the transition from the acute

response to chronic adaptations has not been investigated. Our temporal data in trained and

sedentary SHR revealed that the acute inflammatory effect of exercise (transient increases of

TNF alpha and interleukin-1β expression in the LV mediated by NF-kB translocation to the

nucleus) persisted during the first 2 weeks of training, coming back to control levels from

weeks 4 to 8. In contrast, sedentary SHR showed a progressive age-dependent increase of the

LV inflammatory profile. Therefore, at the end of the 8 experimental weeks, trained SHR,

when compared to sedentary age-matched controls, exhibited lower levels of pro-inflamma-

tory cytokines, which were associated with a significant training-induced increase in interlru-

kin-10, an important anti-inflammatory cytokine. Another original observation arising from

this temporal set of data is that the transient exercise-induced inflammatory surge is counter-

balanced by the robust withdrawal of the pro-oxidative and pro-inflammatory RAS axis

observed since the 1st week of training.

The present results indicated that the low-to-moderate exercise training protocol is cardio-

protective by downregulating the RAS and reducing oxidative injury, but did not reverse the

cardiac hypertrophy exhibited by SHR rats. Indeed, a meta-analysis on the effects of exercise

on cardiac hypertrophy confirmed the absence of training effects in SHR hearts when the exer-

cise protocol started in adult rats aged 3-months or older [52]. Previous studies also demon-

strated different remodeling responses to treadmill exercise, wheel running and swimming

training [13,19,42,52,53]. In our hands, treadmill training stimulated the expression of fetal

genes and reduced the collagen content within the LV of the SHR, without changing gene

expression of myosin heavy chain, cardiomyocytes’ diameter and the age-induced increase in

LV/tibia length ratio. It should be noted that although higher expression of atrial natriuretic

peptide is an index of pathological hypertrophy [13], lower levels (as those stimulated by physi-

ological stimulus like the low-intensity exercise training) may act as a protective factor. Sup-

porting this idea, it was already demonstrated that when binding to its receptor (NPR-A),

atrial natriuretic peptide antagonized the deleterious effects induced by both cardiac overload

and Ang II [54].

Taken together our data show that exercise training does not reverse hypertension-induced

cardiac hypertrophy, but rapidly decreases local synthesis of Ang II (T1), normalizes the oxida-

tive stress (T2), augments antioxidant defense (T4-T8) and reduces both inflammatory profile

(T8) and collagen deposition (T8) in the LV, partially reversing the deleterious cardiac remod-

eling exhibited by the SHR. Cardiac Ang II changes precede training-induced reduction in

plasma Ang II content (T2-T4) and pressure fall (T8). These findings indicate that early down-

regulation of ACE-Ang II-AT1 receptor RAS axis is a crucial mechanism to improve cardiac

function in the trained SHR, showing in addition this effect occurs before training-induced

plasma RAS deactivation.
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19. Fernandes T, Baraúna VG, Negrão CE, Phillips MI, Oliveira EM. Aerobic exercise training promotes

physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol. 2015;

309: H543–552. https://doi.org/10.1152/ajpheart.00899.2014 PMID: 26071549

20. Lin L, Liu X, Xu J, Weng L, Ren J, Ge J, et al. Mas receptor mediates cardioprotection of angiotensin-

(1–7) against Angiotensin II-induced cardiomyocyte autophagy and cardiac remodelling through inhibi-

tion of oxidative stress. J Cell Mol Med. 2016; 20: 48–57. https://doi.org/10.1111/jcmm.12687 PMID:

26515045

21. Rossoni LV, Oliveira RAF, Caffaro RR, Miana M, Sanz-Rosa D, Koike MK, et al. Cardiac benefits of

exercise training in aging spontaneously hypertensive rats. J Hypertens. 2011; 29: 2349–2358. https://

doi.org/10.1097/HJH.0b013e32834d2532 PMID: 22045123

22. Ronchi FA, Irigoyen M-C, Casarini DE. Association of somatic and N-domain angiotensin-converting

enzymes from Wistar rat tissue with renal dysfunction in diabetes mellitus. J Renin Angiotensin Aldoste-

rone Syst. 2007; 8: 34–41. https://doi.org/10.3317/jraas.2007.005 PMID: 17487824

23. Rosa RM, Colucci JA, Yokota R, Moreira RP, Aragão DS, Ribeiro AA, et al. Alternative pathways for

angiotensin II production as an important determinant of kidney damage in endotoxemia. Am J Physiol

Renal Physiol. 2016; 311: F496–504. https://doi.org/10.1152/ajprenal.00121.2014 PMID: 27252489

24. Cavalleri MT, Burgi K, Cruz JC, Jordão MT, Ceroni A, Michelini LC. Afferent signaling drives oxytociner-

gic preautonomic neurons and mediates training-induced plasticity. Am J Physiol Regul Integr Comp

Physiol. 2011; 301: R958–966. https://doi.org/10.1152/ajpregu.00104.2011 PMID: 21795633

25. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids

Res. 2001; 29: e45. PMID: 11328886

26. Oliveira V, Akamine EH, Carvalho MHC, Michelini LC, Fortes ZB, Cunha TS, et al. Influence of aerobic

training on the reduced vasoconstriction to angiotensin II in rats exposed to intrauterine growth restric-

tion: possible role of oxidative stress and AT2 receptor of angiotensin II. PLoS ONE. 2014; 9: e113035.

https://doi.org/10.1371/journal.pone.0113035 PMID: 25406086

27. Bechara LRG, Moreira JBN, Jannig PR, Voltarelli VA, Dourado PM, Vasconcelos AR, et al. NADPH oxi-

dase hyperactivity induces plantaris atrophy in heart failure rats. Int J Cardiol. 2014; 175: 499–507.

https://doi.org/10.1016/j.ijcard.2014.06.046 PMID: 25023789

28. Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, et al. Prevention of angiotensin II-

induced cardiac remodeling by angiotensin-(1–7). Am J Physiol Heart Circ Physiol. 2007; 292: H736–

742. https://doi.org/10.1152/ajpheart.00937.2006 PMID: 17098828

Exercise in hypertensive heart

PLOS ONE | https://doi.org/10.1371/journal.pone.0189535 December 12, 2017 17 / 19

https://doi.org/10.1371/journal.pone.0094927
https://doi.org/10.1371/journal.pone.0094927
http://www.ncbi.nlm.nih.gov/pubmed/24788542
https://doi.org/10.1073/pnas.0605545103
http://www.ncbi.nlm.nih.gov/pubmed/17090678
http://www.ncbi.nlm.nih.gov/pubmed/19278599
https://doi.org/10.1016/j.pharmthera.2010.04.005
http://www.ncbi.nlm.nih.gov/pubmed/20438756
https://doi.org/10.1016/j.fct.2013.08.035
http://www.ncbi.nlm.nih.gov/pubmed/23978413
https://doi.org/10.1161/01.HYP.0000112030.79692.21
https://doi.org/10.1161/01.HYP.0000112030.79692.21
http://www.ncbi.nlm.nih.gov/pubmed/14732738
https://doi.org/10.1161/JAHA.112.004473
http://www.ncbi.nlm.nih.gov/pubmed/23525435
http://www.ncbi.nlm.nih.gov/pubmed/15076798
https://doi.org/10.1161/HYPERTENSIONAHA.109.136622
https://doi.org/10.1161/HYPERTENSIONAHA.109.136622
http://www.ncbi.nlm.nih.gov/pubmed/19841287
https://doi.org/10.1152/ajpheart.00899.2014
http://www.ncbi.nlm.nih.gov/pubmed/26071549
https://doi.org/10.1111/jcmm.12687
http://www.ncbi.nlm.nih.gov/pubmed/26515045
https://doi.org/10.1097/HJH.0b013e32834d2532
https://doi.org/10.1097/HJH.0b013e32834d2532
http://www.ncbi.nlm.nih.gov/pubmed/22045123
https://doi.org/10.3317/jraas.2007.005
http://www.ncbi.nlm.nih.gov/pubmed/17487824
https://doi.org/10.1152/ajprenal.00121.2014
http://www.ncbi.nlm.nih.gov/pubmed/27252489
https://doi.org/10.1152/ajpregu.00104.2011
http://www.ncbi.nlm.nih.gov/pubmed/21795633
http://www.ncbi.nlm.nih.gov/pubmed/11328886
https://doi.org/10.1371/journal.pone.0113035
http://www.ncbi.nlm.nih.gov/pubmed/25406086
https://doi.org/10.1016/j.ijcard.2014.06.046
http://www.ncbi.nlm.nih.gov/pubmed/25023789
https://doi.org/10.1152/ajpheart.00937.2006
http://www.ncbi.nlm.nih.gov/pubmed/17098828
https://doi.org/10.1371/journal.pone.0189535


29. Guimarães GG, Santos SHS, Oliveira ML, Pimenta-Velloso EP, Motta DF, Martins AS, et al. Exercise

induces renin-angiotensin system unbalance and high collagen expression in the heart of Mas-deficient

mice. Peptides. 2012; 38: 54–61. https://doi.org/10.1016/j.peptides.2012.05.024 PMID: 22921883

30. Zucker IH, Schultz HD, Patel KP, Wang H. Modulation of angiotensin II signaling following exercise

training in heart failure. Am J Physiol Heart Circ Physiol. 2015; 308: H781–791. https://doi.org/10.1152/

ajpheart.00026.2015 PMID: 25681422

31. Zhang S, Li X, Jourd’heuil FL, Qu S, Devejian N, Bennett E, et al. Cytoglobin promotes cardiac progeni-

tor cell survival against oxidative stress via the upregulation of the NFκB/iNOS signal pathway and nitric

oxide production. Sci Rep. 2017; 7: 10754. https://doi.org/10.1038/s41598-017-11342-6 PMID:

28883470

32. Lopes RA, Neves KB, Tostes RC, Montezano AC, Touyz RM. Downregulation of nuclear factor ery-

throid 2-related factor and associated antioxidant genes contributes to redox-sensitive vascular dys-

function in hypertension. Hypertension. 2015; 66: 1240–1250. https://doi.org/10.1161/

HYPERTENSIONAHA.115.06163 PMID: 26503970

33. Montezano AC, Touyz RM. Oxidative stress, Noxs, and hypertension: experimental evidence and clini-

cal controversies. Ann Med. 2012; 44 Suppl 1: S2–16. https://doi.org/10.3109/07853890.2011.653393

PMID: 22713144

34. Nguyen Dinh Cat A, Touyz RM. A new look at the renin-angiotensin system—focusing on the vascular

system. Peptides. 2011; 32: 2141–2150. https://doi.org/10.1016/j.peptides.2011.09.010 PMID:

21945916

35. Unger T, Paulis L, Sica DA. Therapeutic perspectives in hypertension: novel means for renin–angioten-

sin–aldosterone system modulation and emerging device-based approaches. Eur Heart J. 2011; 32:

2739–2747. https://doi.org/10.1093/eurheartj/ehr253 PMID: 21951628

36. Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide

anion and its release into the intermembrane space. Biochem J. 2001; 353: 411–416. PMID: 11139407

37. Harrison DG, Vinh A, Lob H, Madhur MS. Role of the adaptive immune system in hypertension. Curr

Opin Pharmacol. 2010; 10: 203–207. https://doi.org/10.1016/j.coph.2010.01.006 PMID: 20167535

38. Buttrick P, Malhotra A, Factor S, Greenen D, Leinwand L, Scheuer J. Effect of aging and hypertension

on myosin biochemistry and gene expression in the rat heart. Circ Res. 1991; 68: 645–652. PMID:

1835908

39. Carnes CA, Geisbuhler TP, Reiser PJ. Age-dependent changes in contraction and regional myocardial

myosin heavy chain isoform expression in rats. J Appl Physiol. 2004; 97: 446–453. https://doi.org/10.

1152/japplphysiol.00439.2003 PMID: 15220325

40. Agarwal D, Elks CM, Reed SD, Mariappan N, Majid DSA, Francis J. Chronic exercise preserves renal

structure and hemodynamics in spontaneously hypertensive rats. Antioxid Redox Signal. 2012; 16:

139–152. https://doi.org/10.1089/ars.2011.3967 PMID: 21895524

41. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. Seventh report of the

Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure.

Hypertension. 2003; 42: 1206–1252. https://doi.org/10.1161/01.HYP.0000107251.49515.c2 PMID:

14656957

42. Fernandes T, Hashimoto NY, Magalhães FC, Fernandes FB, Casarini DE, Carmona AK, et al. Aerobic

exercise training-induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angio-

tensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme

2-angiotensin (1–7). Hypertension. 2011; 58: 182–189. https://doi.org/10.1161/HYPERTENSIONAHA.

110.168252 PMID: 21709209

43. Zamo FS, Barauna VG, Chiavegatto S, Irigoyen MC, Oliveira EM. The renin-angiotensin system is mod-

ulated by swimming training depending on the age of spontaneously hypertensive rats. Life Sci. 2011;

89: 93–99. https://doi.org/10.1016/j.lfs.2011.05.004 PMID: 21620872

44. Nunes-Silva A, Rocha GC, Magalhaes DM, Vaz LN, Faria MHS, E Silva ACS. Physical exercise and

ACE2-Angiotensin-(1–7)-Mas receptor axis of the Renin Angiotensin System. Protein Pept Lett. 2017;

https://doi.org/10.2174/0929866524666170728151401 PMID: 28758593

45. Frantz EDC, Giori IG, Machado MV, Magliano DC, Freitas FM, Andrade MSB, et al. High, but not low

exercise volume, shifts the balance of renin angiotensin system towards ACE2/Mas receptor axis in

skeletal muscle in obese rats. Am J Physiol Endocrinol Metab. 2017; ajpendo.00078.2017. https://doi.

org/10.1152/ajpendo.00078.2017 PMID: 28679623

46. Yamamoto T, Ohkuwa T, Itoh H, Sato Y, Naoi M. Relation between voluntary physical activity and oxi-

dant/antioxidant status in rats. Comp Biochem Physiol C Toxicol Pharmacol. 2003; 135: 163–168.

PMID: 12860055

Exercise in hypertensive heart

PLOS ONE | https://doi.org/10.1371/journal.pone.0189535 December 12, 2017 18 / 19

https://doi.org/10.1016/j.peptides.2012.05.024
http://www.ncbi.nlm.nih.gov/pubmed/22921883
https://doi.org/10.1152/ajpheart.00026.2015
https://doi.org/10.1152/ajpheart.00026.2015
http://www.ncbi.nlm.nih.gov/pubmed/25681422
https://doi.org/10.1038/s41598-017-11342-6
http://www.ncbi.nlm.nih.gov/pubmed/28883470
https://doi.org/10.1161/HYPERTENSIONAHA.115.06163
https://doi.org/10.1161/HYPERTENSIONAHA.115.06163
http://www.ncbi.nlm.nih.gov/pubmed/26503970
https://doi.org/10.3109/07853890.2011.653393
http://www.ncbi.nlm.nih.gov/pubmed/22713144
https://doi.org/10.1016/j.peptides.2011.09.010
http://www.ncbi.nlm.nih.gov/pubmed/21945916
https://doi.org/10.1093/eurheartj/ehr253
http://www.ncbi.nlm.nih.gov/pubmed/21951628
http://www.ncbi.nlm.nih.gov/pubmed/11139407
https://doi.org/10.1016/j.coph.2010.01.006
http://www.ncbi.nlm.nih.gov/pubmed/20167535
http://www.ncbi.nlm.nih.gov/pubmed/1835908
https://doi.org/10.1152/japplphysiol.00439.2003
https://doi.org/10.1152/japplphysiol.00439.2003
http://www.ncbi.nlm.nih.gov/pubmed/15220325
https://doi.org/10.1089/ars.2011.3967
http://www.ncbi.nlm.nih.gov/pubmed/21895524
https://doi.org/10.1161/01.HYP.0000107251.49515.c2
http://www.ncbi.nlm.nih.gov/pubmed/14656957
https://doi.org/10.1161/HYPERTENSIONAHA.110.168252
https://doi.org/10.1161/HYPERTENSIONAHA.110.168252
http://www.ncbi.nlm.nih.gov/pubmed/21709209
https://doi.org/10.1016/j.lfs.2011.05.004
http://www.ncbi.nlm.nih.gov/pubmed/21620872
https://doi.org/10.2174/0929866524666170728151401
http://www.ncbi.nlm.nih.gov/pubmed/28758593
https://doi.org/10.1152/ajpendo.00078.2017
https://doi.org/10.1152/ajpendo.00078.2017
http://www.ncbi.nlm.nih.gov/pubmed/28679623
http://www.ncbi.nlm.nih.gov/pubmed/12860055
https://doi.org/10.1371/journal.pone.0189535


47. Chang S-P, Chen Y-H, Chang W-C, Liu I-M, Cheng J-T. Increase of anti-oxidation by exercise in the

liver of obese Zucker rats. Clin Exp Pharmacol Physiol. 2004; 31: 506–511. https://doi.org/10.1111/j.

1440-1681.2004.04035.x PMID: 15298542

48. Ahmadiasl N, Soufi FG, Alipour M, Bonyadi M, Sheikhzadeh F, Vatankhah A, et al. Effects of age incre-

ment and 36-week exercise training on antioxidant enzymes and apoptosis in rat heart tissue. J Sports

Sci Med. 2007; 6: 243–249. PMID: 24149335

49. Ambarish V, Chandrashekara S, Suresh KP. Moderate regular exercises reduce inflammatory

response for physical stress. Indian J Physiol Pharmacol. 2012; 56: 7–14. PMID: 23029958

50. Della Gatta PA, Garnham AP, Peake JM, Cameron-Smith D. Effect of exercise training on skeletal mus-

cle cytokine expression in the elderly. Brain Behav Immun. 2014; 39: 80–86. https://doi.org/10.1016/j.

bbi.2014.01.006 PMID: 24434040

51. Niebauer J. Effects of exercise training on inflammatory markers in patients with heart failure. Heart Fail

Rev. 2008; 13: 39–49. https://doi.org/10.1007/s10741-007-9050-1 PMID: 17922189
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