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A B S T R A C T   

Background: Although quantitative measures from research-quality MRI provide a means to study multiple 
sclerosis (MS) pathology in vivo, these metrics are often unavailable in legacy clinical datasets. 
Objective: To determine how well an automatically-generated quantitative snapshot of brain pathology, measured 
only on clinical routine T2-FLAIR MRI, can substitute for more conventional measures on research MRI in terms 
of capturing multi-factorial disease pathology and providing similar clinical relevance. 
Methods: MRI with both research-quality sequences and conventional clinical T2-FLAIR was acquired for 172 MS 
patients at baseline, and neurologic disability was assessed at baseline and five-years later. Five measures 
(thalamus volume, lateral ventricle volume, medulla oblongata volume, lesion volume, and network efficiency) 
for quantifying disparate aspects of neuropathology from low-resolution T2-FLAIR were applied to predict 
standard research-quality MRI measures. They were compared in regard to association with future neurologic 
disability and disease progression over five years. 
Results: The combination of the five T2-FLAIR measures explained most of the variance in standard research- 
quality MRI. T2-FLAIR measures were associated with neurologic disability and cognitive function five-years 
later (R2 = 0.279, p < 0.001; R2 = 0.382, p < 0.001), similar to standard research-quality MRI (R2 = 0.279, 
p < 0.001; R2 = 0.366, p < 0.001). They also similarly predicted disability progression over five years 
(%-correctly-classified = 69.8, p = 0.034), compared to standard research-quality MRI (%-correctly-classified =
72.4%, p = 0.022) in relapsing-remitting MS. 
Conclusion: A set of five T2-FLAIR-only measures can substitute for standard research-quality MRI, especially in 
relapsing-remitting MS. When only clinical T2-FLAIR is available, it can be used to obtain substantially more 
quantitative information about brain pathology and disability than is currently standard practice.   

1. Introduction 

Multiple sclerosis (MS) is a disease of the central nervous system 
(CNS) associated with progressive neurologic symptoms (Scalfari et al., 
2010). Although its hallmark is the presence of inflammatory demye
linating plaques in the white matter (WM), it is a highly multi-factorial 
disease including diffuse tissue abnormalities, pathological processes 
occurring directly in gray matter (GM), atrophy of both WM and GM, 
and spinal cord involvement (Zivadinov et al., 2016). The relationship 

between MS pathology and clinical outcomes is further complicated by 
the variable location of focal pathology within eloquent brain systems 
and tracts and by the potentially different staging of individual region 
involvement (Eshaghi et al., 2018). 

Over the last decade or so, a variety of sophisticated neuroimaging 
acquisition protocols and analysis tools have been developed to quantify 
and study these various aspects of MS pathology and their clinical im
pacts. These include: quantitative lesion volumetry on T2-FLAIR images, 
often with reference to proton density, T2-weighted, and T1-weighted 

* Corresponding author at: Buffalo Neuroimaging Analysis Center, 100 High Street, Buffalo, NY 14203, USA. 
E-mail address: rzivadinov@bnac.net (R. Zivadinov).  

Contents lists available at ScienceDirect 

NeuroImage: Clinical 

journal homepage: www.elsevier.com/locate/ynicl 

https://doi.org/10.1016/j.nicl.2021.102705 
Received 7 April 2021; Received in revised form 12 May 2021; Accepted 19 May 2021   

mailto:rzivadinov@bnac.net
www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2021.102705
https://doi.org/10.1016/j.nicl.2021.102705
https://doi.org/10.1016/j.nicl.2021.102705
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2021.102705&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


NeuroImage: Clinical 31 (2021) 102705

2

images, to elucidate focal WM pathology; diffusion tractography on 
multi-directional DWI imaging protocols to characterize structural 
connectivity; brain volumetry measures like SIENA on high-resolution 
3D T1-weighted images to evaluate brain atrophy (Smith et al., 2002) 
tissue specific volumetry tools like SIENAX to measure WM and GM 
involvement separately on high-resolution 3D T1-weighted images 
(Smith et al., 2002); structure-specific volumetry tools like FIRST and 
FreeSurfer on high-resolution 3D T1-weighted images to identify spe
cific regional involvement (Fischl et al., 2004); and multiparametric 
spinal cord analysis like the Spinal Cord Toolbox applied on cervical 
MRI to quantify spinal cord atrophy and tissue degeneration (Moccia 
et al., 2019). Unfortunately, though, these measures depend on a 
number of different MRI contrasts (notably including high-resolution 3D 
T1-weighted imaging). While these are often acquired in a research 
setting, they are frequently omitted in routine clinical research. A recent 
large, retrospective, multi-center study in a clinical routine found that 
the only common denominator was T2-FLAIR (Zivadinov et al., 2018). 
While some centers include more sequences, the situation is unlikely to 
change dramatically in the near future since recent consensus guidelines 
have made high-resolution 3D T1 optional (Sastre-Garriga et al., 2020) 
to balance time and expense constraints. Similarly, spinal cord imaging 
also remains less common, and diffusion imaging is rarely acquired 
(Rovira et al., 2015). 

Given this background, there exists a very large amount of clinical 
routine imaging acquired in MS that does not currently contribute to 
basic or clinical research because it does not fit the tools available. This 
is unfortunate, because the large number of scans and subjects in these 
latent datasets could theoretically provide power to more broadly 
investigate disease heterogeneity, individual prognostic factors, real- 
world treatment response, and many other aspects of the disease. 
However, we hypothesize that in practice a substantial amount of the 
information that is traditionally obtained from a battery of research MRI 
images (high-resolution 3D T1, PD/T2, DWI, spinal cord imaging) can be 
inferred from a carefully selected set of measures on single T2-FLAIR 
brain images using modified techniques. While we do not expect these 
to be a replacement for those higher-fidelity measures, we do expect that 
with adequate tools a much better compromise can be reached than not 
using this widespread source of data at all for quantitative MS research. 

Based on this background, we synthesized five methods for auto
matically and reliably processing T2-FLAIR MRI, selected based on their 
ability to provide complementary data reflecting the various known axes 
of MS pathology. They include NeuroSTREAM-based lateral ventricular 
volume (LVV) (Dwyer et al., 2017) as a proxy for global atrophy, 
DeepGRAI-based thalamus volume (Dwyer et al., 2021) as a proxy for 
regional GM atrophy, T2-FLAIR based medulla oblongata volume 
(MOV) as a proxy for spinal cord atrophy, salient central lesion volume 
(SCLV) (Dwyer et al., 2019) as a proxy for overall WM lesion burden, 
and NeMo-based network efficiency (Kuceyeski, Maruta, Relkin, & Raj, 
2013; Rubinov & Sporns, 2010b) as a proxy for diffusion-based struc
tural (dis)connectivity. 

We expected that together these measures would capture a sub
stantial amount of the pathophysiological variance usually identified by 
standard research-quality MRI metrics, would correlate strongly with 
neurologic disability, and would predict future disability progression 
well relative to standard research-quality MRI. To test these hypotheses, 
we applied these measures and the related standard measures to a large 
retrospective dataset with multimodal research-quality MRI images, 
clinical routine T2-FLAIR MRI images, and longitudinal clinical and 
cognitive data. Because the association between MRI and neurologic 
outcomes can vary by disease phenotype (Filippi et al., 2019), we also 
carried out our analyses using both the full cohort and stratified by 
disease sub-types (i.e. relapsing-remitting and progressive). 

2. Methods 

2.1. Participants 

This retrospective study of prospectively collected data in the Car
diovascular Environmental and Genetics (CEG) (Kappus et al., 2015) 
study was approved by the Institutional Review Board (IRB) of the 
University at Buffalo. All study participants provided written informed 
consent. Included in this study were MRI data and clinical data at 
baseline and clinical data five years later from 172 MS patients who met 
inclusion and exclusion criteria. These criteria were: (a) diagnosis of 
clinically definite MS, relapsing-remitting (RRMS) or progressive (PMS), 
according to the McDonald criteria (Polman et al., 2011), or clinically 
isolated syn drome (CIS) (b) age 18 + years, (c) English fluency, (d) able 
to provide informed consent to procedures, (e) no neurologic disorder 
other than MS, (f) no psychiatric disorder other than mood or behavior 
change following onset of MS, (g) no history y of developmental disor
der, (h) no history of substance abuse, past or present, (i) no motor or 
sensory defect that might interfere with cognitive test performance, (j) 
T2-FLAIR and high spatial resolution T1w imaging data available/ 
passing quality inspection, and (k) neurologic examination completed at 
time of MRI and again five years later. If clinical relapse was detected 
during expected evaluation times, clinical and MRI examinations were 
re-scheduled to a time when participants were clinically stable. 

2.2. Clinical progression 

Neurologic disability was measured with the Expanded Disability 
Status Scale (EDSS) (Kurtzke, 1983), Nine-Hole-Peg Test (NHPT) (Feys 
et al., 2017), and the Timed 25 Foot Walk (T25W) (Goldman et al., 
2013). The change in EDSS from baseline to follow-up was calculated 
and used to determine whether each person with MS exhibited disability 
progression (DP) over the five-year window. The DP converters were 
classified as those with EDSS change ≥ 1.5 if baseline EDSS was < 1.0, 
EDSS change of ≥ 1.0 if baseline EDSS was 1.0–5.5, and EDSS change of 
≥ 0.5 if baseline EDSS  ≥ 5.5. We also measured cognitive processing 
speed using the Symbol Digit Modalities Test (SDMT) (Smith, 1982). The 
NHPT, T25FW, and SDMT were available f or all study participants at 
the five-year follow-up, and for a smaller subset (n = 45) at baseline. 

2.3. Image acquisition 

MRI data were c ollected using a 3 T GE scanner. Because our aim 
was to determine how well a quantitative snapshot of brain pathology at 
one time can predict future disability progression, compared to standard 
research-quality MRI, we used only baseline MRI data. Imaging included 
a high spatial resolution 3D T1-weighted, 2D T2-FLAIR, and diffusion 
tensor imaging, 2D echo-planar imaging (EPI). For details, see Supple
mental Materials. 

2.4. Image processing 

Five measures (thalamus volume, LVV, MOV, SCLV and network 
efficiency) were applied to autom atically quantify disparate aspects of 
brain pathology in MS from clinical quality T2-FLAIR MRI (Fig. 1). The 
measures from standard research-quality MRI for comparison included 
thalamus volume, brain volume, MOV, T2 lesion volu me (T2LV), T1 
lesion volume (T1LV), diffusion-weighted network efficiency, and 
cortical GM volume (CGMV). For all T2-FLAIR processing protocols, see 
the Supp lemental materials for additional details. 

2.5. Global and cortical bra in atrophy 

Global/GM brain atrophy is well-established for its clinical relevance 
in MS (Bermel & Bakshi, 2006; Steenwijk et al., 2016). We therefore 
elected to capture this phenomenon on clinical T2-FLAIR and standard 
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research-quality MRI. The standard research-quality MRI measure of 
global brain atrophy was the SIENAX (Smith et al., 2002) brain paren
chymal volume (BPV), calculated using the high-resolution T1w image 
and normalized head size. The SIENAX measure for CGMV was also 
collected to assess cortical tissue loss. 

The T2-FLAIR proxy measure for global brain atrophy, LVV, was 
acquired using the previously described Neurological Software Tool for 
Reliable Atrophy Measurement (NeuroSTREAM) (Dwyer et al., 2017). 
This tool performs automated processing including basic pre-processing, 
multi-atlas template based segmentation, level-set refinement, and 
partial volume estimation of the LVV. No proxy of CGMV was available 
on T2-FLAIR. 

2.6. Regional subcortical gray matter atrophy 

In addition to global brain atrophy, regional subcortical GM atrophy, 
thalamic atrophy specifically, has been established as particularly rele
vant to cognition and important for distinguishing prognosis and disease 
severity in MS (Azevedo et al., 2018; Houtchens et al., 2007; Zivadinov 
et al., 2013). We therefore elected to measure regional GM atrophy via a 
measure of thalamic volume. The standard research-quality MRI mea
sure of thalamus volume was generated using FSL FIRST (Patenaude, 
Smith, Kennedy, & Jenkinson, 2011) on high-resolution T1w images. 

The T2-FLAIR measure of thalamus volume was acquired using the 
previously described, Deep Gray Rating via Artificial Intelligence 
(DeepGRAI) method (Dwyer et al., 2021). This tool uses a semantic 
segmentation convolutional neural network architecture to segment the 
thalamus and measure thalamic partial volumes. 

2.7. Indirect assessment of spinal cord atrophy 

In addition to atrophy measures within the brain, we aimed to also 
capture proxies for atrophy in the spinal cord. This is because spinal cord 
atrophy progresses independently, occurs preferentially in PMS sub- 
types, and correlates well with physical disability (Song et al., 2020; 
Tsagkas et al., 2019; Zeydan et al., 2018). The standard research-quality 
MRI metric as a proxy for spinal cord atrophy was MOV, calculated using 
the FreeSurfer brainstem segmentation tool (Iglesias et al., 2015; Sander 
et al., 2019) on T1w images. FreeSurfer data was reviewed for quality 
and manual corrections (e.g. control points) were applied as needed. 

The T2-FLAIR MOV was acquired as follows. T2-FLAIR images were 
non-linearly registered to a probabilistic medulla oblongata (MO) atlas. 
They were then deskulled and processed to obtain tissue and cerebro
spinal fluid partial volume estimates (PVE). The tissue PVE, thresholded 

at 0.6, was used to mask the MO atlas, and then the absolute MOV was 
calculated. Adjusted volumes, used for the final analyses, were derived 
by accounting for the proportion of the MO atlas present after warping 
the T2-FLAIR to the template. 

2.8. White matter lesion burden 

As WM lesions are a hallmark of MS-related pathology (Lassmann, 
2018), we aimed to capture the effects of WM damage from multiple 
perspectives. The standard research-quality MRI metric for WM lesion 
burden was T2 lesion volume (T2LV), measured from the T2-FLAIR 
images using a semi-automated edge-detection contouring/thresh
olding technique, with reference to PD/T2 images (Zivadinov et al., 
2012). T2LV masks were reviewed for quality by a trained neurologist, 
and corrected as needed. A similar approach was also used on 2D T1w 
images to measure T1 black-hole lesion volume (T1LV). 

The T2-FLAIR proxy measure for T2LV, SCLV, was acquired as pre
viously described (Dwyer et al., 2019). No proxy of T1LV was available 
on T2-FLAIR. For the SCLV approach, images were bias-field corrected, 
and a fully-automated random-forest based lesion classifier was run to 
produce a lesion probability map. Voxels were retained if they were 
within 20 mm of the lateral ventricles (centrality) and were and brighter 
than central normal appearing brain tissue (salience). 

2.9. White matter network disruption 

We also set out to consider WM pathology from a network perspec
tive, one that considers that manner WM damage alters network effi
ciency (Rubinov & Sporns, 2010a). The standard research-quality MRI 
metric used to investigate network disruption was global efficiency, 
derived from diffusion-weighted imaging (only available for 98 partic
ipants). For this measure, tract disruption was measured as previously 
described (Ashton et al., 2019) according to the intensity/severity of 
microstructural (fractional anisotropy) abnormality. This data was 
processed using the Network Modification tool (Kuceyeski et al., 2013) 
to derive 86x86 connectivity/disconnectivity matrices, for all GM re
gions in the 86-region FreeSurfer atlas. Then the Brain Connectivity 
Toolbox (Rubinov & Sporns, 2010b) was used to calculate global effi
ciency, weighted for the strength of connectivity/disconnectivity be
tween GM region-pairs. 

The T2-FLAIR measure of WM tract disruption network impact, 
global efficiency, was also calculated. For this, WM lesion masks were 
generated using the lesion segmentation tool (LST) and processed as in 
previous publications (Fuchs et al., 2018). Lesion-based tract disruption 

Fig. 1. T2-FLAIR image processing. Automated methods of measuring LVV, SCLV, MOV, thalamus volume, and network efficiency from clinical quality T2-FLAIR 
images were applied. Abbreviations: T2-FLAIR, T2-weighted fluid attenuated inversion recovery; LVV, lateral ventricular volume; SCLV, salient central lesion 
volume; MOV, medulla oblongata volume. 
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between pairs of connected GM regions was determined using the 
network modification tool (Kuceyeski et al., 2013), resulting in the 
production of 86x86 connectivity/disconnectivity matrices, as above, 
and global network efficiency was calculated. 

2.10. Statistical analysis 

To evaluate the ability of the proposed five measure panel to repli
cate data that would normally be obtained from multimodal imaging, 
multiple regression was applied with each standard research-quality 
MRI measure as a dependent variable and the five automatically- 
generated T2-FLAIR measures as the independent variables. To under
stand the potential common underlying axes of pathology that the five 
separate measures might be reflecting, we further explored the statisti
cal variance within/between the five T2-FLAIR measures using principal 
component analysis (R stats package) with automatic dimensionality 
reduction. This was repeated for the standard research-quality MRI 
measures. 

To determine the extent to which the five T2-FLAIR measures relate 
to clinical outcomes, they were applied in regressions, predicting base
line and follow-up (5 years later) EDSS, and performance on the SDMT, 
T25FW, and NHPT. They were then applied in a binary logistic regres
sion to predict DP over the five-year window. This was repeated with the 
standard research-quality MRI measures for comparison and was per
formed on the whole study sample, as well as in subsets for those with 
RRMS, PMS, and CIS. Results were not considered for samples of 20 or 
fewer subjects. For a direct comparison of the predictive ability of 
models, no false discovery rate correction was applied. All beta values 
reported were standardized and all R2 values were adjusted for the 
number of factors in each model. P values < 0.05 were considered sta
tistically significant. 

2.11. Data availability 

The datasets generated during and/or analyzed during the current 
study are available from the corresponding author on reasonable 
request. 

3. Results 

In the sample (n = 172, mean age = 47.2, mean disease duration =
13.7), the mean time between initial data collection and follow-up was 
5.4 ± 0.6 years. For demographic and clinical data, see Table 1. 

In the regressions predicting each of the standard measures from the 
five T2-FLAIR measures (Table 2, Fig. 2), the combination of T2-FLAIR 
measures best predicted T2LV (R2 = 0.97, p < 0.001) and thalamus 
volume (R2 = 0.90, p < 0.001), with the lowest prediction for MOV (R2 

= 0.476, p < 0.001). See Table 2 for more details. 

Principal component analysis of the T2-FLAIR MRI measures iden
tified five statistical components (Fig. 3), with the first two components 
(eigenvalues = 2.83 & 1.01) explaining 56.7% and 20.1% (76.8% 
together) of the total variance (Fig. 3A). The strongest contributors to 
the first component (dimension 1) were SCLV, network efficiency, and 
thalamus volume (Fig. 3B), largely representing WM and network 
disruption pathology. In contrast, the strongest contributors to the sec
ond component (dimension 2) were LVV and MOV (Fig. 3C), largely 
reflecting global CNS atrophy. The distribution of individuals across 

Table 1 
Demographics for MS participants (N = 172) at baseline. All 
values represent mean ± SD unless otherwise specified. Ab
breviations: SD, standard deviation, EDSS, Expanded Disability 
Status Scale; CIS, Clinically Isolated Syndrome; NHPT, nine-hole 
peg test; T25FW, Timed 25 Foot Walk; SDMT, Symbol Digit 
Modalities Test.  

Age (years) 47.2 ± 11.1 

Disease Duration (years) 13.7 ± 9.8 
Female (n, %) 128, 74.4% 
Disease Course (n, %)  
Relapsing-Remitting 100, 58.1% 
Progressive 50, 29.1% 
CIS 22, 12.8% 
EDSS (Median, IQR) 2.5, 1.5–5.5 
NHPT (s) 26.5 ± 14.8 
T25FW (s) 9.5 ± 13.1 
SDMT (raw score) 50.0 ± 14.8  

Table 2 
Predicting variance in standard research-quality MRI measures using all five T2- 
FLAIR MRI measures (β) and each individually (r). All β values reported are 
standardized and R2 values are adjusted for the number of factors in each model. 
Abbreviations: T2-FLAIR, T2-weighted fluid attenuated inversion recovery; LVV, 
lateral ventricular volume; MOV, medulla oblongata volume; T2LV, T2- 
weighted lesion volume; SCLV, salient central lesion volume; T1LV, T1- 
weighted hypointense lesion volume; CGMV, neocortical gray matter volume; 
WM, white matter.    

Combined Model Independent 
Correlations   

β p r P 

Brain Volume LVV ¡0.372 <0.001 ¡0.601 <0.001 
Combined Model 

R2 ¼ 0.546 
p < 0.001 

Thalamus 
Volume 

0.325 <0.001 0.659 <0.001 

MOV 0.111 0.104 0.315 <0.001 
SCLV ¡0.215 0.011 ¡0.557 <0.001 
Network 
Efficiency 

0.081 0.343 ¡0.483 <0.001 

Thalamus 
Volume 

LVV − 0.019 0.513 ¡0.457 <0.001 

Combined Model 
R2 ¼ 0.902 
p < 0.001 

Thalamus 
Volume 

0.827 <0.001 0.946 <0.001 

MOV 0.141 <0.001 0.419 <0.001 
SCLV 0.059 0.121 ¡0.574 <0.001 
Network 
Efficiency 

¡0.099 0.012 ¡0.419 <0.001 

MOV LVV 0.043 0.529 0.005 0.938 
Combined Model 

R2 ¼ 0.476 
p < 0.001 

Thalamus 
Volume 

− 0.020 0.835 0.353 <0.001 

MOV 0.722 <0.001 0.678 <0.001 
SCLV − 0.018 0.841 − 0.144 0.059 
Network 
Efficiency 

0.071 0.440 − 0.060 0.433 

T2LV LVV 0.017 0.296 0.457 <0.001 
Combined Model 

R2 ¼ 0.970 
p < 0.001 

Thalamus 
Volume 

− 0.001 0.982 ¡0.623 <0.001 

MOV − 0.001 0.939 ¡0.269 <0.001 
SCLV 0.893 <0.001 0.982 <0.001 
Network 
Efficiency 

0.107 <0.001 0.796 <0.001 

Network 
Efficiency * 

LVV 0.009 0.918 0.427 <0.001 

Combined Model 
R2 ¼ 0.550 
p < 0.001 

Thalamus 
Volume 

¡0.449 <0.001 ¡0.708 <0.001 

MOV − 0.007 0.941 ¡0.367 <0.001 
SCLV 0.013 0.908 0.624 <0.001 
Network 
Efficiency 

0.333 0.001 0.684 <0.001 

T1LV LVV − 0.097 0.142 0.287 0.001 
Combined Model 

R2 ¼ 0.506 
p < 0.001 

Thalamus 
Volume 

− 0.121 0.197 ¡0.485 <0.001 

MOV 0.033 0.642 − 0.137 0.071 
SCLV 0.090 0.305 0.586 <0.001 
Network 
Efficiency 

0.634 <0.001 0.714 <0.001 

CGMV LVV 0.156 0.011 ¡0.202 0.008 
Combined Model 

R2 ¼ 0.565 
p < 0.001 

Thalamus 
Volume 

0.739 <0.001 0.727 <0.001 

MOV 0.147 0.027 0.334 <0.001 
SCLV 0.085 0.291 ¡0.371 <0.001 
Network 
Efficiency 

− 0.046 0.570 ¡0.379 <0.001 

*DWI data were only available for 98 study participants. 
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these two major components varied by disease-course (Fig. 3D) such 
that individuals with PMS exhibited greater variability over dimension 2 
(global CNS atrophy). 

The principal component analysis of the standard research-quality 
MRI measures resulted in the creation of seven statistical components 

(Figure e-1), with the first two components (eigenvalues = 4.17 & 1.12) 
explaining 59.7% and 26.0% (75.7% together) of the total variance 
(Figure e-1A). The strongest contributors to the first component 
(dimension 1) were thalamus volume, BPV, and CGMV (Figure e-1B), 
largely representing brain atrophy. In contrast, the strongest 

Fig. 2. Regression-based predictions of standard research-quality MRI metrics from the five automatically-generated T2-FLAIR processing measures. Abbreviations: 
T2-FLAIR, T2-weighted fluid attenuated inversion recovery; MOV, medulla oblongata volume; T2LV, T2 lesion volume *DWI data were only available for 98 study 
participants. 

Fig. 3. Principal component analysis of the five automated T2-FLAIR processing measures (A-D). Two components explained most of the overall variance in the T2- 
FLAIR measures (A). The first component was comprised largely of measures relating to white matter damage and thalamus volume (B). The second component was 
comprised largely of measures relating to central nervous system atrophy (C). Subjects with progressive MS exhibited a wider degree of variability across the second 
component (D). Abbreviations: T2-FLAIR, T2-weighted fluid attenuated inversion recovery; Dim, dimension; SCLV, salient central lesion volume; LVV, lateral 
ventricular volume; MOV, medulla oblongata volume; RRMS, relapsing-remitting MS; PMS, progressive MS; CIS, clinically isolated syndrome. 
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contributors to the second component (dimension 2) were T1LV, T2LV, 
and MOV (Figure e-1C), largely representing WM damage and spinal 
cord atrophy. 

In the full study sample, the five baseline T2-FLAIR processing 
measures were significantly associated with EDSS (R2 = 0.229, p <
0.001) and SDMT (R2 = 0.441, p < 0.001) at baseline (table e-1). The 
five baseline T2-FLAIR measures were also significantly associated with 
EDSS (R2 = 0.279, p < 0.001) and SDMT (R2 = 0.382, p < 0.001) five 
years later (Table 3). These results were similar for the standard 
research-quality MRI at baseline (R2 = 0.239, p < 0.001 for EDSS; R2 =

0.369, p < 0.001 for SDMT, table e-2), as well as five years later (R2 =

0.279, p < 0.001 for SDMT; R2 = 0.366, p < 0.001, table e-3). 
Out of the full study sample, 33.7% (n = 58) experienced DP over the 

five-year window. The binary logistic regression predicting DP from 
baseline T2-FLAIR MRI measures correctly classified 69.8% of the RRMS 
study sample (n = 99, Nagelkerke R2 = 0.145, p = 0.034, Table 4). The 
accuracy of this predictive model was comparable to the standard 
research-quality MRI measures (%correctly-classified = 72.4%, Nagel
kerke-R2 = 0.196, p = 0.022). 

4. Discussion 

In the present study, we confirmed the utility of five automated 
measures applicable to clinical routine T2-FLAIR image alone for 
capturing a substantial portion of the information that would otherwise 
normally be acquired via the kind of research-quality multi-modal im
aging that is frequently unavailable in clinical routine. Based on the idea 
that these complementary measures, when synthesized together, can 
extract key information about the underlying axes of MS disease path
ophysiology, we evaluated their ability to predict conventional mea
sures and to relate to clinical outcomes. Together, the five measures 
(LVV, thalamus volume, MOV, SCLV and network efficiency) predicted a 
majority of the variance in the standard research-quality MRI measures. 
They also correlated with neurologic disability and cognitive function 
five years later and predicted disability progression over five-years, 
performing well relative to standard research-quality MRI measures 
(69% accuracy versus 72% in RRMS). The five T2-FLAIR measures at 
baseline related well to SDMT performance five years later in both the 
RRMS and PMS groups, showing that the measures investigated are 
robust to differences in MS sub-types when addressing cognitive 

function. In comparison, these associations were only significant for 
RRMS when addressing EDSS five years later and predictions of DP. This 
may be in part due to the lower PMS sample size and may also suggest 
that the measures addressed in this study show stronger associations 
with neurologic disability in RRMS patients relative to PMS. 

The associations of the T2-FLAIR measures with future neurologic 
disability, cognition, and DP over five years, were comparable to stan
dard research-quality MRI investigated in previous studies (Bakshi et al., 
2008; Calabrese et al., 2009; Dekker et al., 2019; Eijlers, Meijer, Van 
Geest, Geurts, & Schoonheim, 2018; Fuchs et al., 2019; Jakimovski 
et al., 2018; Uher et al., 2017). With this, and because T2-FLAIR imaging 
is wide-spread in clinical evaluation, these metrics are a strong candi
date for quantitative evaluation of brain pathology in future clinical 
science (Dwyer et al., 2019, 2017; R. Zivadinov et al., 2018, 2016). 
Because T2-FLAIR imaging has been used in clinical trials in 

MS for over 20 years, these methods provide valuable ways of 
exploring legacy data from historical datasets. 

In addition to these key findings, principal component analysis of the 
five T2-FLAIR measures revealed two major factors explaining most of 
the variance among them. The first component was largely composed of 
variance from measures of WM damage and thalamic atrophy (SCLV, 
network efficiency, thalamus volume), whereas the second component 
was more heavily related to global CNS atrophy (MOV and LVV). These 
results suggest there are two major axes of disease progression captured 
by our combined T2-FLAIR measures, WM pathology and CNS atrophy. 
This is further validated by the selective associations between each of 
the T2-FLAIR measures and distinct neurological outcomes, such as 
between thalamus volume and cognitive processing speed (SDMT) and 
between MOV and physical disability (EDSS). These selective correla
tions also have strong face validity, as thalamic integrity has long been 
strongly associated with cognition (Houtchens et al., 2007) and spinal 
cord integrity is strongly associated with physical disability in MS 
(Kearney et al., 2015). Interestingly, the strongest statistical contribu
tors to each principle component differed for the T2-FLAIR measures 
relative to the research quality MRI measures. As such, the patterns of 
variance in MS sub-types (RRMS versus PMS versus CIS) across the 
major components differed between the research and clinical data. 

Our work does not replace MRI measures usually obtained on con
ventional MRI sequences by standard research-quality MRI analyses, 
which should be considered as more accurate. Nevertheless, it opens the 

Table 3 
Associations between the five T2-FLAIR MRI measures at baseline and neurologic disability five years later. All β values reported are standardized and R2 values are 
adjusted for the number of factors in each model. Abbreviations: EDSS, Expanded Disability Status Scale; T2-FLAIR, T2-weighted fluid attenuated inversion recovery; 
NHPT, nine-hole peg test; T25FW, Timed 25-Foot Walk; SDMT, Symbol Digit Modalities Test; LVV, lateral ventricular volume; MOV, medulla oblongata volume; SCLV, 
salient central lesion volume; RRMS, relapsing-remitting MS; PMS, progressive MS; CIS, clinically isolated syndrome.    

All RRMS PMS CIS   

В p β p β p В p 

EDSS LVV 0.110 0.174 0.079 0.460 0.164 0.379 0.201 0.447 
All: n = 172, R2 ¼ 0.279, p < 0.001 

RRMS: n = 100, R2 ¼ 0.164, p < 0.001 
PMS: n = 50, R2 = 0.063, p = 0.177 
CIS: n = 22, R2 < 0.001, p = 0.770 

Thalamus Volume − 0.018 0.875 − 0.129 0.401 0.079 0.746 − 0.038 0.906 
MOV ¡0.288 0.001 − 0.051 0.663 − 0.375 0.070 0.067 0.818 
SCLV 0.214 0.045 0.200 0.163 − 0.154 0.478 0.460 0.446 
Network Efficiency 0.134 0.216 0.107 0.447 0.197 0.440 − 0.272 0.657 

SDMT LVV − 0.107 0.215 − 0.037 0.748 − 0.163 0.358 – – 
All: n = 123, R2 ¼ 0.382, p < 0.001 

RRMS: n = 72, R2 ¼ 0.227, p < 0.001 
PMS: n = 40, R2 ¼ 0.501, p < 0.001 
CIS: n = 11, R2 = NA, p = NA 

Thalamus Volume 0.397 0.002 0.287 0.110 0.682 0.001 – – 
MOV 0.083 0.403 0.065 0.633 − 0.110 0.533 – – 
SCLV − 0.042 0.709 − 0.185 0.251 0.213 0.250 – – 
Network Efficiency − 0.170 0.149 − 0.057 0.712 − 0.218 0.334 – – 

NHPT LVV 0.174 0.062 0.187 0.120 0.210 0.314 – – 
All: n = 116, R2 ¼ 0.202, p < 0.001 

RRMS: n = 71, R2 ¼ 0.094, p ¼ 0.044 
PMS: n = 34, R2 = 0.191, p = 0.064 
CIS: n = 11, R2 = NA, p = NA 

Thalamus Volume − 0.010 0.944 0.020 0.913 − 0.103 0.691 – – 
MOV − 0.199 0.082 − 0.020 0.886 − 0.236 0.337 – – 
SCLV 0.440 0.002 0.354 0.036 1.010 0.007 – – 
Network Efficiency − 0.238 0.092 − 0.096 0.552 ¡1.094 0.009 – – 

T25FW LVV 0.133 0.209 0.062 0.649 0.534 0.023 – – 
All: n = 110, R2 ¼ 0.127, p ¼ 0.002 

RRMS: n = 70, R2 = 0.035, p = 0.203 
PMS: n = 28, R2 ¼ 0.294, p ¼ 0.037 
CIS: n = 12, R2 = NA, p = NA 

Thalamus Volume 0.097 0.535 0.193 0.331 − 0.329 0.277 – – 
MOV ¡0.299 0.020 − 0.194 0.218 − 0.254 0.359 – – 
SCLV 0.125 0.433 0.188 0.323 0.037 0.912 – – 
Network Efficiency 0.168 0.306 0.165 0.375 − 0.105 0.784 – –  
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door to better use of latent data for understanding predictors of clinical 
disability, especially in the real-world treatment related studies of MS 
patients. It also potentially contributes to foster research opportunities 
for underprivileged areas that did not have access to research quality 
MRI acquisition and analyses as part of clinical routine imaging. 
Therefore, the current set of carefully-chosen five T2-FLAIR MRI metrics 
provides a complementary approach in cases where only clinical T2- 
FLAIR is available, providing substantially more quantitative informa
tion about brain pathology and disability than is currently standard 
practice in MS. 

This work has a number of limitations. First, although we investi
gated 172 patients with MS, larger, multicenter datasets are more suit
able to fully capture the heterogeneity of MS. Second, external 
validation with larger and more representative samples will provide 
additional insights into the generalizability and reproducibility of our 
results. Because, T2-FLAIR image processing and evaluation was only 
completed for data collected from a single site, using consistent MRI 
scan protocols, future work is needed to fully evaluate the relevance of 
these measures to clinical outcomes in multi-center studies, using a 
variety of acquisition protocols. We further acknowledge that despite 
our promising results, predictivity models in patients with progressive 
MS would need more substantial investigation. Image processing was 
completed using in-house systems. Remotely accessible cloud 
computing would allow for a more distributable software package. In 
addition, our battery of automated T2-FLAIR measures did not include 
quantification of CGMV and T1LV. Future work will benefit from 
developing a more robust and reliable method for providing such 
measures. Future work should also consider the use of these five T2- 
FLAIR brain measures for evaluating longitudinal changes and 
whether such changes are associated with accumulation of neurologic 
dysfunction, as well as impact of different treatment strategies on these 
measures. 

5. Conclusion 

The present study shows that a substantial amount of the information 
usually obtained with multi-modal research imaging in MS can be 
reasonably extracted with a set of five complementary measures that can 
be performed fully automatically on clinical routine T2-FLAIR alone. It 
also confirms that this data remains clinically relevant. This panel of 
measures therefore provides a practical avenue for quantitative MS 
imaging research in settings where multi-modal imaging is not avail
able, including large latent legacy datasets. 
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Zivadinov, R., Havrdová, E., Bergsland, N., Tyblova, M., Hagemeier, J., Seidl, Z., 
Dwyer, M.G., Vaneckova, M., Krasensky, J., Carl, E., Kalincik, T., Horáková, D., 
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