
RESEARCH ARTICLE

Habitat selection by wolves and mountain

lions during summer in western Montana

Collin J. PetersonID
1¤*, Michael S. Mitchell2‡, Nicholas J. DeCesare3‡, Chad J. Bishop1‡,

Sarah S. SellsID
1‡

1 Montana Cooperative Wildlife Research Unit, Wildlife Biology Program, University of Montana, Missoula,

MT, United States of America, 2 US Geological Survey, Montana Cooperative Research Unit, University of

Montana, Missoula, MT, United States of America, 3 Montana Department of Fish, Wildlife, and Parks,

Missoula, MT, United States of America

¤ Current address: Montana Department of Fish, Wildlife, and Parks, Kalispell, MT, United States of America

‡ These authors also contributed equally to this work.

* Collin.peterson@mt.gov

Abstract

In the Northern Rockies of the United States, predators like wolves (Canis lupus) and moun-

tain lions (Puma concolor) have been implicated in fluctuations or declines in populations of

game species like elk (Cervus canadensis) and mule deer (Odocoileus hemionus). In partic-

ular, local distributions of these predators may affect ungulate behavior, use of space, and

dynamics. Our goal was to develop generalizable predictions of habitat selection by wolves

and mountain lions across western Montana. We hypothesized both predator species would

select habitat that maximized their chances of encountering and killing ungulates and that

minimized their chances of encountering humans. We assessed habitat selection by these

predators during summer using within-home range (3rd order) resource selection functions

(RSFs) in multiple study areas throughout western Montana, and tested how generalizable

RSF predictions were by applying them to out-of-sample telemetry data from separate study

areas. Selection for vegetation cover-types varied substantially among wolves in different

study areas. Nonetheless, our predictions of 3rd order selection by wolves were highly gen-

eralizable across different study areas. Wolves consistently selected simple topography

where ungulate prey may be more susceptible to their cursorial hunting mode. Topographic

features may serve as better proxies of predation risk by wolves than vegetation cover-

types. Predictions of mountain lion distribution were less generalizable. Use of rugged ter-

rain by mountain lions varied across ecosystem-types, likely because mountain lions tar-

geted the habitats of different prey species in each study area. Our findings suggest that

features that facilitate the hunting mode of a predator (i.e. simple topography for cursorial

predators and hiding cover for stalking predators) may be more generalizable predictors of

their habitat selection than features associated with local prey densities.
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Introduction

Predators affect ecosystems directly by killing prey, and indirectly by influencing prey behavior

and distribution [1,2]. Predation risk is the consequence of numerous ecological processes,

including the density, behavioral state, and habitat selection tendencies of predators at multi-

ple spatial scales, each of which may correspond with unique effects on the behavior, distribu-

tion, and demography of prey. Fine scale selection (e.g. 3rd order or within-home range

selection [3]) of habitat used for hunting by predators imposes varying levels of risk towards

prey across space [4], and the perception of risk by prey can influence foraging behavior [5],

and in turn alter vegetation communities [6,7]. Understanding how predators select habitat

can yield predictions of space use [8], with implications for prey behavior, predator-prey inter-

actions, and trophic dynamics [9].

The habitat of predators is conceptually akin to their realized niche, i.e., the resources and

limiting factors required for population growth in the presence of competitors [10]. Depicting

habitat according to niche-based components should also yield spatially-explicit predictions of

species space-use that are generalizable across a wide range of ecological conditions [11]. The

validity of such estimates can be assessed by testing how well predictions of predator space-use

perform in multiple ecosystem-types. Moreover, generalizable predictions of habitat selection

can obviate the need to conduct new studies of species distributions in other areas [12].

Factors directly regulating fitness, like food and the risk of encountering humans, should be

important ultimate factors in shaping predator space-use [13,14]; however, when such direct

measures are unavailable, proxies that correlate with the probability of encountering or captur-

ing prey, like vegetation cover-types and topographic features, may also be useful for predict-

ing local predator distributions. For example, open, less-rugged terrain may signify areas

where cursorial predators like wolves (Canis lupus) can maximize opportunities to detect prey

[15,16], and topographical features like drainages may enhance prey capture [17]. Dense vege-

tation and rugged terrain may serve as proxies for hiding cover that increases hunting success

for ambush predators like mountain lions (Puma concolor) [18–21]. However, researchers

studying ungulate behavior often assume certain vegetation cover-types are accurate proxies of

predator distribution, without directly testing the relationship between those proxies and pred-

ator behavior [22–25]. Whereas ultimate factors driving a predator species’ distribution may

be consistent across broad scales, generalizable predictions at local scales may be difficult due

to variation in important proximate habitat features, such as the composition of prey commu-

nities [12,13]. Hypothesizing a priori how proxies ultimately tie to the distribution of a species,

then testing those hypotheses against location data from multiple populations, can increase

generality of predictions of animal space-use [26].

Since the mid-1990s, wolves and mountain lions have increased in abundance and

expanded their range within the Northern Rockies of the United States [27–31]. Summer is a

critical period in the annual life-history of ungulates in the Northern Rockies, as the availabil-

ity of forage during summer often regulates ungulate population growth rate [32], but forage

acquisition by ungulates may be limited by wolf and mountain lion predation risk [33,34].

However, fine-scale approximations of space-use by these predators and an understanding of

their effects on ungulate behavior are lacking in many parts of the Northern Rockies, prompt-

ing the need for generalizable predictions of wolf and mountain lion habitat selection in the

region [20,35,36].

Wolves are group-living, territorial carnivores that primarily prey on elk (Cervus canaden-
sis), mule deer (Odocoileus hemionus), white-tailed deer (O. virginianus), and moose (Alces
alces) in the Northern Rockies [37,38]. As cursorial hunters, wolves frequently select topo-

graphically simple terrain like drainage bottoms, where they can travel quickly and pursue

PLOS ONE Wolf and mountain lion habitat selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0254827 July 22, 2021 2 / 24

#F16AF01202 (https://www.fws.gov/laws/

lawsdigest/FAWILD.HTML), The Allen Foundation

(https://www.allenfoundation.org/), and the

University of Montana (www.umt.edu). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0254827
https://www.fws.gov/laws/lawsdigest/FAWILD.HTML
https://www.fws.gov/laws/lawsdigest/FAWILD.HTML
https://www.allenfoundation.org/
http://www.umt.edu


prey over long distances [17,39,40]. Wolves will often select open vegetation cover-types that

contain high quality forage for ungulates to increase encounter rates and more easily chase

down prey [2,14]. For every pursuit wolves engage in, they have a relatively low probability of

capturing prey [40], thus, selecting habitat that maximizes encounters with prey increases the

hunting success of wolves [39].Wolf behavior is also shaped by human encounter risk, espe-

cially within hunted populations. Roads can increase risk of encountering hunters, trappers,

and vehicles, but may also serve as energetically efficient travel routes while hunting, allowing

wolves to travel farther and faster and increase their encounter rate with prey [41,42]. Wolves

may respond differently to roads at different road densities (i.e., a functional response in selec-

tion [43–45]), reflecting a context-dependent tradeoff between the risk of encountering

humans and the benefits of efficient travel and access to prey [46]. Thus, it is particularly

important to investigate functional responses in selection for roads by wolves to understand

how they attenuate exposure to risk [44].

Mountain lions are typically solitary, stalking predators. As the most widely distributed

land mammal (besides humans) in the western hemisphere, mountain lions are prey general-

ists and exhibit a high degree of behavioral plasticity across biomes [45]. In the Northern

Rockies, mountain lions primarily prey on elk, mule deer, white-tailed deer, and bighorn

sheep (Ovis canadensis) [39,47,48]. Mountain lions are unlikely to make a kill if they begin an

ambush >25 m away [18], so rely on hiding cover for hunting. They often select structurally

complex, rugged topography that provides fine-scale hiding cover like boulders and outcrops

[48], but will also select dense vegetation cover-types like thick forests and riparian areas

within topographically simple areas [19–21,49]. Thus, mountain lions may exhibit weaker

selection for features associated with prey encounter than wolves [18,39]. Mountain lion

responses to roads are highly variable across ecosystems [49,50].

Our goals were to understand and predict 3rd order habitat selection by wolves and moun-

tain lions during summer across a spectrum of ecological conditions in western Montana.

Summer is a critical period in the life history of ungulates [32], where tradeoffs between nutri-

tion and risk can influence their dynamics [33,34], so we were interested in characterizing pre-

dation risk during this period. We hypothesized that wolves and mountain lions select habitat

that maximizes chances of encountering and killing ungulates and minimizes chances of

encountering humans. We predicted wolves select drainage bottoms and low slopes as kill

rates of ungulate prey have been shown to increase in these areas [17,40], and select areas with

higher road densities to facilitate quick travel while hunting [51] and maximize encounters

with prey [41,42].We also predicted that wolves select open-canopy vegetation cover-types

because these areas are often selected by elk and deer [52,53]. We predicted mountain lions

select hiding cover in the form of high canopy forests, forested drainage bottoms, and rugged

terrain that can facilitate stalking prey, and that they avoid open vegetation cover classes. We

predicted mountain lions avoid roads to reduce chances of encountering humans (Table 1).

To predict habitat selection by wolves and mountain lions in western Montana, we devel-

oped resource selection functions (RSFs) using Global Positioning System (GPS) collared ani-

mals. We developed separate, study area-specific RSFs for wolves and mountain lions in

multiple study areas (Fig 1) that varied in prey community composition, dominant vegetation

cover-types, and topographic complexity. To assess the generality of our RSFs, we applied each

study area-specific RSF to out-of-sample GPS telemetry data from separate study areas for

wolves and assessed their predictive performance. Very high frequency (VHF) telemetry data-

sets were the only out-of-sample telemetry data available for mountain lions in northwest

Montana [20], and consisted of low sample sizes relative to GPS datasets. This precluded us

from assessing the generality of more detailed models like step selection functions because

they require animal locations sampled at finer temporal scales than standard RSFs [62].
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However, VHF data enabled us to test the generality of mountain lion RSFs, and we used RSFs

for both mountain lions and wolves to keep our methods consistent between species.

Study areas

We studied wolf and mountain lion habitat selection within 6 different study areas throughout

western Montana, USA: 3 wolf study areas, and 3 mountain lion study areas, some of which

overlapped substantially (Fig 1).

The Garnet Range mountain lion study area

The Garnet Range study area (48.83˚N, -113.66˚W) encompassed 2,840 km2. Elevations

ranged from 1,160–2,156 m (Fig 1). The Garnet Range were characterized by relatively moder-

ate rolling topography, and primarily consisted of mesic forests and recently logged forests.

From 2001–2006, Garnet Range mountain lions were sympatric with black bears (Ursus ameri-
canus), grizzly bears (U. arctos), coyotes (C. latrans), bobcats (Lynx rufus), and Canada lynx (L.

canadensis) [63]. One wolf pack was verified in the Garnet Range in 2006 [63]. The ungulate

community in the Garnet Range was composed of white-tailed deer, mule deer, elk, and

moose.

The Rocky Mountain Front wolf and mountain lion study areas

The study areas for wolves and mountain lions on the Rocky Mountain Front, MT, USA

(47.44˚N, -113.12˚W and 47.61˚N, -112.75˚W, respectively) encompassed 3,605 km2 and

1,223 km2, respectively, with elevations ranging 1,240–2,800 m. The wolf study area almost

fully encompassed the mountain lion study area in that region, stretching farther west, south,

and east than the mountain lion study area, and included more of the Bob Marshall Wilderness

Complex (Fig 1). This region represented the transition zone between the Great Plains and the

Rocky Mountains and contained a pronounced east-to-west gradient in dominant vegetation

cover classes, elevation, and topographic complexity. The eastern portion of the Rocky

Table 1. Variables tested in resource selection functions with hypothesized biological relevance and predicted effect on wolf and mountain lion habitat selection.

Variable Prediction Hypothesis Reference Data source

Wolves Lions Wolves Lions

Canopy cover - + Select low canopy cover to increase encounters

with prey

Select high canopy cover

for stalking prey

[16,21] [54]

Road density + - Select high road densities for energetic

efficiency and to increase prey encounters

Avoid high road densities

to avoid humans

[41,44,49,55] [56]

Road � canopy cover

interaction

+ + Selection for roads will be stronger in areas with high canopy cover due to

proximity to concealment

[54,56]

Slope - - Select low slopes for easier travel and to chase down and kill prey [13] ‘terrain’ function from

‘raster’ package in R [57]

Topographic position

index [TPI]

- 0 Select drainage bottoms to chase down and kill

prey

Indifferent to drainage

bottoms

[17,58,59] ‘terrain’ function from

‘raster’ package in R [57]

Terrain ruggedness

index [TRI]

- + Select low ruggedness for chasing down prey Select high ruggedness for

stalking prey

[58,59] ‘terrain’ function from

‘raster’ package in R [57]

Burns + 0 Select burns to encounter prey Indifferent to burns [16,21] [60,61]

Grass & shrublands + 0 Select grass & shrublands to encounter prey Indifferent to grasslands [16,21] [61]

Recently logged forests + 0 Select harvests to encounter prey Indifferent to harvests [16,21] [60,61]

“+” indicates predicted selection for high values of a variable, “-” indicates avoidance and “0” indicates neutrality. Some variables were not tested in both wolf and

mountain lion RSFs due to collinearity with other variables.

https://doi.org/10.1371/journal.pone.0254827.t001
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Mountain Front comprised open, relatively flat mixed grass prairie, and the western portion

contained the mountains of the Bob Marshall Wilderness, characterized by steep, cliffy terrain

and a patchy mosaic of burned areas, mesic conifer forests, meadows, and subalpine steppe.

The ungulate community included mule deer, white-tailed deer, elk, moose, bighorn

sheep, mountain goats (Oreamnos americanus), and pronghorn (Antilocapra americana). Car-

nivores included wolves, mountain lions, coyotes, grizzly bears, black bears, bobcats, and Can-

ada lynx.

Fig 1. Wolf and mountain lion study areas. Polygons are 100% minimum convex polygons (MCPs) surrounding wolf (in blue) or mountain lion (in red)

Global Positioning System- (GPS) or Very High Frequency- (VHF) collar locations during summer that were used for resource selection function (RSF)

modelling and testing. Base map was reprinted from the U.S. Geological Survey National Map and is without copyright.

https://doi.org/10.1371/journal.pone.0254827.g001
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Whitefish Range wolf and mountain lion study areas

The study areas for wolves and mountain lions in the Whitefish Range, MT, USA (48.88˚N,

-114.73˚W and 48.81˚N, -114.33˚W, respectively) encompassed 2,832 km2, and 2,065 km2,

respectively, with elevations of 780–2,400 m. The mountains were dominated by wet and

mesic conifer forests, and a smaller proportion of subalpine forest, open grasslands, burned

areas, and recently logged forests. The study area was bordered by Canada and Glacier

National Park. The Whitefish Range was home to the same carnivore and ungulate species as

the Rocky Mountain Front, except mountain goats and pronghorn.

Cabinet-Salish wolf study area

The Cabinet-Salish study area (48.28˚N, -115.31˚W) encompassed 2,832 km2, with elevations

of 630–2,700 m. The study area was bisected by the Fisher River. The Salish Mountains to the

east were characterized by moderate, rolling topography, and mesic forests, grasslands, and

recently logged forest. The Cabinet Mountains to the west were relatively steeper and more

rugged, with wet forest transitioning to subalpine areas. The Cabinet-Salish was home to the

same carnivores and ungulate species as the Rocky Mountain Front, except pronghorn.

Methods

Data sources and animal captures and handling

To study habitat selection by wolves, we used GPS-collar data from packs in the Cabinet-

Salish, the Rocky Mountain Front, and the Whitefish Range, MT. During 2015–2018, wolf spe-

cialists with Montana Fish Wildlife and Parks (MFWP) captured wolves using summer ground

and winter aerial captures. Ground captures were conducted with foothold traps designed

with offset teeth and rubber-coated jaws to reduce injury (EZ Grip # 7 double long spring

traps, Livestock Protection Company, Alpine TX). Aerial captures were conducted by MFWP-

contracted crews using helicopters and dart guns. Wolves were anesthetized and handled in

accordance with MFWP’s biomedical protocol for free-ranging wolves [64], guidelines from

the Institutional Animal Care and Use Committee for the University of Montana (AUP # 070–

17) and guidelines approved by the American Society of Mammologists [65]. Wolves were fit

with GPS collars (models Lotek LifeCycle, Lotek Litetrack B 420, Telonics TGW-4400-3, Telo-

nics TGW-4483-3, or Telonics TGW-4577-4) that collected fixes every 4–13 hours (depending

on collar model). In total, our dataset consisted of GPS telemetry data from 18 individual

wolves among 13 packs, containing 1,019 locations from 4 packs in Cabinet-Salish, 2,698 loca-

tions from 6 packs on the Rocky Mountain Front, and 815 locations from 3 packs in the

Whitefish Range.

To study habitat selection by mountain lions, we used radiotelemetry data from collared

mountain lions in 3 study areas: The Garnet Range, the Whitefish Range, and the Rocky

Mountain Front (Fig 1). The Garnet Range data consisted of 40,831 GPS collar locations col-

lected during summers of 2001–2006 from 17 mountain lions (14 females, 3 males) that were

collared as part of a previous long-term study by Robinson and DeSimone [63]. Mountain lion

GPS collars collected fixes every 5 hours. The Whitefish Range data consisted of 875 VHF

radiotelemetry collar locations from 34 mountain lions (25 females, 9 males) collected during

summers 1992–1996 in a study by Kunkel et al. [59]. Kunkel et al. relocated mountain lions

from the ground opportunistically on a daily basis, and collected locations of all animals

weekly from the air. The Rocky Mountain Front data consisted of 145 VHF telemetry locations

from 20 mountain lions (12 females, 8 males) collected during summers 1991–1992 in a study

by Williams [66]. Williams relocated mountain lions 2 times per month from the air and
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infrequently from the ground, and estimated relocation accuracy to be within 150–200 m.

Capture and handling information for collared mountain lions are detailed in existing publica-

tions [59,63,66]. Of these studies, Williams’ [66] was the only one that characterized habitat-

use by mountain lions during the summer, and none of these studies assessed resource selec-

tion via a used-available design, thus, our research offers new insights into resource selection

by mountain lions during summer in western Montana.

Developing wolf RSFs

We developed 3rd order (within-home range) summer RSFs [3] for wolves using GPS-collar

locations collected between June 1 and September 1, 2015–2018. In an effort to remove loca-

tions collected while wolves were likely not travelling (and therefore not hunting [17]), we cal-

culated step lengths and movement rates between subsequent locations of each wolf, and

removed locations preceding steps with movement rates of<0.025 km/hr (i.e. step lengths

<100 m in 4 hr) using the ‘amt’ package [67] in R version 3.5.1 [68]. This is an important pro-

cedure for focusing on hunting behavior of wolves, because wolves spend much of their time

relatively stationary at rendezvous sites during the summer [35,69], and also helps reduce spa-

tial autocorrelation. This omitted 1,821 locations, leaving 2,711 locations for developing the

RSFs. We used these data to construct 95% kernel density estimate (KDE) home ranges for

each individual wolf using the adehabitatHR package [70] in R, with ‘href’ as the smoothing

parameter [71]. For used samples, we included GPS locations that were within individual

home ranges. For available samples, we randomly sampled 5 points per used location within

that individual’s home range [71] totaling 13,610 available locations.

We tested the effects of variables that have previously been shown to correlate with search

and kill rates and risk of human encounter for wolves in RSFs. These included topographic

position index ([TPI] a continuous metric of landform category that distinguishes features like

ridgelines from valley bottoms by comparing the elevation of a cell in a digital elevation model

to the mean elevation of a 1 km2 window around that cell), terrain ruggedness index ([TRI] a

metric of ruggedness, calculated as the mean of the absolute differences between elevation at a

cell and the 8 surrounding cells of a 30m2 digital elevation model), slope, vegetation cover-

type, forest canopy cover, and road density variables (Table 1). To classify vegetation cover-

types, we reclassified a state landcover map developed by the Montana Natural Heritage Pro-

gram (MNHP) [61] into vegetation cover-classes of riparian, conifer forest, grasslands-shrub-

lands, recently logged forests, burns, and other (cover-types that did not fall into these

categories and composed <2% of the study area). This map was intended to reflect conditions

in 2017, which overlaps with the timing of wolf GPS collar locations (but does not overlap with

mountain lion telemetry studies). The map was classified from 30-m resolution satellite and

aerial imagery from the year 2000, was field-validated in 2008, and was updated with current

imagery in 2017 and is the most accurate landcover dataset available for Montana over the past

2 decades [C. Tobalske, MNHP, personal communication]. We identified additional burns

and recently-logged forests present in the Whitefish Range, Rocky Mountain Front, and Cabi-

net-Salish between 2015–2018 (while wolf data were collected) using disturbance maps from

MFWP and LANDFIRE [60]. To quantify road density, we used a statewide transportation

infrastructure map [56] to calculate the total length of paved and unpaved roads (km) per km2

in each study area. We assumed all spatial covariates were measured without error, resulting in

RSF coefficient estimates being more precise than they would have been had we properly

accounted for uncertainty in covariate values.

We used logistic regression to develop 4 RSFs for wolves: 3 fixed-effects models (developed

separately for the Cabinet-Salish, the Whitefish Range, and the Rocky Mountain Front) and 1
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mixed-effects RSF for all study areas combined. We calculated Pearson’s correlation coeffi-

cients (r) and did not include variables with r> 0.5 in the same model. For collinear variables,

we retained the variable that yielded lowest Akaike’s Information Criteria (AIC) in a single

variable RSF for a given species and study area. For each study area, we developed a global

model that included the full suite of variables and biologically interpretable two-way interac-

tions. Conifer forest was the reference vegetation-cover type category in global models, since it

was the most abundant cover type available within wolf and mountain lion home ranges. Con-

tinuous variables were centered and scaled. We screened each global model for uninformative

parameters by ranking each variable by level of importance (estimated as the absolute value of

β/SE), then sequentially removed one variable at a time in ascending order of importance

[72,73]. If removal of a variable reduced AIC values, it was discarded from the model. If

removal of a main effect decreased AIC, but removal of that main effect in an interaction

increased AIC, the main effect and interaction were retained. We repeated this process until

no additional variable could be removed without increasing AIC. To further control for multi-

collinearity, we calculated variance inflation factors (VIFs) for each variable and eliminated

variables with VIF>5. We calculated 95% confidence intervals (CI’s) on the coefficients for

each variable and eliminated variables whose CI overlapped zero from final models, unless the

CI of a main effect overlapped zero but the CI of an interaction with that main effect did not.

In balancing multiple objectives of predicting wolf behavior across multiple ecosystems and

understanding the drivers of variation in wolf behavior, we focused the bulk of our analyses on

developing study area-specific fixed-effects models, which are simple for making spatially-

explicit predictions of resource selection. We used mixed-effects logistic regression specifically

to test whether selection for density of roads by wolves changed as a function of road availabil-

ity in each pack’s territory. We combined GPS data from our 3 study areas for wolves and

determined a top fixed-effects RSF for all packs using the same model selection procedures

outlined above [73]. We then added a random intercept for each pack and a random coeffi-

cient for the effect of roads to this model, and calculated pack-specific slope coefficients for the

effect of roads on selection [74]. We converted coefficients to the relative odds scale, plotted

the trend line between relative odds of selection for roads and mean road density in each

pack’s territory, and calculated the slope of this function, where a non-zero slope provided evi-

dence for a functional response in selection of roads by wolves [75].

Developing mountain lion RSFs

VHF telemetry datasets for mountain lions on the Rocky Mountain Front and Whitefish

Range were of insufficient size for modeling habitat selection directly, so we used data from

the Garnet Range to achieve 2 major goals: (1) develop an RSF using data from the Garnet

Range that best explained mountain lion habitat selection within that study area, and (2)

develop RSFs using data from the Garnet Range that best predicted mountain lion distribution

in the Whitefish Range and Rocky Mountain Front. We developed 3rd order fixed-effect RSFs

for mountain lions in the Garnet Range, and included all locations because 3rd order mountain

lion habitat selection does not vary substantially when mobile versus stationary [21,76], and

mountain lions do not concentrate activity at rendezvous sites like wolves do. We constructed

99% KDEs to estimate mountain lion home ranges, because 95% KDEs (used for wolves)

resulted in fragmented home ranges that appeared to omit important travel corridors [77]. We

used the same method for sampling used and available locations for mountain lions as for

wolves, totaling 40,831 used locations and 204,155 available locations for mountain lions in

the Garnet Range. We tested variables that have previously been shown to correlate with

search and kill rates and risk of human encounter for mountain lions (Table 1) to develop an
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RSF that best explained mountain lion habitat selection within the Garnet Range. We used the

MNHP vegetation cover-type map from 2017 to classify cover-types in the Garnet Range with

the same approach we used for wolves, and identified additional burns present within 2001–

2006 using disturbance maps from MFWP and LANDFIRE. We categorized recently logged

forests as conifer forest in the Garnet Range, since we lacked timber harvest layers from this

region.

To better understand how habitat use differed between mountain lions on the Rocky

Mountain Front and Whitefish Range (so that RSFs could be catered to better predict habitat

selection in those areas), we first plotted VHF telemetry locations from those study areas on a

topographic map. We initially observed that mountain lions in the Whitefish Range used less

rugged terrain than on the Rocky Mountain Front visually, and confirmed this by comparing

mean TRI at used locations of mountain lions in all study areas. So, we developed a “moderate

ruggedness” model that included a quadratic effect of TRI for predicting habitat selection in

the Whitefish Range, and a “high ruggedness” model that omitted this quadratic effect for pre-

dicting habitat selection on the Rocky Mountain Front.

Testing generality of RSF predictions

For wolves and mountain lions, we tested the validity of fixed-effect RSFs internally through k-

folds cross validation, and tested their generality in separate ecosystem-types by applying each

study-area-specific RSF to out-of-sample data from the other 2 study areas, respectively [78].

For internal validation, we partitioned each dataset used to build study area-specific RSFs into

5 folds and calculated an RSF value for each used location in each fold using the RSF developed

from the original dataset. We divided predicted RSF values into 10 bins separated at equal

intervals, and assigned each predicted RSF value a rank ranging from 1 to 10. We determined

area-adjusted frequency of use of each bin by dividing the frequency of cross-validated used

locations within a bin by the area of that range of bin scores available in a study area. Then, we

calculated a Spearman’s rank correlation (rs) between area-adjusted frequency of use and RSF

bin-rank.

For external validation, we applied each study area-specific RSF for wolves to the used loca-

tion datasets of the remaining 2 wolf study areas (not divided into folds). We binned RSF pre-

dictions into 10 equal-area deciles and calculated rs between decile bin-rank and frequency of

use within each binned RSF decile. For mountain lions, we tested how well the moderate and

high ruggedness models predicted the relative probability of selection at locations from VHF-

collared mountain lions on the Rocky Mountain Front in the Whitefish Range. We binned

these predicted RSF values into 10 equal-area deciles and calculated rs between RSF decile bin-

rank and frequency of use of each binned RSF decile.

Results

Wolf RSFs

Wolves selected drainage bottoms (low TPI values), and low slopes consistently across study

areas (Table 2). Selection for vegetation cover-types varied by study area (Table 2). Relative to

conifer forests, wolves avoided grass-shrublands in Cabinet-Salish but grass-shrublands had

no effect in the other 2 wolf study areas. Wolves selected burns in the Whitefish Range and

Rocky Mountain Front, but burns had no effect on selection in Cabinet-Salish. Wolves only

selected recently logged forests on the Rocky Mountain Front. Selection for canopy cover and

roads also varied by study area. On average, wolves selected high canopy cover on the Rocky

Mountain Front and Whitefish Range, but slightly avoided high canopy cover in Cabinet-

Salish (Table 2). Wolves generally avoided roads in Cabinet-Salish and on the Rocky Mountain
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Front, but in the latter study area there was a positive road × canopy cover interaction. When

plotted, visual assessment of this interaction indicated wolves avoided roads weakly within

high canopy cover areas (Fig 2). On average, wolves selected roads in the Whitefish Range.

Our multi-study area mixed-effects model provided modest evidence that relative odds of

selection for roads increased as mean road density in a pack’s territory increased. The pooled

mean effect of road density on selection across all packs was negative (β = -0.074, 95% CI =

[-0.345–0.196]), but varied from negative to positive between individual packs (β = -0.751–

0.273). For every 1 km per km2 increase in road density within a pack’s territory, the relative

odds of selection for roads increased by 19.2% (P = 0.098; 95% CI = [-4.1%–42.5%]; Fig 3).

Wolf RSF generality

Study area-specific wolf RSFs performed well during internal model validation (rs = 0.957–

0.967). Study area-specific RSFs were highly generalizable; mean rs from models developed in

other study areas and applied to testing data also indicated excellent model fit (rs = 0.952–

0.999; Fig 4).

Mountain lion RSFs

The moderate ruggedness RSF best explained mountain lion habitat selection in the Garnet

Range and included topographic position, road density, canopy cover, “other” landcover

types, terrain ruggedness (TRI) and a quadratic effect of TRI (Table 3). Mountain lions in the

Garnet Range selected drainage bottoms, but there was a negative interaction between topo-

graphic position and canopy cover. When plotted, visual assessment of this interaction indi-

cated mountain lions selected ridgelines and peaks with low canopy cover (Fig 5). With all

other variables held at their mean, mountain lions selected areas with higher canopy cover,

and selected areas with moderate ruggedness, as indicated by the quadratic effect of TRI. Gar-

net Range mountain lions avoided roads. The high ruggedness RSF included the same

Table 2. Resource selection coefficients and confidence intervals (CIs) from top-ranked fixed effects and mixed-effects resource selection functions for wolves.

Parameter Cabinet-Salish Rocky Mtn. Front Whitefish Range Global model

β 95% CI β 95% CI β 95% CI β 95% CI

2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

Canopy cover -0.105 -0.204 -0.004 0.079 0.019 0.14 0.145 0.034 0.258 0.181 0.129 0.233

Grass-shrublands -0.395 -0.763 -0.048

Other landcovers 0.516 0.323 0.706 0.257 0.117 0.396

Grass-shrublands × TPI 0.438 0.108 0.756

Recently logged 0.657 0.329 0.974

Road density -0.125 -0.222 -0.03 -0.24 -0.328 -0.154 0.266 0.166 0.365 -0.187 -0.475 0.101

Road density × canopy cover 0.127 0.037 0.216 -0.048 -0.097 0.001

TPI -0.523 -0.63 -0.419 -0.311 -0.379 -0.244 -0.405 -0.534 -0.278 -0.376 -0.427 -0.326

Slope -0.526 -0.63 -0.425 -0.641 -0.712 -0.572 -0.556 -0.696 -0.422 -0.721 -0.777 -0.665

Wildfire 0.411 0.285 0.538 0.299 0.017 0.575 0.742 0.638 0.847

Random intercept of pack Variance

0.567

Random intercept road density×pack Variance

0.611

Random slope of road density×pack Variance

0.176

https://doi.org/10.1371/journal.pone.0254827.t002
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covariates and similar parameter estimates as the moderate ruggedness RSF, however, it only

included a positive effect of TRI, therefore predicted lions selected more rugged terrain.

Mountain lion RSF generality

Both the moderate ruggedness and high ruggedness RSFs performed well during internal vali-

dation in the Garnet Range (rs = 0.952 and 0.939, respectively; Fig 6). Mountain lions on the

Rocky Mountain Front used more rugged terrain than in the Whitefish and Garnet ranges.

Mean TRI at locations used by mountain lions on the Rocky Mountain Front (�x = 80.882,

SD = 30.299) was 1.76 times higher than in the Whitefish Range (�x = 45.85, SD = 43.266) and

1.22 times higher than in the Garnet Range (�x = 66.213, SD = 27.244). Accordingly, the moder-

ate ruggedness RSF performed poorly on the Rocky Mountain Front rs = -0.863; Fig 6), but the

high ruggedness RSF performed fairly (rs = 0.673; Fig 6). In the Whitefish Range, the moderate

ruggedness RSF performed well (rs = 0.936; Fig 6), but the high ruggedness RSF performed

poorly (rs = -0.952; Fig 6).

Fig 2. Selection for road density in high versus low canopy cover by wolves on the Rocky Mountain Front. Relative probability of selection for roads in high

canopy cover (>35%, dashed line) versus low canopy cover (<35%, solid line) areas by wolves on the Rocky Mountain Front, MT, USA. This cutoff was

calculated as the median value of canopy cover at available location.

https://doi.org/10.1371/journal.pone.0254827.g002
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Discussion

We hypothesized that wolves and mountain lions would select habitat that increased their like-

lihood of encountering and killing ungulates, and that decreased their likelihood of encounter-

ing humans during summer. We found support for these hypotheses with wolves across

multiple ecosystem-types. Due to their cursorial hunting mode and reliance on ungulate prey,

we expected wolves to select simple topography where detection and kill rates of ungulates are

higher. Within each of our study areas, low slopes and drainage bottoms predicted selection by

wolves, supporting our hypothesis. To increase their chances of encountering ungulates, we

also expected wolves to select open vegetation cover-types hypothesized to contain high quality

forage. Our predictions were supported in the Whitefish Range and Rocky Mountain Front,

where wolves selected open cover-types like burns and recently logged forests. However,

wolves selected high canopy cover in those areas and avoided grass-shrublands in the Cabinet-

Salish, lending mixed support to our hypothesis. For wolves, selection of vegetation cover-

types associated with higher forage quality for ungulates was inconsistent across regions, sug-

gesting that for ungulates, the risk of encountering wolves may be decoupled from forage

dynamics. This may relieve elk and deer from having to make tradeoffs between forage and

security from wolves during summer. Further, selection for vegetation cover-types by wolves

may depend on the density of certain cover-types (e.g. timber harvests) in a region [44], and a

functional response in selection of this nature could underlie the variance in selection for

Fig 3. Relative odds of selection for roads by wolves. Relative odds of selection for road density by pack from mixed

effects logistic regression model of within-territory resource selection by wolves, plotted against mean road density in

each pack’s territory. Dashed line at y = 1 indicates neutral selection.

https://doi.org/10.1371/journal.pone.0254827.g003
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cover-types we observed. Nevertheless, each of our study area-specific RSFs for wolves was

highly generalizable to different ecological conditions, indicating that selection for structurally

simple topography is a common mechanism influencing local space use of wolves in western

Montana. Given the consistent, strong effects of slope and topographic position index (TPI)

across study areas, our results suggest that broad-scale avoidance of drainage bottoms and low

slopes by ungulates may be more effective than avoiding open vegetation cover-types to cir-

cumvent predation risk from wolves in western Montana.

Fig 4. Internal and external cross validation of wolf resource selection functions. Rows indicate the study area in

which data to develop each resource selection function (RSF) originated, and columns indicate the study area in which

data to test each RSF originated. Frames ‘A’, ‘E’ and ‘I’ show results from internal k-folds cross validation, plotting

area-adjusted frequency of use by wolves (y axis) per RSF bin (x axis) from fixed-effect logistic regression models

developed with GPS collar data from wolves. Each line in these plots represents 1 out of 5 folds of data used to cross-

validate RSF predictions. Mean Spearman correlations were calculated between each RSF bin rank and area-adjusted

frequency of use in each bin. Frames ‘B’, ‘C’, ‘D’, ‘F’, ‘G’ and ‘H’ show results from external cross-validation with raw

frequency of use (y axis) per equal-area binned RSF deciles (x axis). Spearman correlations were calculated between

each RSF bin rank and frequency of use in each bin. �Note that area-adjusted frequency of use is on the y-axis for

internal validation plots, whereas raw frequency of use is on the y-axis for external validation plots.

https://doi.org/10.1371/journal.pone.0254827.g004

Table 3. Resource selection coefficients and confidence intervals (CIs) from top-ranked fixed effects resource selection functions for mountain lions.

Parameter Moderate ruggedness model High ruggedness model

β 95% CI β 95% CI

2.5% 97.5% 2.5% 97.5%

Canopy cover 0.157 0.144 0.169 0.2 0.188 0.212

Other landcovers -0.303 -0.351 -0.256 -0.29 -0.337 -0.243

Road density -0.067 -0.078 -0.055 -0.069 -0.08 -0.057

TPI 0.035 0.023 0.047 0.073 0.061 0.085

TPI × canopy cover -0.206 -0.218 -0.195 -0.234 -0.245 -0.223

TRI 0.282 0.267 0.297 0.148 0.136 0.16

TRI2 -0.212 -0.227 -0.198

https://doi.org/10.1371/journal.pone.0254827.t003
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Though wolves possess the capacity for dynamic habitat selection patterns within the same

pack [46,79], their reliance on ungulate prey and the limitations of cursorial hunting resulted

in predictable selection of simple topography across an array of ecosystem-types. Deer and elk

compose the majority of wolf diets in western Montana [37,38], and during summer, these

ungulates often seek refuge and forage in steep, high-elevation terrain [51,58,80], which could

effectively reduce prey availability for wolves within simpler topography. However, for every

pursuit wolves engage in, they have a low probability of capturing prey [40,81–83], so topogra-

phy that makes prey more vulnerable is important for successful hunts [15,17]. Regardless of

ecosystem-type, wolves likely selected drainage bottoms and low slopes due to increased prey

vulnerability within those areas. It is important to note that these RSFs approximate the aver-

age, population-level summer behaviors of wolves, and do not account for the idiosyncratic

hunting behaviors some individuals or packs can display. For example, certain wolf packs have

been known to specialize on mountain goats [84,85], beavers (Castor canadensis) [86] and

bison [82]. Though our RSFs showed that wolves primarily selected simple topography for

Fig 5. Selection for topographic position in high versus low canopy cover by mountain lions in the Garnet Range. Relative probability of selection for

topographic position index (TPI) in high canopy cover (>54%, dashed line) versus low canopy cover (<54%, solid line) areas by mountain lions in the Garnet

Range, MT, USA. This cutoff was calculated as the median value of canopy cover at available locations. A positive slope indicates selection for ridgelines and

peaks, while a negative slope indicates selection for drainages.

https://doi.org/10.1371/journal.pone.0254827.g005
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capturing deer and elk, as generalists, wolves are certainly capable of exploiting a wider variety

of terrain.

Our results were consistent with the hypothesis that wolves select habitat that minimizes

chances of encountering humans. For wolves, roads pose a tradeoff between the risk of

encountering humans, and the benefits of efficient travel and access to prey [46], and selection

of roads often depends on the context of overall level of human use in their territory. In our

study, wolves selected roads, but the strength of selection appeared dependent on the probabil-

ity of being detected by humans. On the Rocky Mountain Front, most roads were in open prai-

rie, where vulnerability to human detection was high. Accordingly, wolves avoided roads

unless they were within high-canopy forests (Fig 2). In contrast, packs in the thickly-forested

Whitefish Range selected roads (Fig 3), suggesting the benefit of easier travel in proximity to

hiding cover outweighed the risk of encountering humans there. The density of roads in a

pack’s territory explained some of the variation in selection for roads, as packs in areas with

high road densities not only used roads more (as would be expected even if habitat use were

random), but also selected roads more strongly than packs with low road densities in their ter-

ritory (Fig 3). A functional response in selection of this sort corroborates evidence that wolves

may select roads to increase travel efficiency and facilitate predation, but avoid them in areas

with low road densities where they may be perceived as unusual landscape features [87].

We hypothesized mountain lions would select hiding cover for stalking ungulate prey and

avoiding humans, expecting them to select closed canopy vegetation, forested drainage bot-

toms, rugged areas, and to avoid roads. Mountain lions selected high canopy cover and

avoided roads in the Garnet Range, supporting our hypothesis. Avoidance of roads may be

attributed to risk of encountering humans, since human-caused mortalities like hunting and

vehicle collisions are the leading source of mortality in many mountain lion populations

[29,49]. Lack of cover for stalking prey [88], and lower densities of prey like elk near roads [89]

may also help explain why mountain lions avoided roads. Importantly, selection of roads by

mountain lions depends on environmental context, like surrounding topography and volume

Fig 6. External cross validation of mountain lion resource selection functions. Rows correspond with different

resource selection functions (RSFs) developed for mountain lions using GPS collar data from the Garnet Range, MT,

USA, and columns indicate the study area in which data to test each RSF originated. Frames ‘A’ and ‘D’ show results

from internal k-folds cross validation, plotting area-adjusted frequency of use by mountain lions (y axis) per RSF bin (x

axis) from fixed-effect logistic regression models developed with GPS collar data from mountain lions. Each line in

these plots represents 1 out of 5 folds of data used to cross-validate RSF predictions. Mean Spearman correlations were

calculated between each RSF bin rank and area-adjusted frequency of use in each bin. Frames ‘B’, ‘C’, ‘E’ and ‘F’ show

results from external cross-validation with raw frequency of use (y axis) per equal-area binned RSF deciles (x axis).

Spearman correlations were calculated between each RSF bin rank and frequency of use in each bin.

https://doi.org/10.1371/journal.pone.0254827.g006
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of traffic [88]; we did not account for interactions between roads and other landscape features,

and our results simply reflect the mean, study area-level habits of mountain lions. Associations

between mountain lions and rugged terrain varied by study area, which decreased the general-

ity of any single RSF. Importantly, different methods were used to relocate mountain lions in

our study areas (GPS collars collecting data both day and night in the Garnet Range versus

aerial VHF radiotelemetry conducted during daytime only in the other 2 areas), so differences

in habitat use documented between study areas could be an artifice of telemetry methods and

timing of data collection. Nonetheless, given the differences in prey communities between our

study areas, we find it compelling that differences in use of rugged terrain by mountain lions

was influenced by the types of prey they selected in each study area. On the Rocky Mountain

Front, mountain lions used steep, rugged terrain (Fig 7B) associated with the habitat prefer-

ences of mule deer, elk, and bighorn sheep [66,90,91]. This result is intuitive, given that the

diet biomass of mountain lions in this study area consisted primarily of elk (of either sex), big-

horn sheep ewes, and mule deer bucks [66]. In contrast, mountain lions in the Garnet and

Whitefish ranges selected moderately rugged terrain (Fig 7A), which is more characteristic of

the habitat of white-tailed deer [92]. White-tailed deer were indeed the most killed prey for

mountain lions in the Whitefish Range [59]. While mountain lion diet data were unavailable

in the Garnet Range, ungulate harvest records indicate white-tailed deer were the most abun-

dant prey in those areas (MFWP, unpublished data).

To be most effective, RSFs for predators should include direct measures of density of prey

or habitat selection by prey [14]. However, the habitat prey select is dependent on predators,

and vice versa, presenting a circular conundrum for researchers lacking predetermined infor-

mation on either predator or prey density and distribution [93]. We lacked direct measure-

ments of prey density or selection and were required to use proxies for prey encounter,

presenting several major caveats to our findings. Firstly, attributing variation in mountain lion

behavior to differences in prey communities is conjecture, as we did not use prey density or

distribution data directly. This points to the limitations of proxies for prey encounter, as we

cannot identify causative mechanisms underlying differences in predator space-use. Similarly,

we cannot infer the effects of forage or prey density on habitat selection by wolves via vegeta-

tion cover-types alone. Cover-types were unreliable predictors of selection by wolves across

ecosystem-types (Table 2), for several reasons. Cover-types are not perfect proxies for ungulate

forage, as forage quality may vary at finer spatial scales than the level of a patch of a particular

cover-type, so wolves could have selected points with high quality forage irrespective of cover-

type. Secondly, even if a cover-type does contain high quality forage, it is not a perfect proxy

for prey density, harkening to the ecological “space race” predators and their prey engage in

[93]: in avoiding predators, prey may select cover-types with low amounts or quality of forage

[80,94], so in tracking prey density, these cover-types may become irrelevant to predators

[2,93,95]. By evidencing weak connections between vegetation cover-types and selection by

wolves and mountain lions in different ecosystems, our findings serve as caution against using

vegetation alone as proxies of predation risk for prey in ecological studies [96]. It is common

practice to assume avoidance of open cover-types by ungulates is a predator avoidance strategy

without actually measuring use of those cover-types by predators [23,97,98]; this could result

in ecosystem-wide processes like trophic cascades or tradeoffs between forage and risk being

falsely inferred.

Depending on local prey populations and where in the ecological space-race a predator-

prey community is at, the features selected by a predator species may waver across its range.

To expose general selection behaviors, it is important to assess resource selection by predators

in multiple ecosystem-types. Our results suggest that features associated with the limitations of

a predator’s hunting mode may be more generalizable predictors of habitat selection than
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Fig 7. Maps of mountain lion resource selection functions. Predicted relative probability of selection from (A)

‘moderate ruggedness’ mountain lion resource selection function (RSF) in the Whitefish Range, MT, USA, and (B)

‘high ruggedness’ mountain lion RSF) on the Rocky Mountain Front, MT, USA. RSF models were tested on VHF

telemetry data from Kunkel et al. [59] and Williams [66]. Base map reprinted from Montana hillshade map under a CC

BY license, with permission from Montana State Library, original copyright 2002.

https://doi.org/10.1371/journal.pone.0254827.g007
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features indicative of local prey distributions. For example, wolves selected simple topography

in all study areas, as their cursorial hunting mode is more effective in those areas [17]. As

ambush predators, mountain lions are reliant on hiding cover for stalking, but are able to

exploit prey in diverse topographic settings, like bighorn sheep in cliffy, rugged terrain [99],

Fig 8. Map of wolf resource selection function in the Whitefish Range. Predicted relative probability of selection during summer from top-performing

resource selection function (RSF) for wolves in the Whitefish Range, MT, USA. Reprinted from Montana hillshade map under a CC BY license, with permission

from Montana State Library, original copyright 2002.

https://doi.org/10.1371/journal.pone.0254827.g008
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guanacos (Lama guanicoe) in steppe [100], and beaver in riparian areas [101]. The plasticity of

mountain lion behavior relative to topography was reflected in our analyses, as selection for

rugged terrain varied between areas (Fig 7). Fine-scale features associated with hiding cover

that is useful for stalking, like forest canopy, were more reliable predictors of habitat selection

across variable prey settings than broad-scale topographic features.

There are numerous limitations to the inferences that can be drawn from our RSFs. Fore-

most, due to limitations in data availability, the timeframes in which mountain lion telemetry

locations were collected (Rocky Mountain Front: 1991–1992; Whitefish Range: 1992–1996;

Garnet Range: 2001–2006) did not overlap with the timeframe our vegetation cover-type data

originated from (2017). Landcover composition changes rapidly in the American west [102],

so the relationships we determined between mountain lions and vegetation cover-types may

be inaccurate. Despite these discrepancies, our mountain lion RSFs are still useful, because

physical features that change slowly with time (i.e. TPI, road density) were more important

predictors of selection than cover-types (Table 3). In addition, we did not model mountain

lion habitat selection directly in the Whitefish Range and Rocky Mountain Front, so our pre-

dictions cannot fully account for the true variability in mountain lion use of space in those

areas. Changes in animal communities may also affect how well our RSFs apply in the present.

For example, wolves colonized the Garnet Range in the midst of mountain lion monitoring in

that study area [63], potentially inducing changes in habitat selection by mountain lions that

our RSFs did not account for [103]. Finally, we did not account for potential spatial autocorre-

lation in our telemetry dataset, so we may have underestimated variances associated with the

resource selection coefficients we report. Notwithstanding these caveats, our RSFs for wolves

were generalizable to multiple ecosystem-types and should serve as useful indices of predation

risk from wolves faced by ungulates in western Montana during summer. For example, wildlife

managers are concerned with the population status of mule deer in areas like the Whitefish

Range, and our RSFs for wolves could provide useful insight for understanding the risks faced

by mule deer in that region (Fig 8). Our RSFs for mountain lions validated well in the Garnet

and Whitefish Range, and performed fairly on the Rocky Mountain Front, and should serve as

useful indicators of mountain lion predation risk in those regions. Before extrapolating our

RSFs regions beyond our study system, we suggest testing their predictions against any avail-

able wolf or mountain lion location data first.
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