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Type 2 diabetes (T2D) is associated with increased risk of cardiovascular disease (CVD).

In insulin resistant states such as the metabolic syndrome, overproduction and impaired

clearance of liver-derived very-low-density lipoproteins and gut-derived chylomicrons

(CMs) contribute to hypertriglyceridemia and elevated atherogenic remnant lipoproteins.

Although ingested fat is the major stimulus of CM secretion, intestinal lipid handling and

ultimately CM secretory rate is determined by numerous additional regulatory inputs

including nutrients, hormones and neural signals that fine tune CM secretion during fasted

and fed states. Insulin resistance and T2D represent perturbed metabolic states in which

intestinal sensitivity to key regulatory hormones such as insulin, leptin and glucagon-like

peptide-1 (GLP-1) may be altered, contributing to increased CM secretion. In this review,

we describe the evidence from human and animal models demonstrating increased

CM secretion in insulin resistance and T2D and discuss the molecular mechanisms

underlying these effects. Several novel compounds are in various stages of preclinical

and clinical investigation tomodulate intestinal CM synthesis and secretion. Their efficacy,

safety and therapeutic utility are discussed. Similarly, the effects of currently approved

lipid modulating therapies such as statins, ezetimibe, fibrates, and PCSK9 inhibitors on

intestinal CM production are discussed. The intricacies of intestinal CM production are

an active area of research that may yield novel therapies to prevent atherosclerotic CVD

in insulin resistance and T2D.
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INTRODUCTION

Atherogenic dyslipidemia is characterized by hypertriglyceridemia, elevated small, dense LDL
particles, reduced HDL, elevated remnant lipoproteins and postprandial hyperlipidemia (1). This
complex of lipid abnormalities is associated with underlying insulin resistance (IR) and has an
increased prevalence in type 2 diabetes (T2D). The exaggerated postprandial lipemia in individuals
with T2D or IR is attributed to elevated liver- and intestine- derived triglyceride-rich lipoproteins
(TRL) due to decreased lipoprotein clearance and/or increased secretion. Intestinally-derived
chylomicron (CM) particles can be quantified by the presence of an apolipoprotein B48 (apoB48)
singularly present on each particle. ApoB48 is detected in atherosclerotic plaque demonstrating
that CM remnants can penetrate the endothelium and contribute to lesion formation (2).

Dysregulation of TRL clearance from the circulation has been extensively reviewed elsewhere
(3) and will not be the focus of this review. However, it is important to note that postprandial
accumulation of lipoproteins and lipoprotein remnants is largely influenced by clearance capacity
(4). CMs and liver-derived very-low-density lipoproteins (VLDL) compete for delipidation by
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lipoprotein lipase (LPL) and for subsequent saturable hepatic
remnant removal (5, 6). In IR, lipoprotein clearance is
diminished, in part due to decreased LPL activity, altered
lipoprotein composition, reduced hepatic clearance and remnant
removal or increased TRL pool size resulting in more
competition for clearance (7). In addition, insulin mediated
activation of LDLR-related protein-1 which is involved in
CM remnant clearance is blunted in insulin-resistant mice
(8). Although clearance is an important factor to consider in
diabetic dyslipidemia, this review will focus on our current
understanding of CM production by the gut in IR states and
T2D.Wewill discuss how existing therapeutic strategies targeting
dyslipidemia influence CM secretion and the potential utility
of novel therapeutics to specifically reduce CM production.
We acknowledge that few studies have examined intestinal
lipoprotein secretion in diabetic animal models and humans;
therefore at the present time we extrapolate from healthy
and insulin resistant animal models and humans, with the
understanding that our knowledge of intestinal lipoprotein
secretion in diabetes is far from complete and will undoubtedly
require revision as our knowledge expands.

PHYSIOLOGICAL INTESTINAL LIPID
HANDLING AND CM SECRETION

To understand the role of the intestine in diabetic dyslipidemia,
we will briefly review normal lipid processing by the gut,
which has been extensively reviewed elsewhere (9, 10). Dietary
triglycerides (TGs) are hydrolyzed to monoacylglycerol (MAG)
and fatty acids (FAs) in the intestinal lumen. Several putative
FA transporters have been identified including CD36/FAT. FA
binding proteins (FABP) such as I-FABP and L-FABP are
involved in intracellular FA transport (9).

Re-esterification occurs primarily by the monoacylglycerol
pathway through sequential esterification by monoacylglycerol
acyltransferase (MGAT) and diacylglycerol acyltransferase
(DGAT) between the leaflets of the endoplasmic reticulum (ER)
membrane (11). This pathway contributes the majority of TG for
CM synthesis while de novo lipogenesis (DNL) and the glycerol
phosphate pathway are additional contributors. TGs enter the
ER lumen to fuse with lipid-poor apoB48-containing particles
to form prechylomicrons, which also contain cholesteryl
esters and acquire apolipoprotein AIV (apoAIV) (12). This

Abbreviations: CM, chylomicron; CVD, cardiovascular disease; DGAT,
diacylglycerol acyltransferase; DNL, de novo lipogenesis; ER, endoplasmic
reticulum; FA, fatty acid; FABP, fatty acid binding protein; FAT/CD36,
fatty acid translocase/cluster of differentiation 36; GI, gastrointestinal;
GLP-1, glucagon-like peptide-1; GLP-2, glucagon-like peptide-2; HoFH,
homozygous familial hypercholesterolemia; HOMA-IR, homeostatic model
assessment of insulin resistance; IR, insulin resistance; LPL, lipoprotein lipase;
MAG, monoacylglycerol; MAPK, mitogen-activated protein kinase; MGAT,
monoacylglycerol acyltransferase; MTP, microsomal triglyceride transfer
protein; NPC1L1, Niemann-Pick C1-like 1 protein; PCSK9, proprotein
convertase subtilisin/kexin type; PPARα, peroxisome proliferator-activated
receptor alpha; SGLT, Sodium-glucose co-transporter; SNARE, soluble N-
ethylmaleimide-sensitive fusion protein attachment protein receptors; SREBP,
sterol regulatory element binding protein; T2D, type 2 diabetes; TG, triglyceride;
TRL, triglyceride-rich lipoprotein; VLDL, very-low density lipoprotein.

lipidation process is mediated by microsomal triglyceride
transfer protein (MTP). Prechylomicrons are transported to
the Golgi in prechylomicron transport vesicles with fusion
occurring at the Golgi facilitated by various SNARE proteins.
Mature CMs are subsequently exocytosed at the basolateral
membrane, each containing a single apoB48 along with apoAI
and apoAIV. During active lipid absorption the basement
membrane underlying enterocytes may become leaky to facilitate
movement of CMs into the lamina propria (13, 14). Large
porous junctions in lacteals allow CMs to enter the lymphatic
vasculature for eventual delivery to the circulation. Rather than
serving as a passive conduit, lacteals and lymphatic ducts are
gaining attention as active regulatory sites in CM transport (15).
As CMs circulate, interactions with other lipoproteins facilitate
the exchange of apolipoproteins allowing CM particles to acquire
apoE, apoC2, and apoC3, which regulate hepatic CM removal
and delipidation by LPL (16).

Although the absorption of dietary TG is highly efficient, not
all TGs are immediately released from enterocytes. Following
re-esterification at the ER, a portion of TGs bud off the ER
membrane into the cytosolic space to form cytosolic lipid
droplets (CLDs), which serve as transient lipid storage pools
within enterocytes. CLDs and other enteral lipid stores are
evident in human intestinal tissue for many hours after a
meal and can be mobilized by a number of stimuli (17–19).
Several factors including dietary macronutrient load, circulating
FA, glucose, insulin, and gut hormones glucagon-like peptide-
1 (GLP-1) and glucagon-like peptide-2 (GLP-2) have been
identified as key players in the complex fine tuning of CM
appearance in the early prandial phase as well as in mediating
CLDmobilization several hours after a meal (9, 15). Interestingly,
the co-secreted gut hormones GLP-1 and GLP-2 have opposing
effects on CM secretion, with GLP-1 inhibiting and GLP-2
promoting appearance of apoB48 lipoproteins. Enterocytes do
not express receptors to either GLP-1 or GLP-2, therefore their
modulation of CM secretion is through indirect mechanisms that
remain to be fully elucidated (20).

INCREASED CM PRODUCTION IN
PREDIABETIC, INSULIN RESISTANT
STATES

Prevalence of unfavorable postprandial hypertriglyceridemia
(postprandial TG > 220 mg/dl) increases progressively from
non-diabetic to prediabetic to T2D states in humans and was
linked to increasing severity of hepatic IR (21). Both increased
CM production and decreased clearance have been observed
in insulin resistant states (1). We previously demonstrated
increased production rate of apoB48-containing TRLs in insulin
resistant humans (22, 23). Couture et al. demonstrated a 102%
increase in TRL-apoB48 pool size and 87% increase in production
rate in IR compared to insulin sensitive obese men in the fed
state (23). A trend toward decreased apoB48 clearance rate
was observed but did not reach statistical significance, while
VLDL apoB-100 clearance was significantly reduced (23). When
quantifying TG rather than apoB48 kinetics, men with metabolic
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syndrome had elevated fed-state VLDL-TG and CM-TG due to
increased production rates (24). Decreased CM clearance has also
been observed in conditions of obesity and T2D, contributing
to the elevated TRL concentrations in these states (25–27). In
contrast to the increased secretion of CM that characterizes IR,
which is usually also accompanied by chronic hyperinsulinemia,
in the experimental hyperinsulinemic-euglycemic clamp setting,
acute hyperinsulinemia suppresses CM secretion in healthy
humans directly and in part by suppressing circulating FA (28).
In animal models, intestinal IR can be elicited by high-fat
(29) or high-fructose feeding (30, 31). A single oral bolus of
palmitate in mice is sufficient to impair insulin suppression of
CM production, possibly via ceramide-mediated inhibition of
Akt signaling (32). This is consistent with ceramide inhibition of
insulin signaling in muscle, liver and adipose. Therefore, despite
the rapid turnover of enterocytes in vivo, persistent overnutrition
including increased consumption of saturated FAs, may induce
intestinal IR, with one possible mechanism being increased
ceramide production. Indeed, plasma and tissue ceramide are
elevated in humans in IR and T2D and upon excess saturated fat
intake (33). From animal models it is apparent that intestinal IR
increases CM synthesis with increased expression and activity of
key proteins involved in lipogenesis and CM secretion, namely
MTP, MGAT, DGAT, apoAIV, and sar 1 GTP ase (30, 34).
The consequences of impaired intestinal insulin sensitivity are
increased DNL, excess CM production and secretion (31, 35).

In accordance with animal models, humans with severe IR
or diabetes have elevated intestinal MTP expression and protein
abundance compared to more insulin sensitive individuals (36,
37). Individuals undergoing bariatric surgery who are markedly
insulin resistant (HOMA-IR > 7) had decreased duodenal
insulin signaling capacity as indicated by decreased phosphoAKT
abundance and higher p38 MAPK compared to obese, more
insulin sensitive patients (HOMA-IR < 3) (36). The insulin
resistance was postulated to be caused by greater oxidative stress
and inflammation, increased markers of which were observed in
the diabetic duodenum. This perturbed metabolic state may be
causal to the increased DNL and apoB48 biogenesis in IR (36). In
contrast, when assessed in humans with modest IR, key intestinal
genes involved in FA transport, and lipid/lipoprotein metabolism
including SREBP-2, MTP, and DGAT2 were downregulated (23).
In particular, the observed 25% decrease in MTP protein is
intriguing in light of increased CM production rate in the same
subjects. To address this discrepancy, the authors postulated
that in modest IR states hyperinsulinemia may suppress MTP
expression via the insulin responsive element of the MTP
promoter region. In contrast, relative insulin insufficiency in
T2D may allow for greater MTP expression (23). We speculate
that in modest IR with normoglycemia total efficacy of insulin
modulation of lipid metabolism may be fully intact whereas
more severe IR insulin modulation of lipid metabolism may
be significantly impaired leading to altered lipid metabolism.
In both states, modest and severe IR, adipose IR increases
circulating FA which may serve as substrates for intestinal CM
synthesis and thus adaptive suppression of enterocyte DNL and
fat absorption may occur (23, 38). Indeed, men with metabolic
syndrome had a greater contribution to CM-TG from non-oral

FA than lean controls (24). Sources of non-oral FA may include
circulating FA, pre-existing TG stores (e.g., enterocyte CLDs), or
TG arising from DNL (24).

In the postprandial state, enteroendocrine L-cells lining the
intestine secrete GLP-1 and GLP-2 in equimolar amounts in
response to nutrients (39). GLP-1 has diverse physiological roles,
including potentiation of glucose-stimulated insulin secretion,
appetite suppression and inhibition of gastric emptying (40). In
contrast, GLP-2 acts as an intestinotrophic hormone, stimulating
intestinal proliferation and aiding in intestinal repair processes.
Despite equimolar secretion, GLP-1 and GLP-2 have opposing
effects on CM secretion. In animal models, intravenous GLP-
1 reduced postprandial apoB48 and TG concentrations (41).
In Phase 2/3 clinical assessments, GLP-1 analogs lower CM
production in healthy humans whereas (42) pharmacological
doses of GLP-2 robustly stimulate CM secretion in human and
animal models (43–46). In normal, insulin sensitive states and
in fructose-fed hamsters the effects of GLP-2 predominate with
elevated postprandial lipemia (41).

High-fat feeding to induce IR in mice also induces leptin
resistance as evidenced by a loss of the inhibitory effect of leptin
on food intake (47). Leptin resistant animals have decreased
glucose-stimulated GLP-1 secretion and fasted GLP-1 (47),
suggesting leptin resistance may contribute to impaired GLP-1
secretion in obese humans. GLP-1 reduces postprandial apoB48
and TG (41, 42), therefore impaired GLP-1 secretion due to
leptin resistance could be a contributing factor to elevated CM
secretion. Leptin is classically described as an important satiety
signal produced by the expanding adipocyte in the setting of
net positive energy balance. Leptin is also secreted to a lesser
extent from the gastric mucosa into the gastric lumen and
circulation. Gastric leptin partially escapes hydrolysis and enters
the intestinal lumen to bind the leptin receptor expressed on the
luminal side of intestinal epithelial cells (48). Jejunally infused
leptin has been shown to regulate intestinal MTP in the mouse
independently of vagal innervation (49). In this regard, gastric
leptin secretion in the early prandial phase may be important for
regulating CM production and leptin resistance may be another
contributing factor to increased CM production in IR states.

DYSREGULATION OF INTESTINAL
LIPOPROTEIN METABOLISM IN TYPE 2
DIABETES

IR is a prominent feature of T2D, accompanied by relative or
absolute pancreatic insulin secretory insufficiency resulting in
hyperglycemia, with plasma insulin concentrations ranging from
elevated to low. Much of the above discussion of abnormal
intestinal lipoprotein metabolism in IR therefore also pertains
to those with T2D. In fact in patients with T2D, the acute
inhibitory effect of insulin on apoB48 production is blunted
(50). Similarly, the stimulatory effect of insulin on intestinal
glucose uptake in obese subjects is diminished, although this
was improved by bariatric surgery (51). In obese subjects
with T2D, fasting and postprandial TGs were significantly
reduced 2 weeks after bariatric surgery. Most importantly,
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the incremental area under the curve of postprandial plasma
TGs decreased by 60% compared to pre-surgery (52). In a
detailed study involving kinetic assessment in the constant fed
state in obese, non-diabetic humans, TRL-apoB48 concentration
was significantly reduced, with a reduction in TRL-apoB48
when assessed 6 months post-sleeve gastrectomy compared
to before surgery (53). While reduced dietary intake likely
contributes to reduced TG post-surgery, this may also be partially
mediated by improved intestinal function perhaps by restored
intestinal insulin sensitivity. In addition, hyperchylomicronemia
in diabetic dyslipidemia may be further exasperated by blunted
insulin suppression of hepatic apoB100 production (50, 54),
increasing competition for clearance and thereby increasing
plasma retention time.

Hyperglycemia itself may further enhance CM secretion in
the diabetic state. In healthy, non-diabetic adults, we have shown
enhanced apoB48 production in response to intraduodenal and
intravenous glucose, and in response to intraduodenal fructose
(55, 56). Whether hyperglycemia in diabetes contributes directly
to enhanced CM secretion is unknown.

In addition to competition for clearance, altered CM
apolipoprotein composition in diabetes may also contribute to
delayed clearance and increased atherosclerotic risk in T2D.
In animal models, CMs originating from diabetic animals are
cleared more slowly than those from non-diabetic animals,
possibly due to reduced apoE abundance on the CM particle (57).
ApoAIV is produced primarily in the intestine in response to
an oral lipid load and is increased in the circulation in IR (58).
Increased plasma apoAIV has been observed association with
hypertriglyceridemia in patients with T2D (59). In the circulation
a portion of apoAIV associates with HDL or circulates lipid-
free to influence glucose and lipid metabolism. Glycation of
apoAIV in circulation is associated with coronary artery disease
severity in patients with T2D (60). The extent to which alterations
in apoAIV production by the intestine influence postprandial
metabolism in T2D remains to be fully elucidated. ApoAIV
knockout mice secrete larger CMs into the lymph (12) and thus
altered apoAIV productionmay influence the rate of delipidation
through alterations in CM size as larger CMs are lipolyzed at a
faster rate than smaller particles in animal models (61, 62). The
multitude of metabolic functions of apoAIV are an active area of
research that may improve our understanding of the regulation
of intestinal apoAIV production and its influence on lipoprotein
clearance in metabolic disease (63).

EFFECTS OF CURRENTLY APPROVED
LIPID MODIFYING AND ANTIDIABETIC
THERAPIES ON GUT LIPID HANDLING IN
INSULIN RESISTANT STATES AND
DIABETES

Statin treatment is effective in primary (64) and secondary (65)
CV event prevention in patients with T2D. The effects of statin
treatment on CV events reduction show a linear relationship
between CV events reduction and LDL-c reduction suggesting
that a possible effect of statin on CM secretion is likely to

be a minor factor of the anti-atherosclerotic benefits of the
statins. However, it is interesting to note that statins also have
minor effects in modulating intestinal lipoproteins (Figure 1,
#10). Four weeks of cerivastatin therapy significantly decreased
postprandial CM apoB48 in patients with T2D (66). Similarly,
6 weeks of atorvastatin treatment in obese men significantly
reduced circulating apoB48 and remnant-like particle cholesterol
following remnant-like emulsion infusion, perhaps due to
increased hepatic clearance (67). Atorvastatin treatment in
healthy, normolipidemic men decreased postprandial apoB48
by increasing clearance and decreasing secretion after a fat
load (68). Statin-mediated inhibition of cholesterol synthesis
induced compensatory increases in cholesterol absorption by
increasing intestinal expression of Niemann-Pick C1-like 1
protein (NPC1L1) (69). Therefore, a common add-on therapy
to statin is ezetimibe which inhibits NPC1L1 (Figure 1,
#4). In patients with T2D, compared to simvastatin alone,
adding ezetimibe produced significantly fewer CMs that were
cholesterol-poor and decreased fasting and postprandial CM-
TG (70). Similarly, when patients with T2D failed to reach
LDL-c targets on simvastatin alone, addition of ezetimibe
improved lipoprotein profile (71). Over and above the well-
documented effects of statins in upregulating LDL-receptor-
mediated clearance of LDL particles from the circulation,
statin therapy may also exert some of its benefits through
improved metabolism of postprandial lipoproteins including
apoB48 CM remnants.

Fibrates are an alternative lipid-lowering option for the
treatment of dyslipidemia; however, their questionable
cardiovascular benefit limits their widespread use (72, 73).
The transcription factor PPARα is highly expressed in the
intestine and is activated by several natural ligands, particularly
polyunsaturated FAs (74) (Figure 1, #6). It regulates the
expression of several apolipoproteins and genes involved in FA
metabolism including the transcription factor sterol regulatory
element binding protein-1c (SREBP-1c) (74). Recently, a
more potent and selective PPARα agonist called pemafibrate
(K-877) has been developed that lowers plasma TG to a
similar extent as fenofibrate but with minimal adverse events
(75, 76). In a phase III trial, 52 weeks of pemafibrate treatment
reduced fasting TG by 45% compared to placebo in patients
with T2D (77). Notably, pemafibrate significantly decreased
apoB48 by up to 56% (77). This could be due to decreased CM
production and/or increased clearance. In mice, pemafibrate
decreased small intestine expression of apoB to a greater extent
than fenofibrate while eliciting no change in hepatic apoB
expression (78). In LDL receptor knockout mice, pemafibrate
decreased apoC3 expression and increased plasma LPL activity
suggesting increased clearance capacity (79). Similarly, Araki
et al. observed decreased plasma apoC3 in patients with T2D
treated with pemafibrate (77). These studies suggest that
pemafibrate could effectively modulate CM production to treat
diabetic dyslipidemia. The ongoing Pemafibrate to Reduce
Cardiovascular Outcomes by Reducing Triglycerides in Patients
with Diabetes (PROMINENT) study will evaluate major adverse
cardiovascular events in T2D with suboptimal LDL-c lowering
by statins (NCT03071692) (80).
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FIGURE 1 | Intestinal lipoprotein overproduction in diabetes and potential therapeutic targets. The following are potential therapeutic targets, as discussed in the text.

(1) Dietary triglycerides (TG) are hydrolyzed in the intestinal lumen by pancreatic lipases which can be inhibited to reduce fatty acid (FA) and monoacylglycerol (MAG)

availability for absorption. (2) Fatty acyl-CoA (FACoA) are progressively re-esterified into TG by monoacylglycerol acyltransferase (MGAT) and diacylglycerol

acyltransferase (DGAT) (3) Microsomal triglyceride transfer protein (MTP) is a crucial enzyme for lipidation of nascent apoB48 and the pre-chylomicron (CM) particle (4)

The cholesterol transporter Niemann-Pick C1-like-1 (NPC1L1) is a rate limiting step in cholesterol absorption. Cholesteryl esters are an important component of CM

particles. (5) Antagonism of sodium-glucose cotransporter-1 (SGLT1) is in development as a diabetes therapy to attenuate glucose absorption which may modify CM

secretion. (6) Fibrates are approved lipid-lowering treatments that agonize peroxisome proliferator-activated alpha (PPARα). Whether fibrates markedly lower CM

secretion is under investigation. (7) Glucagon-like peptide-1 (GLP-1) suppresses CM secretion. GLP-1 analogs and inhibitors of the GLP-1-degrading enzyme DPP-IV

are available diabetes therapies that acutely inhibit CM secretion in healthy humans. Glucagon-like peptide-2 (GLP-2) has been shown to acutely stimulate intestinal

CM release in human and rodent models, however antagonistic therapies have not yet been examined as a therapy to decrease CM secretion. (8) Circulating CMs

and liver-derived very-low density lipoproteins (VLDL) are delipidated by lipoprotein lipase (LPL) at peripheral tissues. Angiopoietin-like peptides (ANGPTL) 3,4 and 8

negatively regulate LPL and their effects on CMs is under investigation. (9) Hepatic clearance of CM remnants (CM-R) and low-density lipoprotein cholesterol (LDL-c)

is mediated in part by the LDL receptor (LDLR). Proprotein convertase subtilisin/kexin type 9 (PSCK9) negatively regulates LDLR and is also highly expressed in the

small intestine. Monoclonal antibodies against PCSK9 effectively lower LDL-c; however, PCSK9 inhibition in healthy humans had no impact on postprandial TG or

apoB48 kinetics. (10) Statins are well-described inhibitors of HMGCoA reductase that effectively reduce cholesterol synthesis. Statin therapy reduces circulating

apoB48 and CM-TG by increasing CM clearance, and perhaps decreasing CM secretion.

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is
highly expressed in the liver, kidney, and small intestine and
negatively regulates cell surface receptors, decreasing LDLR in
liver and intestine leading to blunted hepatic TRL clearance (81)
(Figure 1, #9). PCSK9 inhibition by monoclonal antibodies is
an effective therapeutic strategy shown to lower LDL-c. PCSK9
knockout animals show decreased intestinal apoB output with
no difference in lymphatic TG output suggesting an increase
in CM size (82). This effect may be mediated by increased
MTP abundance (83). Kinetic studies in healthy humans
have shown increased clearance and decreased production of
LDL-apoB; however, there was no impact on postprandial
TG or apoB48 kinetics with evolocumab or alirocumab
treatment (68, 84).

A discussion about diabetes therapies would be incomplete
without considering the effects of some glucose lowering,
antidiabetic therapies on intestinal lipoprotein metabolism.

Metformin, for example, accumulates in jejunal mucosa in
humans and thus is likely to regulate metabolic processes of
enterocytes (85). The observation that intravenous metformin
does not improve glycemia to the same extent as oral metformin
further supports a crucial role for the intestine as a site of
metformin action (86). In patients with T2D poorly controlled by
sulfonylureas, the addition of metformin significantly improved
glycemic control and halved postprandial CMs and CM
remnants (87). Metformin treatment in morbidly obese T2D
patients decreased jejunal expression of SREBP-1c, acetyl-coA
carboxylase involved in FA synthesis, and apoAIV involved in
CM secretion, suggesting attenuation of DNL and lipoprotein
synthesis by metformin (58). Metforminmay indirectly attenuate
CM secretion through increased production of GLP-1 or by
delayed gastric emptying. Metformin increased fasting GLP-1
in patients with T2D (88, 89) potentially by modulating bile
acid pools (88). Interestingly, timing of metformin delivery
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may alter TG responses as pre-meal metformin decreased
postprandial TG to a greater extent than post-meal delivery in
patients with T2D and increased satiety with no difference in
GLP-1 (90).

GLP-1 receptor agonists are known to lower postprandial TG.
A reduction in postprandial TRL-apoB48 has been demonstrated
in humans with T2D and in animal models and may occur
independently of plasma insulin and gastric emptying (91, 92)
(Figure 1, #7). In healthy humans, TRL particle kinetics were
evaluated in the fed state with continuous duodenal liquid
meal infusion and a pancreatic clamp to avoid confounding
effects of gastric emptying and the effects of other hormones
such as insulin and glucagon. This revealed that a single dose
of exenatide acutely decreased apoB48 production rate with
no effect on catabolism (42). We have previously reviewed
the effects of incretin therapies on intestinal lipoprotein
metabolism (93). When CM-TG kinetics were assessed in
patients with T2D, lixisenatide reduced CM-TG appearance
after a single meal likely via delayed gastric emptying (94, 95).
However, over the course of a 12-h feeding protocol lixisenatide
reduced CM-TG through increased clearance with no effect
on production rate (95). Following 6 months of liraglutide
treatment in T2D, apoB48 production was significantly decreased
and clearance was increased (96). Incubating jejunal explants
from mice with liraglutide reduced expression of key CM
synthesis genes including apoB48, DGAT1, and MTP (96).
Similarly, exenatide suppressed apoB48 expression in hamster
enterocytes suggesting direct effects of GLP-1 receptor signaling
on CM synthesis (92). GLP-1 agonists improve CVD outcomes
in T2D (97, 98), perhaps in part by modulating intestinal
CM production.

Sodium-glucose co-transporter 2 (SGLT2) inhibitors, which
enhance urinary glucose secretion, are approved therapeutics
in T2D. Recently, cardiovascular outcome trials showed
improvements in CV outcomes in response to dapaglifozin
(99), canaglifozin (100) and empaglifozin (101) in patients
with T2D. The underlying mechanisms of CV protection are
unclear. Three month canaglifozin treatment in T2D did not
alter LDL-c or CM-c but increased HDL-c (102). Canagliflozin
treatment at clinical doses modestly and transiently inhibits
intestinal SGLT1, an important glucose transporter on the
luminal side of enterocytes (103, 104) (Figure 1, #5). In humans,
canagliflozin increased postprandial GLP-1 and peptide YY
(PYY) (104), perhaps by increasing glucose delivery to the
distal gut which has a higher density of incretin producing
cells. In accordance with this, acarbose treatment which
inhibits alpha glucosidase increases carbohydrate delivery to
the distal gut and increases GLP-1 secretion (105). Similarly,
specific SGLT1 inhibition in humans delayed intestinal glucose
absorption and reduced GIP secretion while increasing GLP-1
and PYY secretion (106). Theoretically, SGLT1 inhibition could
blunt early post-meal intestinal CM secretion by decreased
glucose availability for DNL or by increased GLP-1-mediated
inhibition of CM secretion, however gut DNL is likely a minor
contributor to CM-TG. Dual inhibitor compounds targeting
both SGLT2 and SGLT1 are under development, with pilot
studies showing improved postprandial glucose control (107).

Combining this dual antagonist with the DPPIV inhibitor
sitagliptin further increased active GLP-1 and PYY in patients
with T2D (108). Therefore, SGLT1 inhibition may serve as a
novel therapeutic strategy in T2D with potential indirect benefits
on CM secretion.

NOVEL THERAPIES TARGETING THE GUT
FOR THE TREATMENT OF DIABETIC
DYSLIPIDEMIA

Advances in our understanding of the intricacies of intestinal
lipid handling and CM secretion as well as the atherogenic
nature of CM remnant particles has led to the search for
therapies to modify various aspects of CM production to
ameliorate diabetic dyslipidemia. Beginning in the intestinal
lumen, inhibition of gastric and pancreatic lipases by the
drug orlistat (Figure 1, #1) developed for the treatment
of obesity decreases intestinal TG absorption by 30% but
adverse gastrointestinal (GI) effects were observed in 16–
40% of patients (109). In T2D, orlistat significantly decreased
TG and apoB compared to placebo (110). However, when
given in combination with metformin improvements were
observed in total cholesterol, LDL cholesterol and the LDL:HDL
ratio but not in TG (111). Due to the relatively high
incidence of adverse events and inconsistent efficacy, orlistat
is not considered to be an effective therapy for treatment of
diabetic dyslipidemia.

Inhibition of intestinal TG esterification is another avenue
of active research to improve diabetic dyslipidemia (Figure 1,
#2). Three isoforms of MGAT have been identified in humans
and rodents. MGAT2 is highly expressed in the intestine
of rodents and humans while MGAT3 is expressed only in
the human intestine (112). Selective MGAT2 inhibition by
orally administered small molecule inhibitor dose-dependently
decreased postprandial CM-TG by up to 58% in mice (113).
MGAT2 inhibition showed a similar phenotype to MGAT2
knockout and did not increase fecal fat suggesting no impact
on fat absorption. Inhibition of TG re-esterification diverted
FA toward beta oxidation in the small intestine (113). Human
MGAT inhibitors have been identified by high-throughput
screening methods (114), but it remains to be seen whether
MGAT inhibition is efficacious and well-tolerated in humans
and whether it has utility in treating diabetic dyslipidemia.
Downstream of MGAT-mediated formation of diacylglycerol is
DGAT, which catalyzes the final step in TG esterification. DGAT
inhibition has been explored in human and animal models.
Intestinal DGAT1 deficiency and pharmacological inhibition in
mice decreased postprandial TG with delayed gastric emptying
and inhibited CM secretion (115). Delayed gastric emptying
may be attributable to increased GLP-1 secretion (116, 117).
In humans, DGAT1 inhibition with pradigistat in patients
with familial chylomicronemia syndrome decreased fasting TG
primarily by decreasing CM-TG (118). However, adverse GI
effects such as diarrhea were experienced by the majority
of participants (118, 119). This is perhaps not surprising
given that loss-of-function variants in DGAT1 are linked to
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congenital diarrheal disorder (120). In patients with T2D,
pradigistat dose-dependently decreased total cholesterol, TG,
LDL-c, and body weight (121). Other DGAT1 inhibitory
compounds have been investigated. Single administration of
the selective DGAT1 inhibitor PF-04620110 dose-dependently
decreased postprandial TG in healthy humans (122). Grape
extract contains components that decrease DGAT1 activity in
vitro and was shown to reduce serum TG without GI side
effects in overweight/obese but otherwise healthy humans after
a high-fat meal (123). Structural changes to DGAT1 inhibitors or
further development of DGAT1 antisense oligonucleotides may
yield novel therapeutics that reduce postprandial TG without GI
intolerability (124–126).

The MTP inhibitor lomitapide has been approved for a
number of years for the treatment of homozygous familial
hypercholesterolemia (HoFH) and has been used off label
for the treatment of severe hypertriglyceridemia (127, 128).
Lomitapide use is severely curtailed by side effects of diarrhea and
liver fat accumulation (129). Intestine-specific MTP inhibition
(Figure 1, #3) lowers CM secretion without affecting hepatic
lipoprotein production and thereby minimizing hepatotoxicity
and hepatosteatosis. In hamsters, the small molecule intestine-
specific MTP inhibitor JTT-130 suppressed CM-TG following oil
gavage without suppressing hepatic TG secretion. Importantly,
repeated dosing for 2 weeks did not induce hepatotoxicity
(130). However, hamsters treated with JTT-130 show impaired
FA absorption with increased fecal FA and cholesterol content
suggesting diarrhea may still be a complication of intestine
specific MTP inhibition (131). In rats and apoE-/- mice, the
small molecule inhibitor SLx-4090 specifically inhibited CM
secretion with no effect on hepatic TG secretion and effectively
reduced postprandial lipids (132, 133). Similarly in Caco-2
cells, SLx-4090 decreased apoB secretion (132). Preliminary
reports of a phase 2 clinical trial (NCT00871936) SLx-4090
given to patients with T2D on metformin demonstrated 35%
decreases in both postprandial TG and FA, compared to
placebo (134). MTP inhibitors are not currently approved
for use in T2D and for the foreseeable future will likely
serve as orphan drugs for the treatment of HoFH or
severe hypertriglyceridemia.

Novel therapeutics for atherogenic dyslipidemia are
emerging; however, their effects on intestinal lipoprotein
secretion require further investigation. Apolipoprotein C-
III (apoC3) is found on VLDL and CMs and inhibits LPL-
and LDL receptor- mediated TRL and remnant clearance
(135, 136). In humans, apoC3 is elevated in hyperlipidemia
and T2D, thereby increasing plasma residence time of TRLs
and their remnants. ApoC3 is an independent risk factor for
CVD (137, 138). In patients with familial chylomicronemia
syndrome due to homozygous or compound heterozygous
LPL deficiency, the apoC3 antisense oligonucleotide (ASO)
volanesorsen decreased CM-TG and apoB48 suggesting non-
LPL mediated clearance (139). Interestingly, while apoC3 is
known to increase hepatic VLDL secretion (140, 141), whole-
body overexpression of human apoC3 in mice decreased
dietary TG appearance in lymph, decreased FA absorption and

re-esterification, suggesting intestinal apoC3 inhibition might
enhance CM appearance (142). However, apoC3 inhibition by
ASO decreased fasting and postprandial plasma TG without
altered intestinal fat absorption in mice (143). Whether apoC3
inhibition regulates CM secretion in humans remains to be
established. In humans, a loss-of-function apoC3 variant
associated with decreased TG and CVD protection had no effect
on apoB concentration (144), perhaps suggesting no effect on
CM secretion.

Several angiopoietin-like proteins (ANGPTLs), namely
ANGPTL3, ANGPTL4, and ANGPTL8, have been identified
as inhibitors of LPL activity resulting in increased plasma
TG (145) (Figure 1, #8). In mice and humans, deletion or
loss-of-function in any of these genes reduced plasma TG while
overexpression increased plasma TG (145). ANGPTL3 ASO
reduced VLDL cholesterol (146), however its effects on intestinal
CM secretion have not been established. ANGPTL4 expression
in adipose tissue is increased upon fasting to inhibit adipose
LPL activity, redirecting TG to other tissues for oxidation (147).
Upon high-fat feeding, enterocyte ANGPTL4 expression is
increased possibly to inhibit pancreatic lipase and slow FA
uptake into enterocytes to match FA uptake with TG secretion
(148). Whether intestinal ANGPTL4 inhibition alters CM
secretion remains to be investigated. Inactivating ANGPTL4
variants in humans are associated with reduced risk of coronary
disease (149), however ANGPTL4 inhibition by monoclonal
antibodies in mice and non-human primates was associated
with lymphadenopathy (150). Whether this adverse response
would be present in humans is unknown, although subjects
with inactivating ANGPTL4 variants do not exhibit lymphatic
abnormalities (150). In humans ANGPTL8 is exclusively
enriched in the liver (151) and thus it is unlikely to modulate
CM secretion. In mice its expression is enhanced by insulin
signaling through the insulin responsive transcription factor
liver X receptor α to promote VLDL secretion (152). Of these
ANGPTL peptides, ANGPTL4 is the only one known to be
expressed in the intestine and thus may serve as a therapeutic
target to modulate CM secretion, however adverse effects
may preclude its further development. Whether ANGPTL3 or
ANGPTL8 inhibition could modulate CM secretion remains to
be determined.

CONCLUSIONS

Diabetic dyslipidemia is characterized by increased fasting
and postprandial TGs, packaged within apoB-containing
lipoproteins, many of which are considered to be directly
implicated in promoting atherosclerotic CVD. Worsening
IR is correlated with increases in circulating CMs arising
from increased production and decreased clearance. Increased
intestinal CM production in insulin resistant states can be
attributed to increased supply of lipogenic substrates and
resistance to key modulatory signals that results in altered
expression and activity of lipogenic and secretory pathways.
Therapeutic strategies developed thus far to directly target
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the gut have been limited by GI and other adverse events,
precluding their widespread use. Approved lipid and glucose
modifying therapies such as statins, fibrates, ezetimibe,
SGLT2 inhibitors, metformin, and GLP-1 receptor agonists
have also been shown to affect intestinal CM production.
This is a very fertile area for drug development, but major
challenges remain in improving the tolerability of agents
that target gut lipid handling and CM secretion before these
agents can be deployed to curb CVD risk in those with and
without T2D.
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