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Depression, a common mental illness that seriously affects the psychological health of
patients, is also thought to be associated with abnormal brain functional connectivity. This
study aimed to explore the differences in the sleep-state functional network topology in
depressed patients. A total of 25 healthy participants and 26 depressed patients
underwent overnight 16-channel electroencephalography (EEG) examination. The
cortical networks were constructed by using functional connectivity metrics of
participants based on the weighted phase lag index (WPLI) between the EEG signals.
The results indicated that depressed patients exhibited higher global efficiency and node
strength than healthy participants. Furthermore, the depressed group indicated right-
lateralization in the δ band. The top 30% of connectivity in both groups were shown in
undirected connectivity graphs, revealing the distinct link patterns between the depressed
and control groups. Links between the hemispheres were noted in the patient group, while
the links in the control group were only observed within each hemisphere, and there were
many long-range links inside the hemisphere. The altered sleep-state functional network
topology in depressed patients may provide clues for a better understanding of the
depression pathology. Overall, functional network topology may become a powerful tool
for the diagnosis of depression.
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INTRODUCTION

Depression, with severe symptoms affecting the life of sufferers, is considered to be one of the most
serious and common disorders in the modern world (World Health Organization, 2019).
Considering the psychological burden of depression on patients and the economic impact on
the society, the neurophysiological research on depression is imperative. However, multiple causes of
depression and their interactions make accurate pathology studies difficult (Hou et al., 2016; Peng
et al., 2019; Zhang et al., 2019). Notably, depressed patients have abnormal brain activity during sleep
(Steiger and Pawlowski, 2019), making it a breakthrough in the diagnosis of depression.

Sleep plays an important role in the process of psychiatric comorbidity (Hou et al., 2016; Leitgeb
et al., 2020). Sleep performance in patients with certain psychiatric disorders, including depression,
can, to some extent, predict the onset state and future treatment outcomes (Tononi and Cirelli, 2006;
Hou et al., 2016). It has been reported that depressed patients showed a decrease in the total sleep
time, sleep efficiency, slow-wave sleep during NREM, and REM sleep latency and an increase in the
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REM cycle density and duration (Armitage, 2007; Hein et al.,
2019; Riemann et al., 2020). As the brain’s response to stimuli
diminishes during sleep, the characteristics of some neurological
diseases are more easily observed (Clarke and Harvey, 2012;
Richardson and Adams, 2018). Relevant studies have indicated
that there are abnormal changes in the sleep brain network in
depressed patients. Based on the synchronous likelihood method,
the global synchronization of depressed patients has been
confirmed to be lower in the δ, θ, and σ bands in the sleep
state (Leistedt et al., 2009; Hasanzadeh et al., 2020). In addition,
the recent study in our group successfully applied sleep
electroencephalography (EEG) functional connectivity to
detect depressed patients, and the obtained results were
delightful (Lian et al., 2021).

Functional connectivity (FC), a neuroscience tool based on the
mathematical framework, describes the temporal correlations
between the brain regions (Lv et al., 2015; Desjardins et al.,
2016; Huang et al., 2016). Furthermore, dynamic functional
connectivity (dFC), which introduces the time dimension to
provide dynamic information, has recently been applied to
estimate the cortical activities in the task state (Eken et al.,
2019; Ding et al., 2020; Li R. et al., 2020). However, to the
best of our knowledge, insufficient knowledge is available on
the dynamic characteristics of FC during sleep. The analysis of
dFC with a focus on the switching periods of sleep stages may
provide some new clues about the cortical activity differences in
depressed patients during sleep.

Currently, graph theory is a method that uses FC to
characterize topological features based on EEG. Through
graph theory, complex brain systems can be abstracted into
simple geometric representations, emphasizing the use of
network topology to simulate the fragility and elasticity of the
brain and reducing the complexity of analytical processes
(i.e., many nodes and the relationships between them)
(Rubinov and Sporns, 2010). Studies have pointed out that
graph theory is a reliable method to extract brain connectivity
based on the EEG signals to investigate the physiological impact
of diseases (Heckmann et al., 2015; Hasanzadeh et al., 2020;
Majeed and Rauf, 2020). Additionally, it has the potential to be an
effective descriptive tool for predicting diseases, significantly
identifying quantitative and specific biomarkers, and
understanding brain dysfunction from the structure and
morphology (Heckmann et al., 2015; Matyi et al., 2021;
Drange et al., 2022). Our recent study suggested that the
weighted phase lag index (WPLI) between the EEG signals
well-characterized the abnormal FC in depressed patients, for
which we suppose that the graph theory based onWPLI might be
a powerful tool for detailing the abnormal cortical activities in
depressed patients.

The aim of the present work was to construct cortical networks
based on the WPLI among the sleep EEG signals and to compare
graph metrics in depressed patients and healthy participants.
Through the description of cortical networks, it is hoped to build
a bridge between the current neurological research and the
performance of the abnormal cortical activities in depressed
patients.

The rest of the manuscript is structured as follows: in the
Methods section, we describe the participants, EEG data
recording, and preprocessing. After completing the analysis,
the results of the experimental data are presented and
discussed in the Results section and Discussion section.
Finally, Conclusions is included in the manuscript. Figure 1
shows the framework of this study.

MATERIALS AND METHODS

Participants
In this study, 51 subjects (25 healthy participants and 26
depressed patients) were enrolled. The patients were recruited
from Guangdong 999 Brain Hospital and were diagnosed by a
psychiatrist, according to the Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition (DSM-IV). The participants
with depression were evaluated using the Hamilton Depression
Scale (HAMD) and the Self-Rating Depression Scale (SDS).
Depressed patients with drug abuse, suicide risk, pregnancy,
current or history of head injuries, seizures, or epilepsy were
excluded. All the healthy participants (approximately 20 years
old) were undergraduates at Sun Yat-Sen University and were free
from sleep disorders such as insomnia, depression, and sleep
apnea. The male/female in the control and depression groups was
11/14 and 15/11, respectively. All the participants were
accustomed to using the right hand. All the procedures were
performed in compliance with the 1964 Helsinki declaration and
its subsequent amendments. This study was approved by the
Ethics Committee of Guangdong 999 Brain Hospital (approval
number: 2020-010-059), and the research was carried out here.
The subjects were informed of the experimental procedures in
advance and told not to drink caffeinated or alcoholic beverages
and not to overeat for 24 h before arriving at the sleep center of
the hospital. Informed consent was obtained from all the
individual participants.

All the participants underwent overnight polysomnography
(PSG) examination, which lasted for 9–10 h. Recordings were
performed by using a Compumedics Profusion EEG Recording
System with Neuvo Amplifier. PSG recordings included 16
EEG channels [regarding six brain areas: frontal poles (Fp1/
M2 and Fp2/M1), frontal lobe (F3/M2, F4/M1, F7/M2, and F8/
M1), central (C3/M2 and C4/M1), occipital lobes (O1/M2 and
O2/M1), parietal lobes (P3/M2 and P4/M1), and temporal
lobes (T3/M2, T4/M1, T5/M2, and T6/M1)] based on the
standard 10–20 system, electrooculography (EOG),
electrocardiography (ECG), electromyography (EMG), oral
and nasal respiratory airflow, chest and abdomen breathing
movement, blood oxygen saturation, snoring, leg movement,
and body position. The sampling frequency of the EEG, EOG,
and EMG signals was 500 Hz, while that of the respiration
signal and oxygen saturation were set to 100 and 10 Hz,
respectively. Sleep stages were scored by experienced sleep
technicians, according to the AASM criteria as Wake, N1, N2,
N3, and REM (Saper et al., 2010). The information of the
subjects is shown in Table 1.
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EEG Signal Preprocessing
Segments containing obvious artifacts were removed by visual
inspection. A total of 25194/19150 segments of depressed
patients/healthy participants were obtained (1467/567W
epochs, 4692/2945 R epochs, 1030/545 N1 epochs, 11608/8138
N2 epochs, and 6397/6955 N3 epochs).

The dFC analysis focused on the sleep stages’ switching
periods. The first 30-s epochs at the beginning of each sleep
stage were calculated. These 30-s segments were divided into
three 10-s segments for calculating the dFC. In total, 2739/1936
segments of depressed patients/healthy participants were
obtained for the dFC analysis (313/202 W epochs, 164/258 R
epochs, 427/442 N1 epochs, 1169/774 N2 epochs, and 666/260
N3 epochs).

A fourth-order zero phase shift Butterworth bandpass filter
with a passband of 0.5–50 Hz was applied for signal
preprocessing. The EEG data were estimated and processed in
a moving window of 3 s (with an overlap of 2 s).

Phase Synchronization Estimation
The analysis was performed in the five frequency bands of δ
(0.5–4Hz), θ (4–8Hz), α (8–12Hz), σ (12–16Hz), and β (16–32 Hz).

The WPLI, explained by Vinck et al. and improved by Liao
et al., was calculated to measure the phase synchronization
index for characterizing the FC (Liao et al., 2019). The WPLI
introduces the imaginary part of the cross power spectrum to
weigh the signal for improving the immunity to noise sources;
thus, it can reflect the cortical oscillation relationship between
different parts of the same brain area or between different
brain areas. The WPLI is defined as follows:

WPLIi,j,τ �
∣∣∣∣∣E{sin(Δφi,j,τ)}

∣∣∣∣∣
E{∣∣∣∣∣sin(Δφi,j,τ)

∣∣∣∣∣},

where 0 ≤WPLIi,j,τ ≤ 1, and E () is the expected value operator.
Δφi,j,τ , representing the phase difference between a pair of nodes i
and j, was calculated using the formula

Δφi,j,τ � φi(τ) − φj(τ).
The instantaneous phase φ(τ) is extracted by using a combined

Morlet wavelet, which has a stable passband and a narrow transition
band. A single Morlet complex wavelet is defined as follows:

φ(t) � 1���
πf b

√ e2iπtf c e−
t2
f b ,

FIGURE 1 | Framework of this study.

TABLE 1 | Demographic features and polysomnographic parameters of the
depressed group and controls.

Variable Control Depression p-Value

Gender (male/female) 11/14 15/11 0.910
Age (years) 20.00 ± 1.50 21.60 ± 7.04 0.947
SDS score 40.92 ± 6.99 67.3 ± 9.91 <0.001
HAMD score 2.08 ± 1.57 25.5 ± 6.28 <0.001
Total record time 471.30 ± 52.45 585.05 ± 51.21 /
NREM1 time (min) 24.66 ± 12.88 22.81 ± 15.84 0.447
NREM2 time (min) 176.56 ± 38.86 249.38 ± 88.89 0.002
NREM3 time (min) 144.22 ± 36.97 150.36 ± 62.14 0.766
REM time (min) 81.12 ± 20.70 102.67 ± 47.55 0.270
Total sleep time (min) 426.56 ± 42.04 525.21 ± 71.65 /

The results were expressed as the mean ± standard deviation, except for gender. The
chi-squared test was used for the comparison of gender, and the other comparisons
were assessed using the Mann–Whitney U test.
HAMD, Hamilton Depression Scale; SDS, Self-rating Depression Scale.
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where fc is the central frequency of the wavelet, and fb is the
bandwidth parameter. The combined Morlet wavelet is obtained by
superimposing multiple Morlet wavelets with different center
frequencies fM. The central frequency of the Morlet wavelet is
thus defined as follows:

f M � f L +M × Δf ,M � 0 . . .N − 1,

whereΔf, which is the central frequency spacing of the wavelet, is
0.05 in this study. The corresponding fL and N are defined
according to different frequency bands, such as fL � 0.5 and N =
70 for δ and fL � 4 N = 80 for θ. The Morlet combination is
defined as the following formula:

ψc(t) �
1
C

∑N−1

M�0
σ f M(t) �

1
C

���
πf b

√ e−
x2
f b ∑N−1

M�0
e2iπf Mt ,

where C is the correction coefficient that makes the
amplitude–frequency characteristic passband of the combined
wavelet to be 1. The phase information within a fixed frequency
band will be more accurate because of the high concentration of
the Morlet wavelet in the time and frequency domains. The
wavelet coefficient of the EEG signal S(t), which is obtained from
the electrode at time τ, is defined as follows:

WS(τ) � ∫+∞

−∞
S(t)ψp

C(t − τ)dt � A(τ)eiφ(τ).

“p” represents conjugation. The process and calculation
formula of Morlet wavelet phase extraction can be obtained in
the manuscript of Wang et al. (2011).

Graph Theory
The weighted undirected network was based on the WPLI with
rows and columns corresponding to two electrodes. To evaluate
the characteristics of the weighted undirected network, some
graph theory metrics were used by the Brain Connectivity
Toolbox (BCT) (Rubinov and Sporns, 2010; Rossini, 2021).
GE (global efficiency) and node strength were calculated to
compare the functional networks in healthy participants and
depressed patients. GE can be used to evaluate the separation and
randomness of the cortical network. With respect to node
strength, the sum of link weights around the node can exhibit
the hub of the network. We built a binary network using a
weighting matrix. According to previous research (Achard and
Bullmore, 2007; Jalili, 2017; Kabbara et al., 2018), we fixed the
density value at 0.30 for sparsity thresholding to construct a
sparse matrix.

Rubinov and Sporns (2010) introduced the calculation
formula and representative meaning of the parameters in
graph theory. GE reflects exchanged efficient information in
the network, and the measures quantified the network
efficiency. GE is defined as follows:

FIGURE 2 | Average GE between different sleep stages. Red and blue asterisks denote the significant difference between two stages of the depression group and
the control group, respectively. *p < 0.05, **p < 0.005, and ***p < 0.001 (Bonferroni correction).
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E � 1
n
∑
i∈N

Ei � 1
n
∑
i∈N

∑j∈N ,j≠id
W−1
ij

n − 1
.

Ei is the efficiency of node i. dij is the distance between nodes i
and j, and dij is defined as

dW
ij � ∑W

aij ∈ gi ↔ j
f (Wuv),

where f is a map from the weight to length, and gi ↔ j is the
shortest weighted path between i and j.Wuv is the link value in the
16p16 matrix of the WPLI. In this study, we fixed the density
value at 0.30 for sparsity thresholding to construct a sparse
matrix. Consequently, when the WPLI > the threshold, the
map f indicates that the data are not changed. When the
WPLI < the threshold, the map f represents 0. The node
strength, which can exhibit the hub of the network, is the sum
of the link weights connected to the node in the weighted
network. The node strength is defined as follows:

kWi � ∑
j∈N ,j≠i

Wij,

where Wij is the link weight between nodes i and j.

Statistical Analysis
The statistical tests were carried out on five frequency bands in
depressed patients and controls to access the cortical networks in
depressed patients. The Kolmogorov–Smirnov test was used to
verify the normality of the obtained data. Since GE, node
strength, and WPLI did not satisfy the normal distribution or
the variance homogeneity test, a nonparametric test
(Mann–Whitney U test) was applied. To evaluate the laterality
of the network, a paired T-test was used for the left and right
hemispheres in the depressed patients and controls. The
significance of the differences between the sleep stages for
each frequency band was analyzed by the Kruskal–Wallis test
followed by the post hoc Dunn–Bonferroni test. All the analyses
were performed by IBM statistics software SPSS (version 22.0).

RESULTS

Network Efficiency
The GE values and significant differences between the groups are
shown in Figure 2. The depressed patients had significantly
higher GE values than the controls in all the frequency bands

FIGURE 3 |GE of the depressed and control groups during sleep switching. Red and blue represent the depressed group and control group, respectively. Purple is
the overlapping part of the two groups.
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and sleep stages studied. In addition, the differences between the
patients and controls were greater than those between different
sleep stages within each group.

Dynamic analysis of GE during switching of the sleep stages was
also performed. The average global of the network and changes in
the standard deviation of the two groups over these epochs are
depicted in Figure 3. The standard deviation at the onset of the N3
stage became smaller in θ, α, σ, and β bands in the patient group,
while that in the control group remained at a relatively low level.

Within the depressed and control groups, the differences across
the sleep stages manifested differently in some frequency bands. We
observed different results across Wake, N1, and REM between the
groups. The depressed group had significant differences between
Wake and N1 in all the researched bands, but the controls only
exhibited a significant difference in the σ band, and this comparison
result is opposite to that of the patients. However, the depressed
group did not indicate any significant difference between REM and
N1, but such differences were shown in most bands for the control
group.With the deepening of N-REM sleep, which is fromN1 to N2
and to N3, GE was increasing for both the groups in general, but the
changes in θ and β bands were not so significant. Exceptions were as

follows, in control: the GE of N1 was larger than N2 in the δ and β
bands. Meanwhile, less significant differences were observed in θ for
the two groups.

Network Hubs
To have a better understanding of the network hubs, the node
strength was studied to analyze the differences between the two
groups in the network link weight. Figure 4 and Figure 5 illustrate
the average node strength by color and volume of every electrode,
respectively. Compared with the control group, the depressed
patients were significantly higher in the node strength. All the
comparisons of the node strength between the patients and
controls showed significant differences.

Notably, the point at which the highest value appears varied
with the sleep stage and frequency component. In both the
depressed and control groups, the highest node strength was
recorded in the N3 stage for δ and σ bands, during W for α and β
bands and in the N2 stage for θ band.

There was no significant difference in the dominance
between the depressed and control groups. In almost all the
sleep stages and frequency bands, the node strength of the

FIGURE 4 | Node strength of the depressed group and red indicates a higher node strength.
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central node was significantly higher than that of the
other nodes.

Undirected Connectivity Graphs
The undirected connectivity graphs characterized significant
changes in the WPLI between the depressed and control groups
(Figures 6, 7). The weight of each link was the average of weights of
that link in the networks of all the participants in every sleep stage.
These figures showed the top 30% connectivity in both the groups of
each band and each sleep stage.

The link patterns in the two groups were also different. In the
patient group, there were links between the hemispheres in each
frequency band and sleep stage. On the contrary, the link of the
control group is only observed within each hemisphere, except for
each sleep stage in δ and Wake in θ. But there are many long-
range links inside the hemisphere in the control group.

Furthermore, in most frequency bands and sleep stages, the
anterior cortex was obviously denser than the posterior cortex in
the depressed patients. For the control group, this anterior–posterior
difference was attenuated, and no clear anterior dominance was
noted in the high-frequency bands (σ and β bands).

Lateralization of Network
The asymmetry of the cortical network between the
hemispheres was studied for the depressed and control
groups, respectively. A paired t-test was performed to analyze
the node strength between the left and right hemisphere
belonging to the same sleep stage. The average of node
strength and significant differences between the hemispheres
are indicated in Table 2. No significant differences for each
frequency band and sleep stage were observed in the control
group. In the patients group also, no significant differences were
noted except for the δ band, where the node strength of the
patients’ right hemisphere was significantly higher than that of
the left hemisphere in the W, N2, and R stage.

DISCUSSION

In this study, the differences in the sleep-state functional network
topology of the depressed patientswere analyzed based on theweighted
undirected graph, to provide detailed evidence and potential
biomarkers for the abnormal cortical connectivity in depression.

FIGURE 5 | Node strength of the control group.
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This study showed that the patients had higher global efficiency
during sleep. GE reflects the balanced state of global integration in the
brain network. GE can reflect the balance of functional segregation
and integration (Zhang et al., 2011). The significantly higher GE value
in the depressed patients may indicate the abnormal balance of
functional segregation and integration of the cortical networks
during sleep. Therefore, excessive GE is considered to be a sign of

disordered brain function in the depressed patients (Zhang et al., 2011;
Zhang et al., 2018). This abnormal change was said to indicate more
randombrain network structure in the depressed patients (Latora and
Marchiori, 2001). Similarly, other studies reported an increased
randomness in the brain networks of depressed patients
(Hasanzadeh et al., 2017; Li et al., 2017). It can be seen from the
calculation formula that GE is related to the reciprocal of the network

FIGURE 6 | Undirected connectivity graphs of the depressed group. Red indicates a higher link value. No link indicates that there is no direct functional connection
between the two sites.

TABLE 2 | Average node strength in the left and right hemispheres in the δ band for the depressed and control groups. Since other frequency bands did not demonstrate
differential properties between the left and right hemispheres, only the result of the δ band is shown.

W R N1 N2 N3

C L 2.24 ± 0.39 2.13 ± 0.36 2.19 ± 0.40 2.17 ± 0.38 2.29 ± 0.41
R 2.25 ± 0.38 2.14 ± 0.36 2.20 ± 0.37 2.16 ± 0.37 2.26 ± 0.41

D L 2.44 ± 0.44* 2.38 ± 0.45* 2.38 ± 0.49 2.38 ± 0.42* 2.54 ± 0.49
R 2.49 ± 0.45* 2.42 ± 0.44* 2.39 ± 0.50 2.46 ± 0.47* 2.54 ± 0.50

Bold numbers and * indicate significant difference (p < 0.05).
L, left hemisphere; R, right hemisphere; C, control group; D, depressed group.
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characteristic path length (CPL) (Latora and Marchiori, 2001).
Consequently, the lower CPL of patients reported in previous
research is consistent with the results of our research
(Hasanzadeh et al., 2017). This randomized structure is
thought to be related to the cognitive capacity and
abnormalities in the brain functional networks (Latora and
Marchiori, 2001; Leistedt et al., 2009). Increased
randomization has also been found in fMRI studies (Zhang
et al., 2011; Li et al., 2017). Therefore, it is considered that GE
can be an important tool for depression screening, and its
exploration of differential diagnosis of depression requires
further research.

The results indicated that the strength of most nodes in
depressed patients was significantly stronger than that in
healthy participants, but no change in the node center. The
right hemisphere lateralization was found in δ in patients
during W, N2, and R stages. Previous studies have pointed out
that the dysfunction of the right hemisphere in the depressed
patients seems to be an important cause of abnormal information

processing (Flor-Henry, 1976; Hou et al., 2016). It has also been
reported that patients had less gray matter volume in the right
hemisphere and greater gray matter volume in the left
hemisphere than the healthy controls (Peng et al., 2019). Our
previous research also found some evidence of cortical
lateralization in patients (Lian et al., 2021). In addition,
transcranial magnetic stimulation over the separate
hemisphere can alleviate the imbalance between the
hemispheres and effectively improve the patients’ core
depression factors and anxiety symptoms (O’Reardon et al.,
2007; Carpenter et al., 2017; Cristancho et al., 2019; Li C.-T.
et al., 2020; Wang et al., 2022). The effectiveness of this
treatment should be related to lateralization in patients.
Therefore, the right hemisphere lateralization of the
functional network may be caused by the right hemisphere
dysfunction in patients.

The distinct patterns of cortical connectivity between the depressed
and control group were observed. More links and random structures
emerged between the patients’ left and right hemispheres. This

FIGURE 7 | Undirected connectivity graphs of the control group. Red indicates a higher link value. No link indicates that there is no direct functional connection
between the two sites.
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abnormal link strength may be related to excessive brain network
activation in patients processing information (Rotenberg, 2004).
Multiple studies have pointed out significant increases in the brain
connections in patients (Greicius et al., 2007; Goodman et al., 2021;
Yang et al., 2021). In addition, depression is also considered as a
“disconnection syndrome” (Greening et al., 2014; Chen et al., 2016).
The depressed group exhibited more interhemispheric connectivity
and decreased long-range connectivity. The enhanced functional
connectivity between the hemispheres may be due to disruption of
the integrity of the corpus callosum (Chen et al., 2016), leading to an
unbalanced hemispheric functional coordination. Furthermore,
depressed patients had decreased matter volume in the left
precentral gyrus and increased gray matter volume in the right
thalamus. Abnormal gray matter volume and connectivity
indicated abnormal intrinsic wiring costs of the brain structures,
resulting in abnormal topological properties of functional connectivity
(Zhang et al., 2012; Zhang et al., 2019). The elevated cortisol levels in
the depressed patients caused decreased engagement ofmultiple brain
regions, such as the precuneus, medial frontal lobe, posterior cingulate
cortex, and inferior temporal gyrus (Peters et al., 2016). These may be
possible reasons for the decrease in long-range links during sleep in
depressed patients.

Meanwhile, the abnormal cortical network structure in depressed
patientsmay be related to the anterior cingulate cortex and themedial
temporal lobe. In our results, the region around the central lead has
higher node strength and more number of links than other regions.
Related research has suggested that enhanced functional connectivity
in the anterior cingulate cortex andmedial temporal lobe is associated
with depression (de Kwaasteniet et al., 2013). In the past few decades,
researchers have studied depression with the EEG signals (Sun et al.,
2019; Li X. et al., 2020; Hasanzadeh et al., 2020; Olejarczyk et al., 2020;
Olejarczyk et al., 2021; Liu et al., 2022). Increased randomness in the
brains of depressed patients has been proven in resting-state EEG
studies. Studies using other features, such as the characteristic path
length and clustering coefficient, also indicated that the brain
functional networks in the depression group were deviated
compared to the healthy controls. This study focused on sleep-
state EEG because we believe sleep-state EEG is less affected by
the subjective factors. We can more clearly describe the sleep-state
EEG network in depressed patients using the graph theory from the
aspects of connection strength, brain region difference, and
connection pattern. An enhanced link between the left and right
hemispheres of patients explains increased brain network randomness
in depression proposed in previous studies.

Previous studies have suggested that the severity of depression
and the presence of other concomitant symptoms affect cortical
functional connectivity (Cerullo et al., 2014; Liu et al., 2021).
Further research should be carried out in the depressed patients
of varying severity and other concomitant symptoms. In addition,
age and gender will also be important factors affecting the
cortical EEG (Mann and Roschke, 2004; Campos-Beltran and
Marshall, 2021; Hong et al., 2021; Putilov et al., 2021).
Although we ensured that there were no significant gender
differences between the depressed and control groups in this
study, due to the small sample size, more participants should
be recruited to reduce the gender impact. We anticipated to
enroll the patients with mild and moderate depression in

further study and explore the performance of network
metrics in different depressed patient groups. We expected
that the analysis of performance of network metrics can provide a
quantitative reference for clinical research and can be used for the
screening of depressive disorder and severity of depression.

In summary, this study showed that depressed patients displayed a
random cortical functional network and right lateralization in the δ
band during sleep. It also revealed detailed differences in the sleep-
state functional network topology between the depressed patients and
healthy participants, which may contribute to the understanding of
the neural mechanisms of depression pathology, as well as the
diagnosis and treatment of depression. This study indicated that
functional network topology can clearly describe the differences in
depressed patients, for which it was thought to be a powerful tool for
the physiology and pathology of mental diseases.
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