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Deep active learning with high structural
discriminability for molecular
mutagenicity prediction
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The assessment ofmutagenicity is essential in drug discovery, as it may lead to cancer and germ cells
damage. Although in silico methods have been proposed for mutagenicity prediction, their
performance is hindered by the scarcity of labeled molecules. However, experimental mutagenicity
testing can be time-consuming and costly. One solution to reduce the annotation cost is active
learning, where the algorithm actively selects themost valuablemolecules from a vast chemical space
and presents them to the oracle (e.g., a human expert) for annotation, thereby rapidly improving the
model’s predictive performance with a smaller annotation cost. In this paper, we proposemuTOX-AL,
a deep active learning framework, which can actively explore the chemical space and identify themost
valuablemolecules, resulting in competitive performancewith a small number of labeled samples. The
experimental results show that, compared to the random sampling strategy, muTOX-AL can reduce
the number of training molecules by about 57%. Additionally, muTOX-AL exhibits outstanding
molecular structural discriminability, allowing it to pick molecules with high structural similarity but
opposite properties.

In the field of modern drug discovery, mutagenicity has received great
attention due to its high correlation with carcinogenicity and heritable
variation1–3. Mutagenicity refers to permanent, transmissible changes in the
quantity or structure of the genetic material of cells and organisms. These
changesmay occur in individual genes, gene clusters or entire chromosomes
which can impact processes such as cell growth, differentiation, and
apoptosis4,5. Many approved drugs have been withdrawn from the market
because they have been identified as mutagens in humans or animals. A
typical instance is furazolidone, it has been used to treat diarrhoea and
enteritis caused by bacteria or protozoan infections, including traveler’s
diarrhoea, cholera and bacteremic salmonellosis. However, Nitrofurans are
recognized by The Food and Drug Administration as mutagens and car-
cinogens, and canno longer be used since 19916. Therefore, for newdrugs, it
is important to assess theirmutagenicity which helps to evaluate their safety
and potential risks, as well as provides a basis for toxicological assessment.

One of the most widely usedmethods for identifying themutagenicity
of chemicals is the Ames test1,7–9. However, due to the enormous number of
molecules in chemical space, it is practically impossible to test every
molecule for its mutagenicity using experimental methods. As an alter-
native, in silico methods have gained significant attention for predicting

mutagenicity before clinical drug development trials10–12. Researchers have
proposed some deep learning methods aimed at accurately predicting
molecular mutagenicity13–19. However, since traditional mutagenicity pre-
dictionmethodsusually train the entireneural network at onceusing labeled
data, the scarcity of labeled data limits the performance of in silicomethods
in prediction tasks20,21. Furthermore, from the perspective of data selection,
not all molecules contribute significantly to the improvement of model
performance. Randomly selectingnewmolecules fromavast chemical space
for wet lab annotation often entails substantial resource consumption and
may not necessarily lead to equivalent performance gains22. Therefore, the
current challenge is to expand the labeledmolecules as fast as possible froma
large chemical space at a lower cost.

Active learning is a promising strategy to tackle this challenge23, it
adopts a human-in-the-loop paradigm, employing an iterative strategy of
data collection, annotation, and training to assist experimentalists in guiding
both data collection and model training. It involves targeted exploration
within a vast chemical space, utilizing a specific set of rules to identify
molecules that maximize the enhancement of model performance. By
validating these molecules through wet lab experiments, active learning
achieves greater improvements inmodel performance compared to random
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selection strategies, all within the same experimental annotation budget. As
a result, active learning reduces annotation costs and saves time through
active guidance. Specifically, active learning commences with a small set of
labeled data. The initial labeled data is used to train a deep learning model,
and a well-designed query strategy is used to select a subset of the unlabeled
data which are deemed to be the most informative ones. The molecules are
submitted to a wet lab for labeling and then combined with the original
labeled data to form a larger training set, which is used to retrain themodel.
The selection process is repeated until the desired performance is achieved
or the annotation budget is exhausted. Due to the success in computer
vision24–26, active learning has gained increasing attention from researchers
in drug discovery and has been applied in various fields such as guiding
chemical reaction screening22,27 and drug-drug interaction28. Recent reviews
have also emphasized the significant role of active learning in scientific
discovery, which has gradually attracted the attention of researchers29. It
should be noted that Bayesian optimization and active learning are two
different approaches. Bayesian optimization focuses on finding the optimal
value, while active learning is to reduce the amount of labeled data by
selecting the most informative examples to label30.

Current research has demonstrated that, when using the same anno-
tation cost, exploringmore informative regions through active learning can
achieve higher performance than random exploration31,32. With the query
strategy guided by the active learning algorithm, we can effectively evaluate
the informativeness of each molecule and selectively explore the vast che-
mical space, reducing the huge annotation cost. Therefore, active learning is
well suited for mutagenicity prediction problems where annotation costs
are high.

In this paper, we present a deep active learning pipeline called muTOX-
AL (mutagenicity TOXicity-Active Learning), for molecular mutagenicity
prediction. By iteratively selecting informative samples through active learn-
ing strategies, it significantly reduces the cost of data labeling and accelerates
the process of drug discovery. The results show that compared to passive
random exploration strategies, active learning can greatly reduce the required
training sample size. Specifically, the contributions of this paper include:

1) We propose an active learning strategy for molecular mutagenicity
prediction. We use uncertainty (i.e., samples that are hard to distinguish by
themodel) as ameasure of sample informativeness and score the samples by
a trained uncertainty estimation module (see “Methods” for more details).

2) Compared to traditional and state-of-the-art active learning meth-
ods, our approach achieves the same testing accuracy using fewer samples,
especially compared to the random strategy, reducing about 57%of training
molecules. This demonstrates the effectiveness and superiority of our
method.

3)We provide an explanation for why the selectedmolecules aremore
informative via t-SNE visualization. The visualization demonstrates that

these molecules are located closer to the classification boundary of the
model,which further supports their value in improvingmodelperformance.

4) muTOX-AL demonstrates significant structural discriminability.
On the one hand, the model prefers selecting samples with low structural
similarity, preventing overfitting of simple relationships.On the other hand,
the model also considers samples with similar structures but different
properties, providing amore comprehensive understanding of the complex
relationship between molecular structure and mutagenicity.

Results
muTOX-AL overview
muTOX-AL is developed upon a deep active learning technique. The
schematic diagram of active learning is shown in Fig. 1: A small number of
labeled samples are used for training, and then the trained model is used to
select themost informative samples from the unlabeled pool. These samples
are given to the oracle for labeling, and then added to the labeled pool. We
use uncertainty as a measure of sample informativeness (see “Methods” for
more details).

The whole framework of muTOX-AL, as shown in Fig. 2, consists of
four parts: the feature extraction module, the backbone module, the
uncertainty estimation module, and the loss calculation module. In the
training phase (Phase 1), the total training set is divided into two parts: an
initialed labeled pool of 200 randomly selected samples and an unlabeled
pool of all remaining samples. In this case, we make all samples in the
unlabeledpool “blind,” i.e., the labels are not visible to themodel, to simulate
a real scenariowith fewer labeled samples andmore unlabeled samples. The
molecular fingerprints and descriptors of the samples in the initial labeled
pool are extracted as input features for the backbone module, which is
responsible for predicting mutagenicity of the molecules. The uncertainty
estimationmodule is used to determine the informativeness of the samples.
The deeper features obtained by the hidden layer of the backbone module
are extracted as input of the uncertainty estimationmodule. Finally, models
are jointly trained by calculating the total loss of the backbone module and
the uncertainty estimation module. In the active learning phase (Phase 2),
the trained model calculates the uncertainty scores of all samples in the
unlabeled pool. Next, the samples with the highest uncertainty scores are
given to the oracle for annotation and added to the labeled pool. Here, the
labels of the selected “blind” samples are revealed to the model to simulate
the interaction with a real wet lab scenario. The above process is iterated
until the entire label budget is exhausted or a predefined stopping condition
is met.

Statistical analysis of the dataset
In this study, muTOX-AL was trained using the TOXRIC dataset, and the
performance of the proposed method was verified. TOXRIC dataset was

Fig. 1 | The schematic diagram of active learning.
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collected and collated from the TOXRIC website (https://toxric.bioinforai.
tech/home) and includes a total of 7495 compounds33. We used a rando-
mized five-fold cross-validation approach for model training and perfor-
mance validation, where each fold was used in turn as a test set, while the
remaining four folds were used as a training set (total training set sample
size = 5988 samples). To gain insight on the distribution of mutagenicity
labels aswell as chemical structure domains of the samples in the dataset, we
performed the following statistical analyses on the TOXRIC dataset.

First, we performed a labeling analysis on the overall data, as shown in
Fig. 3A. TOXRIC dataset is balanced, the number of positive samples was
4196, accounting for 56.05%, while the number of negative samples was
3289. Overall, the prediction scores on the dataset are less affected by the
class imbalance.

Second,we visualized the chemical space inwhich theTOXRICdataset
is embedded. We generated MACCS fingerprints for the samples in the
dataset and performed principal component analyses, the results are shown
in Fig. 3B. The distribution of the dataset is relatively diffuse, suggesting that
the data are highly variable in the direction of the principal components and
that the samples occupy a broad and dispersed chemical space.

Finally, we investigated the relationship between structural domains
andmutagenicity in the TOXRIC dataset. Using locally sensitive hash forest
indexing and k nearest neighbors (kNN) plots, we represent and visualize
the TOXRIC dataset as a minimum spanning tree (MSP)34, with the
structural similarity distribution illustrated in Fig. 3C. This visual repre-
sentation enabled the identification of clusters of structurally homogeneous
molecules for both non-mutagens and mutagens. It was observed that it is
challenging to directly distinguish molecular subgroups with specific sub-
structures based on structure alone. In addition, the distribution of each fold
of data in the five-fold cross-validation was analyzed (see Supplementary
Fig. 1 for details). Specifically, we visualized the distribution of samples over

the structural domains in the training and test sets bymeans of theMSP. In
each fold, the molecules in the test set are uniformly distributed in different
structural domains.

Comparisons between different active learning methods
To verify the effectiveness of the muTOX-AL, we compare muTOX-AL
with other active learning strategies suchas randomstrategy,margin-based
active learning strategy35, entropy-based active learning strategy36, TOD37

active learning strategy and Core-set active learning strategy38. We use
some common evaluation metrics for active learning performance. Fig-
ure 4A, B shows the Accuracy and F1-score of muTOX-ALwith five active
learning baselines on themutagenicity dataset, where the x-axis represents
the number of labeled samples per cycle and the y-axis represents the
accuracy and F1-score, respectively, other metrics can be found in Sup-
plementary Fig. 4. From Fig. 4A, B, we can see that muTOX-AL performs
best among all active learning methods, which uses only about 24% of
training sets to achieve 95% of the accuracy of supervised learning using all
training samples (5988 samples). The result demonstrating that our active
learning strategy is able to exploremore informativemolecules in chemical
space, which are usually more helpful for prediction tasks. The random
strategy has the lowest performance because it does not make use of any
information about the samples. In addition, the four remaining active
learning strategies outperform the random strategy but perform slightly
worse than muTOX-AL.

To further illustrate that active learning can significantly reduce
labeling costs, we set the test performance threshold to 95% of the
supervised learning performance using all training samples (5988 sam-
ples), comparing the sample sizes used by different active learning stra-
tegies at this threshold. For example, if the supervised learning accuracy
using all samples is 84.76%, the performance threshold is 80.52%. From

Fig. 2 | The overall structure of muTOX-AL. In Phase 1, the molecules in the
labeled pool are used for training. The five features of molecules are extracted as the
input for the backbonemodule, which is used to classify themolecules’mutagenicity.
The deeper features obtained by the hidden layer of the backbone module are
extracted as input of the uncertainty estimation module, which is used to estimate

the uncertainty of the samples. Finally, models are jointly trained by calculating the
total loss of the backbonemodule and the uncertainty estimationmodule. In Phase 2,
the uncertainty estimationmodule calculates the uncertainty scores of all samples in
the unlabeled sample pool. The samples with the highest uncertainty are selected and
given to oracle for annotation, and then updates the labeled sample pool.
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Table 1, we can see that our approach uses the least number of samples on
most metrics when reaching the same performance threshold. The ran-
dom query strategy always uses the largest number of molecules, indi-
cating that random exploration in chemical space tends to enter relatively
less informative regions and thus requires more annotation costs than
active learning strategies. In particular, the last row of the table calculates
the percentage of samples reduced by using the active learning strategy of
this paper compared to the random query strategy.We can see that active
exploration of the chemical space using the active learning strategy can

reduce the training sample size by up to nearly 57%. This result is pro-
mising and demonstrates that using active learning methods can sig-
nificantly reduce the number of samples that need to be labeled while
maintaining competitive performance. In addition, our backbonemodule
can achieve competitive test performance on a variety of evaluation
metrics compared to severalmachine learning anddeep learning baselines
when using all training samples (see Supplementary Table 7).

In addition, to demonstrate the generalization performance of
muTOX-AL on external data, we additionally collected mutagenicity data

Fig. 3 | Statistical analysis of the TOXRIC dataset. A Label distribution of TOXRIC dataset. B Principal component analysis density for the TOXRIC dataset. C The
TOXRIC dataset uses tree-based molecular similarity visualizations represented by LSH and MSP.

Fig. 4 | Active learning results of mutagenicity classification of muTOX-AL and
five active learning baselines. A Accuracy of the six algorithms in different active
learning cycles. B F1-score of the six algorithms in different active learning cycles.
The red line represents the muTOX-AL algorithm proposed in this paper, the dark
blue line represents the TOD active learning strategy, the purple line represents the

Core-set active learning strategy, the blue line represents the margin-based active
learning strategy, the green line represents the entropy-based active learning strat-
egy, and the orange line represents random query strategy. The figure reports the
mean and standard deviation (shaded regions) from ten repeated experiments.
Source data for the curves are shown in Supplementary Data.
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from Li et al.21 as an external testing set (Li’s Dataset), excluding samples
identical to those in the TOXRIC dataset. The performance of two models
was evaluated: (i) a model trained using the active learning algorithm to
select themost informative 2600TOXRIC samples (trained and savedwhen
the “Number of Labeled Samples = 2600” in Fig. 4); (ii) a model trained
using all 5988 TOXRIC samples (i.e., the four subsets of the 7485 samples)
without active learning (Supplementary Table 7). The performance of the
above two models on Li’s dataset is shown in Supplementary Fig. 5 and
Supplementary Table 8. It can be found that the performance of the model
trained using only 2600 TOXRIC samples on Li’s dataset is close to the
performance of the model trained using all 5988 TOXRIC samples. It is
encouraging and confirms that active learning can be instructive for data
collection and selection. In particular, with an uncertainty sampling strategy
in the presence of a large chemical space, we are able to achieve competitive
performance by selecting only a small number of samples, which greatly
reduces human and resources consumption due to exhaustive random
screening. In terms of Precision and Specificity, the model trained with the
2600 samples selected by muTOX-AL even outperforms the model trained
with all 5988 samples, which is consistent with the findings in the current
research22. This indicates that not all samples have a positive effect on the
model performance and proves that active learning is able to select themost
helpful samples for model training and remove the redundant samples
effectively.

The uncertainty estimation module designed in muTOX-AL is
more helpful in selecting informative samples
This section attempts to explore the effect on the ability to select informative
samples when the feature dimension or network depth of the uncertainty
estimation module is increased. Supplementary Fig. 6 shows the schematic
diagram of the two uncertainty estimationmodules. Supplementary Fig. 6A
displays the structureof twodifferenthidden layer featureswhichareused as
input to the uncertainty estimation module, while Supplementary Fig. 6B
presents the structure in that only a single hidden layer feature is used, but
with an additional linear layer and aRectified LinearUnit (ReLU) activation
function.

Figure 5 illustrates the active learning curves for the two structures
described above (source data for the curves and p-values calculated by
independent t-tests are shown in Supplementary Tables 9, 10). It can be
observed that the performance is slightly decreased while the two structures
shown in Supplementary Fig. 6 are used. It is also demonstrated that the
uncertainty estimationmodule designed inmuTOX-ALcanbemorehelpful
in selecting informative samples. There are two possible explanations for
this: (i) a simple network may be more effective in improving performance
when the dataset is not large enough; (ii) increasing the complexity of the
uncertainty estimation module when the backbone module network is not
deep may not be conducive to the joint training of the models.

Furthermore, we conducted ablation studies on the input features of
our model, with detailed results provided in Supplementary Fig. 3.

muTOX-AL can select samples that are closer to the classifica-
tion boundary
To further confirm the effectiveness of our deep active learning strategy, we
first use the embeddings of data points before the classifier (“Embeddings”
shown in Fig. 2) to be downscaled by t-SNE visualization and display it in a
two-dimensional map. Figure 6A shows the visualization of both muTOX-
AL and the random query strategy.

In Fig. 6A, the boundary between positive and negative samples
becomes more apparent as the cycle progresses, indicating that with the
sample size increasing, the trained model can distinguish between positive
and negative samples more evident. In addition, the data distribution of the
proposed method is more concentrated, and the boundary is clearer than
that of the random query strategy, which implies that muTOX-AL has a
better prediction performance. Additionally, in each cycle, the samples
selected using the random query strategy are scattered throughout the
embedding space, whereas the samples selected by the proposed muTOX-
AL are more concentrated on the classification boundary, which suggests
that muTOX-AL can successfully select the samples with the highest
uncertainty, i.e., those samples that are more difficult for the model to
classify. To further quantify the distance of the sample from the classifica-
tion boundary, we train a support vectormachine (SVM) classifier based on
the Radial Basis Function kernel function using the same embeddings
mentioned above and calculate the distances of the selected samples from
the SVM classification hyperplane in each cycle. As the distances calculated
by SVMare signed values, we take absolute values for them, plot violin plots
and use t-tests to obtain p-values for both distributions. The results are
shown in Fig. 6B, with the x-axis representing muTOX-AL and random
strategy and the y-axis representing the absolute values of the distances.
Figure 6B demonstrates that the p-values are consistently less than 0.05 in
different cycles, indicating that the distribution of the distances is sig-
nificantly different between the two methods and that muTOX-AL picks
samples with smaller distances.

In total, muTOX-AL tends to select samples closer to the classification
boundary. By preferentially selecting such samples and feeding them into
the model for training, this strategy allows the model to fully learn the
distribution of features of the most informative samples, thus achieving
competitive performance with a small size of the dataset.

muTOX-AL has high molecular structural discriminability
Generally, samples with lower molecular similarity are considered to have
greater uncertainty and vice versa39. However, this need not always be the
case, small molecules with similar structures may have opposite properties,
and a typical example is chiral molecules40,41. For instance, thalidomide,
which has both levorotatory and dextrorotatory structures, the levorotatory
body is therapeutic and can reduce early pregnancy reactions, but its chiral
partner (the dextrorotatory body) is mutagenic42. Therefore, a model is
considered to have high structural discriminability when the samples
selected by the model satisfy both of the following conditions: (i) low
structural similarity between the selected samples; (ii) the presence of
molecules with similar structures but opposite properties.

First, to demonstrate muTOX-AL is able to select samples with low
structural similarity, we analyzed the structural similarity among the sam-
ples selected by each active learning cycle. Specifically, we used the Tani-
moto coefficient43 to calculate the structural similarity between the 300
samples selected in each cycle. For each cycle, a heatmap of the selected
samples was plotted (Fig. 7A). To directly compare the difference in
structural similarity between the selected structures from different cycles,
the distribution of structural similarity is shown in the box plots (Fig. 7B).

Figure 7A, B shows that the small molecules with higher structural
similarity are selected in early cycles. We argue that this phenomenon may
be related to the samples selected in the initial cyclesbeing fewand thepower
of deep learning is not sufficiently exploited, which echoes the slightlyworse

Table 1 | Comparison of the sample sizes used to achieve 95%
of the supervised learning performance in different active
learning methods (i.e., performance obtained by training with
all training samples in the dataset)

Accuracy F1-
score

AUC Precision Recall Specificity

muTOX-AL 1438 1228 1727 1505 701 1963

Random 2204 1842 1853 1970 1633 >2600

Margin 1574 1350 1835 1560 1039 1944

TOD 1826 1565 1868 1843 1231 2398

Entropy 1545 1308 1835 1578 1009 1939

Coreset 1881 1634 1622 1720 1602 2174

Reduced
sample size (%)

34.8% 33.3% 6.8% 23.6% 57.1% >24.5%

“Reduced sample size” indicates the percentage reduction in the number of samples in muTOX-AL
compared to the random strategy. The bold text in the table indicates the best performance.
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performance of our model in the initial cycles. As the number of cycles
increases, the performance of the model increases rapidly, which indicates
thatmuTOX-AL tends to select sampleswith lower structural similarity, i.e.,
molecules with higher uncertainty.

Second, to illustrate that muTOX-AL is able to selects samples with
similar structures but opposite properties. Figure 8 and Supplementary
Table 11 show the sets of molecules with such properties selected by each
active learning cycle. As can be seen in Fig. 8, these sets ofmolecules include
isomers, chiral molecules, and molecules with varying numbers of sub-
stituents, etc. These small variances often result in a polarity change of the
molecule, which leads to contrary properties. However, for feature extrac-
tion methods based on molecular structure, there is low feature differ-
entiation between these structurally similar molecules; in other words, the
uncertainty of such molecules is significant.

In addition, to demonstrate that the muTOX-AL can still select samples
with similar structures but opposite properties in the out-of-domain case
(outsideof theTOXRICdataset),wecollected50molecules fromthe literature,
which are not present in the TOXRIC dataset (see Supplementary Data).
Subsequently, the uncertainty of eachmoleculewas obtainedusing the trained
muTOX-AL (the model after the 9th iteration of active learning), and these
samples were ranked according to the uncertainty value. Finally, we selected
the top 30% of the ranked samples to find the set of molecules with similar
structuresbutoppositeproperties among them,andthe resultsaredisplayed in
Fig. 9. Therefore, muTOX-AL can find samples with similar structure but
opposite properties, which are also the ones with high uncertainty.

Overall, although themodel tends to select samples with low structural
similarity, samples with similar structures but different properties are
still considered, and this avoids the over-fitting of simple relationships. This
is the evidence of the high molecule structural discriminability of
muTOX-AL.

Discussion
This paper presents a deep active learning framework, muTOX-AL, for
molecular mutagenicity prediction. In particular, our framework is
straightforward but efficient, and it has high structural discriminability. In
this research, we exploit multiple features of molecules and design an
uncertainty estimation module to calculate the uncertainty of all samples,
achieving competitive classification performance by selecting a few samples
with the highest uncertainty scores. In particular, our approach is able to
reduce the sample sizebyup to57%compared to the randomquery strategy.
Ablation experiments on input features andmodule design demonstrate the
soundness of our method. In addition, we use t-SNE to visualize the pro-
jectionof embeddingson a two-dimensional space anduse SVMto calculate
the distances of the selected samples from the classification boundary,
demonstrating that muTOX-AL can select the most informative samples.
Then, muTOX-AL exhibits remarkable structural discriminability by both
selecting molecules with low structural similarity to prevent overfitting of
simple relationships and considering samples with similar structures but
different properties to provide a more comprehensive understanding of the
complex relationship between molecular structure and mutagenicity.

Fig. 5 | Accuracy and F1-score in different active learning cycles using two
uncertainty estimationmodules, where “Original” denotes the original structure
in Fig. 2. A, B “More Features” indicates the use of two hidden layer features of the
backbone module, andC,D) “Deeper Layers” indicates the addition of a linear layer

and a ReLU activation function. The figure reports themean and standard deviation
(shaded regions) from ten repeated experiments. Source data for the curves and
p-values calculated by independent t-tests are shown in Supplementary Tables 9,
10 and Supplementary Data.
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Besides the effectiveness, the ease of use and expansibility can also make
muTOX-AL more widely used in practice.

There are many promising directions to investigate as future works.
First, there is an issue that the large majority of the tasks in drug
development suffer, which is that the labeled data are often difficult to
obtain. Active learning provides opportunities to address these questions
collectively via application to the whole chain of drug discovery, such as
drug combinations, drug sensitivity, and drug-target interaction predic-
tion. Second, beyond the field of drug discovery, our method can also be
extended to the task of predicting the mutagenicity of industrial che-
micals. Addressing the issue of class imbalance in industrial chemical
data and effectively incorporating active learning will be a promising
direction. Third, better molecular representation can improve the per-
formance of deep learning. How to combine representation learning with
active learning is an area of future interest. Fourth, the generalization

ability of models is one of the current research challenges in many fields.
Therefore, combining active learning with advanced transfer learning
strategies can better address the issue of generalization. Finally, there is
an urgent need for further research to develop more suitable active
learning algorithms for compounds44. For instance, designing active
learning algorithms that consider specific structures affecting molecular
properties (structural alerts). We believe that active learning can better
help drug discovery and other fields in the future.

Methods
Datasets
TOXRIC dataset33. The raw data used in this study were the C. Xu’s
Ames data collection45, which is one of the commonly used data sets for
developing the prediction models. The entire database was prepared as
follows46. Firstly, any inorganic molecules, that is, those without carbon

Fig. 6 | t-SNE visualization results of the samples selected by muTOX-AL and
random sampling strategy. A t-SNE visualization for muTOX-AL and random
strategy in five active learning cycles. The dark dots indicate the positive (dark
yellow) and negative (dark blue) samples selected by the model after the active
learning cycle. The lighter dots indicate all positive (light yellow) and negative (light
blue) samples outside the selected samples in the training set. B Violin plot of the

distance distribution from the SVM classification hyperplane of the selected samples
in five active learning cycles. Asterisks indicate independent t-test p-value
***p ≤ 0.001, where cycle1 has a p-value of 1.32e-16, cycle3 has a p-value of 1.24e-15,
cycle5 has a p-value of 1.53e-48, cycle7 has a p-value of 2.48e-31 and cycle9 has a
p-value of 1.02e-18. Source data for the figure are shown in Supplementary Data.
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Fig. 7 | Structural similarity analysis of the samples selected by muTOX-AL. A
The heatmap of structural similarities between the selected samples for each cycle.
Darker blue means higher structural similarity, and darker red means lower

structural similarity.B the distribution of structural similarity for each cycle. Source
data for the figure are shown in Supplementary Data.
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atoms within the structure are removed. Secondly, the molecules with
unspecified stereochemistry were removed. Thirdly, the molecules were
standardized using the InChI key47. Finally, duplicates were identified
and removed using the InChI key across the data collection. Ultimately,
in total, 7485 compounds were used for themodel building. The data sets
contained 4196 mutagens and 3289 non-mutagens. The dataset is
available in https://toxric.bioinforai.tech/home.

Li’sdataset21. The dataset was constructed fromdata sourced from three
distinguished databases: the Chemical Carcinogenesis Research Infor-
mation System, the National Toxicology Program, and the Instituto
Superiore di Sanita for Salmonella Typhimurium. Further refinement
was achieved by removing samples that were duplicates of those found in
theAmes dataset, thus establishing a new, independently verified external
test set. Statistical analysis of the dataset was shown in Supplemen-
tary Fig. 2.

Molecular descriptors and fingerprint features
Thefingerprint features include three sets of topological path-based features
(Extended Connectivity Fingerprints with a diameter of 2, 4, and 6, ECFP2,
ECFP4, and ECFP6) and one set of substructure-key SMARTS-based fea-
tures MACCS.

ECFP fingerprints are generated based on the connectivity between
atoms in amolecule, taking into account the bonds, hybridization states, and
functional groups. ECFP fingerprints use circular fingerprints, where the
radius of the circle defines themaximumdistance between atoms that canbe
included in a particular substructure. According to different radius, ECFP is
divided into ECFP2, ECFP4, and ECFP6.

MACCSfingerprints are generated based on the structural features of a
molecule, such as the presence of aromatic rings, functional groups, and

atom types. Each structural key in the fingerprint is assigned a binary value,
where 1 indicates the presence of the key and 0 indicates the absence of
the key.

RDKit2D descriptors are selected as input features to complement the
fingerprint features. RDKit2D descriptors can provide information on a
wide range of molecular properties, including size, shape, polarity, and
flexibility. Some examples of RDKit2D descriptors include the number of
atoms, the molecular weight, the number of rotatable bonds, and the
number of hydrogen bond donors and acceptors.

Deep active learning strategy
Active learning aims at selecting themost informative samples fromapool
of unlabeled samples in the entire sample space. Defining the amount of
information in a sample is the biggest challenge in the active learning
problem. To describe the deep active learning scenario proposed in this
paper, an unlabeled sample pool consisting of N unlabeled molecules is
assumed to be UN ¼ fðx1; y1Þ; :::; ðxN ; yN Þg, where xi is the feature of the
molecule and yi is the toxicity label corresponding to xi. First, we ran-
domly select M samples from UN and give them to the oracle for anno-
tation, which generates an initial pool of annotated samples
LM ¼ fðx1; y1Þ; :::; ðxM ; yMÞg. Then the five features of all samples in the
initial annotated sample poolLM are extracted and input to the backbone
module f b. The output of the hidden layer of the network, which can be
considered the embeddings of the input features, is fed into the uncer-
tainty estimation module f u. The model’s parameters are updated by
jointly optimizing f b and f u according to the defined total loss.

Framework architecture
Feature extraction module. Molecular fingerprints and molecular
descriptors arewidely used in similarity searching and classification. Four
molecular fingerprints and one molecular descriptor are used in this
work. They are ECFP2, ECFP4, and ECFP6 (2048 bits), MACCS keys
(MACCS, 166 bits) and RDKit2D. All the fingerprints and molecular
descriptors were calculated by the RDKit python package.

Backbone module. As shown in Fig. 2, considering the higher dimen-
sionality of extended connectivity fingerprints compared to other fea-
tures, wefirst stitch ECFP2, ECFP4, andECFP6 in the channel dimension
to form a three-channel fusion feature, which is then fed into two con-
volution blocks. In each convolutional block, a 1D convolutional layer
and an average pooling layer are used first to extract features and remove
redundant information, thus reducing the parameters of the network.
Then the ReLU activation function follows, which introduces a non-
linear element to enhance the representation ability of the network and
mitigate the problems of gradient disappearance and gradient explosion.
With the two convolution blocks mentioned above, it is possible to fur-
ther extract features while reducing the dimensionality, which helps in
the subsequent classification steps. The output of the convolution block is
stitched with the lower dimensional MACCS fingerprints and RDKit2D
descriptors to achieve feature fusion. The fused features are then fed into a
linear block consisting of a linear layer, a ReLU layer and aDropout layer,
where the Dropout layer is used to prevent overfitting of the input.
Finally, a linear classifier is used to classify the mutagenicity of the
molecule.

Uncertainty estimation module. In active learning, the key issues are
the criteria for measuring the informativeness of the samples and the
design of the query module. For the first problem, the most commonly
used measure is uncertainty-based querying, i.e., querying the samples
that are most difficult for the model to classify. Uncertainty-based
querying has been shown to be more applicable in classification pro-
blems with small samples48, so we choose uncertainty as the measure of
informativeness. In deep learning, the loss is often used as a measure of
the difference between the predicted and true values of a model. The
samples with the largest losses can usually be regarded as the samples

Fig. 8 | Molecules with high structural similarity and opposite mutagenicity
labels. These samples were selected by muTOX-AL because of their high
uncertainty.
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which are the hardest for the model to distinguish. Therefore, the
uncertainty estimation can be converted into the loss estimation. Since
the model loss values cannot be computed for samples without true
labels, a module needs to be designed to estimate the loss values for
unlabeled samples. By training an uncertainty estimation module using
labeled samples, we can predict the loss of unlabeled samples and thus
estimate their uncertainty. The uncertainty estimationmodule designed
in this paper is shown in Fig. 2. Tomake good use of features extracted by
the hidden layer of the backbone module, we use it as input to the
uncertainty estimation module. Inspired by Yoo et al.49, the module
consists of a global average pooling layer, two linear layers and a ReLU
layer, where the global average pooling layer aims to integrate feature
information, and the introduction of linear and non-linear activation
layers enables the network to learn better. A final linear layer maps the

features into a scalar that outputs the uncertainty scores of unlabeled
samples. We did not use more scaled hidden features, as this could have
led to a more complex structure of the uncertainty estimation module,
which would decrease the prediction performance. We confirmed this
view in Results.

Loss calculationmodule. Having defined the structure of the backbone
module f b and the uncertainty estimationmodule f u, we need to focus on
how they are jointly optimized. The total loss of themodulesLtotal consists
of two main components: the backbone module loss Lb and the uncer-
tainty estimation module loss Lu, which will be described
separately below.

The output of a labeled sample x after the backbone module is
ŷ ¼ f bðxÞ. In the binary classification task, we usually use binary cross-

Fig. 9 | Molecules with high structural similarity and opposite mutagenicity
labels reported in the literature. These samples were selected by muTOX-AL
because of their high uncertainty. Literature reporting the mutagenicity of the

molecules as well as the pubchem CID of the molecules are given. The detailed
information can be found in Supplementary Data.
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entropy loss. It is

Lbðŷ; yÞ ¼ �ðy � logðŷÞ þ ð1� yÞ � logð1� ŷÞÞ ð1Þ
Wewant the output of the uncertainty estimationmodule to be as close

as possible to the binary cross-entropy loss of the sample, so the uncertainty
estimation task canbe considered a regression task. Inusual regression tasks,
the most used metric is the mean squared error (MSE)
Luðŷ; yÞ ¼ 1

n

Pn
i¼1ðŷ � yÞ2, but the scale of loss changes as the training

progresses, so using MSE as the loss is not a sensible choice. Here, we
determine the trend of uncertainty score estimation by comparing the losses
of a pair of samples within a mini-batch. Assuming that the k th pair of
samples ðxi; yiÞ and ðxj; yjÞ in the samemini-batch in the sample pool, their
outputs after the uncertainty estimation module are l̂i and l̂j, and the actual
cross-entropy losses are li and lj, we can define the loss for this pair of
samples after the uncertainty estimation module as

Lu l̂
k

batch; l
k
batch

� �
¼ maxð0;�signðli � ljÞ � ð̂li � l̂jÞ þ ξÞ ð2Þ

where signð�Þ is the sign function, margin ξ is a very small number. Equa-
tion(2) indicates that when li � lj and l̂i � l̂j have the same sign, i.e., the loss
of a pair of samples shows the same trend, the value of Lu is zero. Otherwise,
the parameters of the uncertainty estimationmodule need to be updated by
gradient descent.

Thus, given the size B of the mini-batch, the total loss of the two
modules can be defined as

Ltotal ¼
1
B

X
ðx;yÞ2B

Lbðŷ; yÞ þ 2λ �
X
ðxk ;ykÞ2B

Lu ð̂l
k

batch; l
k
batchÞ

0
@

1
A ð3Þ

By optimizing the total loss Ltotal, we can jointly optimize the para-
meters of the backbone module and the uncertainty estimation module
during the training process, thus estimating the uncertainty of unlabeled
samples during the active learning phase. Algorithm 1 is elaborated to the
algorithm logic and conceptual modeling.

Algorithm 1. The muTOX-AL framework for molecular mutagenicity
prediction

Input:
unlabeled pool U
The testing set T
The number of initialized label setM
The number of active learning cycles C
The number of samples labeled in each cycle K
The backbone module f b, The uncertainty estimation module f u
1: Randomly selectM samples from U to gain initialized labeled set L
2: For c in C:
3: Train the backbone module f b and the uncertainty estimation

module f u using L
4: Evaluate the performance on f b using the testing set T
5: Estimate the uncertainty of the unlabeled samples U by f b and f u
6: Select the top K samples with the highest uncertainty
7: Query their labels from the oracle to obtain LK
8: L L∪LK
9: c cþ 1
10: End

Evaluation metrics
Two commonly evaluation metrics in classification tasks are used as eva-
luation criteria: accuracy and F1-score. First, we define four indicators: True
Positive (TP) means that the positive sample has a positive predictive value
and the prediction is correct; True Negative (TN) means that the negative
sample has a negative predictive value and the prediction is correct; False
Positive (FP) means that the positive sample has a positive predictive value

and theprediction iswrong; FalseNegativemeans that thepredicted valueof
the negative sample is negative and the prediction is correct.

Accuracy represents the proportion of samples correctly predicted to
all samples and is themost common evaluationmetric in classification tasks
and is defined as

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð4Þ

F1-score is defined in Eq. (5), which combines the Precision and Recall
metrics.

F1-score ¼ 2×Precision×Recall
Precisionþ Recall

ð5Þ

where

Precision ¼ TP
TPþ FP

ð6Þ

Recall ¼ Sensitivity ¼ TP
TPþ FN

ð7Þ

Specificity refers to the proportion of TN samples that are correctly
predicted as negative by themodel, i.e., the probability of TN samples being
correctly predicted as negative.

Specificity ¼ TN
TNþ FP

ð8Þ

Experimental settings
All our experiments are implemented in thePyTorch framework.We set the
batch size as 128 and used a 5-fold cross-validation to increase the gen-
eralizability of the experimental results. We mainly followed the training
strategy in the active learning setup, following a five-fold cross-validation
strategy, where all the dataset was randomly divided into five subsets, and in
each fold, four of them were selected as the total training set for the model,
and the remaining one subset was used to test themodel’s performance (the
test set), which is not visible at all times. Thewhole active learning process is
divided into nine cycles. At the beginning of the experiment (cycle = 0), we
randomly select 200 samples from the unlabeled sample pool to train the
initialized network and select 300 samples from the unlabeled pool in each
active learning cycle. The backbone module is trained jointly with uncer-
tainty estimation module. Separately, the backbone module is trained with
300 epochs, using an SGD optimizer with a learning rate of 5e-3, a
momentum parameter of 0.9 and a weight decay parameter of 5e-4. The
uncertainty estimation module is trained using an Adam optimizer with a
learning rate of 8e-3. The margin in Eq. (2) is set to one. For each method,
ten randomized replicate experiments are conducted using different initial
labeled samples, and we report the mean of the ten experiments at the end.
Detailed information on active learning training strategies can be found in
the “Active learning training strategies in muTOX-AL” section of the
Supplementary Information.

Active learning methods for comparison
We have compared muTOX-AL with the following five active learning
methods.

Random strategy. The random strategy is the most common active
learning baseline. In each active learning cycle, theK samples are selected
randomly from the unlabeled pool and given to the oracle for annotation.

Margin-based active learning strategy35. The margin-based active
learning strategy is a uncertainty-based method. It defines the
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uncertainty by measuring the difference between the prediction prob-
abilities of different categories. TheK samples with the lowest margin are
added to the labeled pool. The margin is defined as

X ¼ arg minx2UðPðŷ1jxÞ � Pðŷ2jxÞÞ ð9Þ
Entropy-based active learning strategy36. The entropy-based active
learning strategy is an uncertainty-based method. In information theory,
the uncertainty of the data is higher if it has a higher entropy. Therefore,
the entropy of the unlabeled samples is calculated and ranked. The K
samples with the highest entropy are added to the labeled pool. The
entropy is defined as

X ¼ arg maxx2UEx ¼ arg min
XY
i¼1

PðyijxÞ× log PðyijxÞ
( )

ð10Þ

TOD active learning strategy37. The temporal output discrepancy TOD
active learning strategy based on temporal output discrepancy is an
uncertainty-based approach. It defines the uncertainty by calculating the
discrepancy of model output at different active learning cycles.

Core-set active learning strategy38. The Core-set active learning
strategy is a diversity-based approach which is also a common baseline in
active learning trying to find a core set that makes the model’s perfor-
mance on the core set and the whole dataset as close as possible.

Machine learning-based mutagenicity prediction methods for
comparison
MIL. Feeney et al.19 propose amachine learning approach based onmulti-
instance learning for molecular mutagenicity prediction, particularly for
metabolically activated compounds like aromatic amines. By grouping
metabolites and their parent compounds under a single mutagenicity
label, MIL circumvents the need for individual labels, capturing the
mutagenic potential through structural considerations. MIL achieved
excellent performance on themutagenicity molecular dataset, so we used
it as one of the baselines for muTOX-AL.

Enhanced_Representation_Mutagenicity. Shinada et al.18 system-
atically considered and evaluated combinations of structures and mole-
cular features that have the greatest impact on model accuracy, using
various classification models (including classic machine learning and
deep learning models) to assess these features. We selected Structural
Representation, Molecular Descriptors, and Genotoxicity Descriptors
features, with the Random Forest classifier as our evaluation baseline.

Statistics and reproducibility
The study employed five fold cross-validation with ten random repetitions,
reporting the mean and standard deviation across these repetitions. The
p-values reported in the study were calculated using independent t-tests.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The TOXRIC dataset is available in https://toxric.bioinforai.tech/home33.
All the datasets can be found in Github: https://github.com/Felicityxuhy/
muTOX-AL and Figshare: https://doi.org/10.6084/m9.figshare.26379805.
All data supporting the findings of this paper are available within the paper
and Supplementary Data.

Code availability
The code for this work can be found in Github: https://github.com/
Felicityxuhy/muTOX-AL and Figshare: https://doi.org/10.6084/m9.
figshare.26379805.
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