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Abstract

Dysfunctions in bottom-up emotion processing (EP), as well as top-down emotion

regulation (ER) are prominent features in pathophysiology of major depressive dis-

order (MDD). Nonetheless, it is not clear whether EP- and ER-related areas are

regionally and/or connectively disturbed in MDD. In addition, it is yet to be known

how EP- and ER-related areas are interactively linked to regulatory behavior, and

whether this interaction is disrupted in MDD. In our study, regional amplitude of

low frequency fluctuations (ALFF) and whole-brain functional connectivity (FC) of

meta-analytic-driven EP- and ER-related areas were compared between 32 healthy

controls (HC) and 20 MDD patients. Then, we aimed to investigate whether the

EP-related areas can predict the ER-related areas and regulatory behavior in both

groups. Finally, the brain–behavior correlations between the EP- and ER-related

areas and depression severity were assessed. We found that: (a) affective areas are

regionally and/or connectively disturbed in MDD; (b) EP-ER interaction seems to

be disrupted in MDD; overburden of emotional reactivity in amygdala may

inversely affect cognitive control processes in prefrontal cortices, which leads

to diminished regulatory actions. (c) Depression severity is correlated with FC of

affective areas. Our findings shed new lights on the neural underpinning of

affective dysfunctions in depression.
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1 | INTRODUCTION

Major depressive disorder (MDD), as the most common psychiatric

disorder, is the leading cause of disability worldwide (Friedrich, 2017).

Emotional dysfunctions in MDD patients are associated with biased

processing and impaired regulation of affective stimuli (Joormann &

Stanton, 2016; LeMoult & Gotlib, 2018). Emotion processing

(EP) impairments are mainly manifested by excessive attention

towards negative events and nonadaptive interpretation of ambiguous

situations (Beck & Bredemeier, 2016; Bermpohl et al., 2009). In
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addition, emotion regulation (ER) impairments are widely related to

insufficient suppression of negative affect and inadequate savoring of

positive ones (Joormann & Gotlib, 2010; Liu & Thompson, 2017).

In healthy individuals, the neural underpinnings of EP and ER have

been extensively interrogated across heterogeneous task-based fMRI

experiments, and quantitatively consolidated for spatial convergence

using meta-analytic approaches (Buhle et al., 2014; Stevens &

Hamann, 2012). Two robust meta-analyses not only revealed the

regional basis of EP (Riedel et al., 2018) and ER (Kohn et al., 2014), but

also proposed step-wise heuristic models. The former leveraged a data-

driven method in order to classify a wide range of EP experiments

according to similar brain activation patterns. Thereby, five large-scale

brain networks were delineated and functionally decoded as follows:

(a) an internal or external stimulus is perceived in the visual and

(b) auditory cortices; (c) the salient information of stimulus is processed

in the insula, anterior cingulate cortex (ACC), and subcortical regions;

(d) the self-referential importance of the stimulus is appraised in the

medial prefrontal and posterior cingulate cortex (PCC); (e) the emo-

tional reaction is generated in the amygdala and fusiform gyri (Riedel

et al., 2018). In addition, the latter integrated the existing ER experi-

ments into three distinct neural subtracts, behaviorally inferenced as

follows: (a) evaluation of regulation in the ventrolateral prefrontal cor-

tex (VLPFC); (b) initiation of regulation in the dorsolateral prefrontal

cortex (DLPFC); and (c) execution of regulation in the angular gyrus,

pre-supplementary motor area (pre-SMA) and SMA (Kohn et al., 2014).

Interestingly, a growing body of literature highlighted the importance

of interacting brain systems implicated in bottom-up EP and top-down

ER (Kelley, Wagner, & Heatherton, 2015; Ochsner, Silvers, &

Buhle, 2012). Indeed, it seems that EP and ER are not distinct but rather

interrelated processes (Morawetz, Alexandrowicz, & Heekeren, 2017;

Morawetz, Bode, Baudewig, & Heekeren, 2017). A recent mediation

model suggested that higher amygdala reactivity prompts greater pre-

frontal activity, which in turn generates and/or reflects greater regula-

tory behavior (Doré,Weber, & Ochsner, 2017).

In MDD, the abnormal activation of EP- and ER-related areas

have been extensively reported (Heller et al., 2013; Kanske, Heissler,

Schönfelder, & Wessa, 2012; LeWinn et al., 2018; Tahmasian

et al., 2013; Walter, 2017). Previous reviews (Jaworska, Yang, Knott, &

MacQueen, 2015; Joormann & Stanton, 2016; Park et al., 2019; Rive

et al., 2013) and meta-analyses (Hamilton et al., 2012; Palmer,

Crewther, & Carey, 2015; Picó-Pérez, Radua, Steward, Menchón, &

Soriano-Mas, 2017; Schulze, Schulze, Renneberg, Schmahl, &

Niedtfeld, 2019) demonstrated hyperactivity of the amygdala and

hypoactivity of the lateral prefrontal cortex during exposure to nega-

tive stimuli, which implies the augmented emotional reactivity and

diminished ability to downregulation, respectively (Also see Ferri

et al., 2017; Wolfensberger, Veltman, Hoogendijk, Boomsma, & de

Geus, 2008; Young et al., 2017) for blunted amygdala reactivity, (Rive

et al., 2013) for compensatory prefrontal recruitment and (Müller

et al., 2017; Saberi, Mohammadi, Zarei, Eickhoff, & Tahmasian, 2020)

for meta-analytic divergence in MDD). Affective dysfunctions in

MDD can be also observed in localizable and whole-brain resting-

state fMRI metrics e.g., amplitude of low frequency fluctuations

(ALFF) (Cheng et al., 2019; Song, Shen, Mu, Mao, & Wang, 2020) and

functional connectivity (FC) (He et al., 2019; Song, Zhang, &

Huang, 2016). Neuroimaging meta-analyses on ALFF studies pointed

to accentuated processing of salient information in the insula/ACC

(Li et al., 2017; Wang et al., 2017; Zhou et al., 2017), augmented emo-

tional reactivity in the amygdala (Ma et al., 2019) and diminished cog-

nitive control in the prefrontal cortex (Wang et al., 2017; Zhong,

Pu, & Yao, 2016) (Also see (Gray, Müller, Eickhoff, & Fox, 2020) which

did not replicate previous ALFF findings in MDD). In addition, a previ-

ous review (Mulders, van Eijndhoven, Schene, Beckmann, &

Tendolkar, 2015) and a meta-analysis (Kaiser, Andrews-Hanna,

Wager, & Pizzagalli, 2015) showed altered FC in the neural networks

underlying the processing and cognitive control of emotions. Impor-

tantly, reduced coupling of amygdala-prefrontal activation in MDD, in

contrast to healthy individuals, may suggest a deficient EP-ER interac-

tion (Erk et al., 2010).

Nonetheless, it is not clear which hypothesis-driven EP-

(i.e., visual, auditory, attention, appraisal and response) (Riedel

et al., 2018) and ER-related areas (i.e., evaluation, initiation, and exe-

cution) (Kohn et al., 2014) are regionally/connectively disturbed in

MDD. Such a model-based approach has the major advantage of

targeting the consistent brain areas which are obtained from statisti-

cal convergence across previous neuroimaging findings (Schilbach

et al., 2014). In addition, it is yet to be known how EP- and ER-

related areas are interactively linked to regulatory behavior (Doré

et al., 2017), and whether this interaction is disrupted in MDD. Fur-

thermore, the association of depression severity with affective cir-

cuitries have been previously highlighted (He et al., 2019), but needs

to be further addressed with model-based EP- and ER-related areas.

Importantly, our knowledge of depression neuropathology has been

widely constructed using 3Tesla (3T) imaging setups, however, the

clinical utility of ultra-high field 7T scanner is predominantly rec-

ommended considering enhanced signal-to-noise ratio (SNR)

(Beisteiner et al., 2011) and amplitude of signal change (van der

Zwaag et al., 2009). Specifically, the recent evidences of 7T imaging

revealed dysfunctional affective circuitries, which were not detect-

able with lower field strengths (Morris et al., 2019; Sladky

et al., 2013).

Therefore, using a 7T functional imaging device, our study was

designed (a) to compare regional ALFF and whole-brain FC of EP-

(Riedel et al., 2018) and ER-related areas (Kohn et al., 2014) between

healthy controls (HC) and MDD patients (b) to interrogate the interac-

tions of EP- and ER-related areas in HC and MDD; (c) to investigate

the brain–behavior correlation between the EP- and ER-related areas

and MDD severity. Firstly, we hypothesized that EP- and ER-related

areas are regionally and/or connectively disturbed in MDD. In particu-

lar, we expected sensory/attention biases, appraisal/response exag-

gerations and insufficient evaluation/initiation of regulation. Secondly,

we hypothesized a disrupted pattern of EP-ER interaction in MDD.

Thirdly, we expected that EP- and ER-related alterations are linked

with severity of MDD.
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2 | METHODS

2.1 | Subjects

Twenty-five MDD patients and 37 HC were recruited through local

advertisements in Otto-von-Guericke University Magdeburg. All the

participants were right-handed native German speakers (Table 1). The

diagnosis of unipolar major depression was made by a clinical psychia-

trist (M. W.) according to ICD-10. Exclusion criteria for all subjects

were acute physical illness, substance abuse or dependence, history

of traumatic head injury, any other psychiatric or neurological disor-

ders and scanning issues such as claustrophobia or having metal

object in the body. Some subjects were excluded due to excessive

head motions during scanning. Finally, data of 20 MDD patients and

32 HC were analyzed. This study was approved by the local Ethics

Committee of Otto-von-Guericke University Magdeburg and all par-

ticipants signed an informed consent.

2.2 | Psychometric scales

Depression severity was assessed with the 17-items Hamilton

Depression Rating Scale (HDRS-17). Regulatory behavior was exam-

ined by the German questionnaire “Skalen zum Erleben von

Emotionen (SEE)” (Behr and Becker, 2004). SEE measures emotion

experience in seven subscales: (a) emotion acceptance, (b) emotion

overload experience, (c) emotion deficiency experience, (d) somatic

symbolization of emotions, (e) imaginative symbolization of emotions,

(f) emotion regulation experience, (g) self-control experience. We

used the “emotion regulation experience” subscale of SEE. Better abil-

ity to regulate positive and/or negative affect is reflected in the

greater scores. Of note, SEE is a well-established scale with a

sufficient internal consistency (Cronbach alpha = .70), robust test–

retest stability (correlation coefficient = .81, after 10 weeks), and sat-

isfactory convergent/discriminant validity (Behr and Becker, 2012).

2.3 | Resting-state image acquisition

Magnetic resonance images were acquired through a high resolution

7T scanner (Siemens, Erlangen, Germany) with a 32-channel head

array coil. Participants were instructed to stay relaxed and awake,

while having their eyes closed during the scanning session. In order to

reduce head movements, the heads of subjects were fixed using foam

pads. Anatomical images were collected with an MPRAGE sequence

(TE = 2.73 ms, TR = 2,300 ms, TI = 1,050 ms, flip angle = 5�, band-

width = 150 Hz/pixel, isotropic voxel size = 0.8 mm). Functional

images were acquired with an EPI sequence (TE = 22 ms,

TR = 2,800 ms, flip angle = 80�, bandwidth = 2,246 Hz/pixel, isotropic

voxel size = 2 mm, 280 timepoints, 62 interleaved ascending axial

slices, acquisition time = 13 min).

2.4 | Preprocessing

First, MRI images were visually checked for distortion artifacts.

Preprocessing steps were performed using DPARSF4.4 (Yan, 2010)

running on MATLAB2018a. The first five volumes were discarded

because of magnetization destabilization. Functional images were

temporary corrected, spatially realigned, and co-registered to the

structural images. The functional images were then normalized to the

Montreal Neurological Institute (MNI) template (2*2*2) and smoothed

with a 6 mm full-width-half-maximum (FWHM) Gaussian kernel. The

structural images were segmented to gray matter (GM), white matter

TABLE 1 Demographic and clinical
variables in MDD and HC groups

MDD HC T/X2 value p-value

Sample size 20 32 – –

Age (years) 40.05 ± 13.828 29.03 ± 6.832 t = −3.319 .003

Gender (M: F) 8:12 19:13 X2 = 1.851 .174

Medication (n)

NaSSA 1 – – –

SSRI 2 – – –

SSNRI 3 – – –

Tricyclic 2 – – –

Non-declared 6 – – –

Naive 6 – – –

Psychometrics (mean ± SD)

HDRS-17 21.35 ± 4.31 1.31 ± 2.03 t = −19.471 .0001

SEE 8.40 ± 3.658 13.13 ± 2.862 t = 4.224 .0001

Abbreviations: HC, healthy control; HDRS, hamilton depression rating scale; MDD, major depressive

disorder; NaSSA, noradrenergic and selective serotonergic antidepressant; SEE, skalen zum erleben von

emotionen; SSNRI, selective serotonin and norepinephrine reuptake inhibitor; SSRI, selective serotonin

reuptake inhibitor.
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(WM) and cerebrospinal fluid (CSF) and normalized to MNI space

(2*2*2). In addition, nuisance covariates (i.e., Friston-24 motion

parameters, WM and CSF signal) were regressed out. Finally, the lin-

ear trend of the time-series was removed and a band-pass filter

(.01–.10 Hz) was applied. Five MDD patients and five HC with exces-

sive head motion during scanning were excluded (translation >1.5 mm

and rotation >1.5 angle in any direction). Of note, average root mean

squared (RMS) (HC = .0715, MDD = .0860, t = −1.466, p = .149) and

mean frame-wise displacement (FD) (Jenkinson, Bannister, Brady, &

Smith, 2002) (HC = .0405, MDD = .0490, t = −1.549, p = .134) were

not statistically differed between MDD and HC groups.

2.5 | Regional ALFF and whole-brain FC
measurements

Five EP- and three ER-related seeds (Table S1 and Figure S1) were

respectively selected from the meta-analytic-driven maps of Riedel

et al., (2018) (https://anima.inm7.de/studies/Riedel_Emotion_

MetaAnalysis_2018) and Kohn et al., (2014) (https://anima.inm7.de/

studies/Kohn_EmotionRegulation_2014). Each EP-related seed con-

sisted of several concatenated regions: (a) visual (middle frontal gyrus

[MFG], lingual gyrus and left cuneus), (b) auditory (left insula, superior

temporal gyrus [STG] and right cingulate gyrus), (3) attention (frontal

gyrus, insula, cingulate gyrus and thalamus), (d) appraisal (MFG and

left posterior cingulate cortex [PCC]) and (e) response (right middle

temporal gyrus [MTG], amygdala and left fusiform gyrus). In addition,

each ER-related seed consisted of several concatenated regions:

(a) evaluation (VLPFC as the functional surrogate of left and right infe-

rior frontal gyrus [IFG]), (b) initiation (DLPFC as the functional surro-

gate of pre-central gyrus and right MFG) and (c) execution (angular

gyrus, pre-supplementary motor area [pre-SMA] and SMA). Our large-

scale seeds were not compartmentalized to provide a more complete

and coherent appreciation of the affective substrates (see [Lindquist,

Wager, Kober, Bliss-Moreau, & Barrett, 2012; Morawetz et al., 2020]

for existing debate regarding the locationist vs. constructionist per-

spectives, where the former assumes affective processes as indepen-

dent neurobiological foundations, and the latter assumes affective

processes as consequences of network interactions). Therefore, the

ALFF and FC values were averaged across the regions associated with

each large-scale seed.

Individual ALFF and FC calculation was performed using

DPARSF4.4 (Yan, 2010). First, the time-series of whole-brain voxels

were extracted for each subject. Voxel-wise ALFF represented the

average square root of power spectrum within 0.01–0.10 Hz range

(Zou et al., 2008). Regional ALFF was calculated using the “explicit

masks” of EP- and ER-related areas, which exclude the ALFF analysis

to our selected seeds. Besides, whole-brain FC represented the corre-

lation coefficient between the mean time-series of each seed and the

time-series of whole-brain voxels. ALFF and FC measures were trans-

formed by Fisher r-to-z transformation for normalization of data dis-

tribution. Individual ALFF and FC z-maps were subsequently used for

second-level analysis.

2.6 | Between-group comparison analysis

Second-level analysis was performed using SPM12 (http://www.fil.ion.

ecl.ac.uk/spm). Independent two-sample t-tests were used to compare

the regional ALFF and whole-brain FC z-maps of EP- and ER-related

seeds between MDD and HC groups. Age, gender and mean FD were

treated as covariates in our group comparisons. Voxel-forming thresh-

old (p < .001) and cluster extend threshold (K > 20 voxels) were applied.

Correction for multiple comparisonwas performed by family-wise error

(FWE) (p < .05). Results that survived Bonferroni correction were con-

sidered significant (p FWE < .003) [i.e., p FWE / 2 (ALFF and FC) * 8 (num-

ber of seeds)]. SPM anatomy toolbox3 (Eickhoff et al., 2005) was used

for anatomical identification of the results. Brain figures were plotted

using BrainNet Viewer (Xia,Wang, & He, 2013).

2.7 | Mediation analysis

A mediation analysis was conducted with structural equation model-

ing (SEM) in both groups. SEM is consisted of measurement (outer)

versus structural (inner) models (Martynova, West, & Liu, 2018). The

measurement model is conceptually similar to factor analysis, con-

sisting of the paths (loadings/weights) as the contribution of observ-

able variables (indicators) to latent constructs (factors). Additionally,

the structural model shows the interconnection of latent exogenous

(independent), endogenous (dependent) and mediator variables

through regression coefficients (Tarka, 2018).

Our mediation analysis was implemented using SmartPLS3 (http://

www.smartpls.com). Partial least square (PLS-SEM) is predominantly

recommended for predictive/exploratory modeling (Hair, Risher,

Sarstedt, & Ringle, 2019), and importantly, does not necessitate strin-

gent and impractical distributional assumptions (Hair, Ringle, &

Sarstedt, 2013). Since FC results involve a seed and a target region, it

could provide some complexities in our mediation model. Instead, ALFF

as a localizable metric was eligible to delineate the “pure” interactions

of the model-based EP- and ER-related areas. In our model, ALFF

values of group-comparison-derived EP-related seed(s) were entered

as the indicator(s) of exogenous variable, SEE was selected as the indi-

cator of endogenous variable, and ALFF values of group-comparison-

derived ER-related seed(s) were entered as the indicator(s) of mediator

variable. Of note, a supplementary analysis was performed to show that

our mediation model is not confounded by the second-level covariates

(Table S2). This model reveals regression coefficients including direct

effects (β EP!ER, β ER!SEE, β EP!SEE), an indirect mediation effect as the

multiplication of direct effects (β EP!ER * β ER!SEE) and a total effect as

the summation of direct and indirect effects ([β EP!SEE] + [β EP!ER * β

ER!SEE]). Since the distributional properties of estimates are not known

in PLS, parametric significance tests cannot be used to test whether

outer loadings and path coefficients are significant (Streukens & Leroi-

Werelds, 2016). Instead, statistical inferencewould be possible through

nonparametric bootstrapping procedure. We set 10,000 subsamples in

our bootstrapping analysis as previously advised (Streukens & Leroi-

Werelds, 2016).
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2.8 | Brain–behavior correlation analysis

The associations of depression severity (HDRS-17) with regional ALFF

and whole-brain FC z-maps of EP- and ER-related seeds were

assessed using Pearson correlation. Age, gender, and mean FD were

treated as covariates. Voxel-forming threshold (p < .001) and cluster

extend threshold (K > 20 voxels) were applied. Correction for multiple

comparison was performed by family-wise error (FWE) (p < .05).

Results that survived Bonferroni correction were considered signifi-

cant (p FWE < .003) [i.e., p FWE/2 (ALFF and FC) * 8 (number of seeds)].

3 | RESULTS

3.1 | Between-group comparison results

3.1.1 | Between-group comparisons of regional
ALFF and whole-brain FC in EP-related seeds

MDD patients had an increased ALFF of the response seed (right

amygdala) (Table 2 and Figure 1), enhanced FC between the visual

seed and medial prefrontal cortex (MPFC), increased FC between the

auditory seed and right DLPFC, and reduced FC between the atten-

tion seed and right Inferior parietal lobule (IPL). All results survived

FWE and Bonferroni correction. Other group-differences were not

significant (Table 3 and Figure 2).

3.1.2 | Between-group comparisons of regional
ALFF and whole-brain FC in ER-related seeds

MDD patients had a decreased ALFF of the initiation seed (left

DLPFC) (Table 2 and Figure 1), reduced FC between the evaluation

seed and right intra-parietal sulcus (IPS) and reduced FC between the

initiation seed and left VLPFC. All results survived FWE and

Bonferroni correction (Except left DLPFC). Other group-differences

were not significant (Table 3 and Figure 2).

3.2 | Mediation analysis results

According to the between-group comparisons of regional ALFF, EP

(exogenous variable) was indicated by the ALFF of response seed

(right amygdala). Although the initiation seed (left DLPFC) did not sur-

vive Bonferroni correction, ER (mediator variable) was indicated by

the ALFF of initiation seed (left DLPFC) for further exploration of EP-

ER model (Doré et al., 2017). Regulatory behavior (endogenous vari-

able) was also indicated by the SEE scores. Since our latent variables

were represented with a single indicator, path loadings were fixed at

one number. We indicated that the second-level covariates (age, gen-

der, and FD) cannot significantly predict the mediator/endogenous

variables in both groups (Table S2). In addition, bootstrapping analysis

did not show any significant EP-ER findings in HC group (Table 4 and

Figure 3). In MDD group, however, higher ALFF of right amygdala

predicted lower ALFF of left DLPFC (β = −.604, p < .001) and weaker

regulatory behavior in total (β = −.391, p < .002). Although left DLPFC

was not a “full” mediator (i.e., the indirect effect (β Amygdala!DLPFC * β

DLPFC!SEE) was non-significant), still it makes the total effect signifi-

cant (Table 4 and Figure 3).

3.3 | Brain–behavior correlation results

3.3.1 | Correlation of depression severity with
regional ALFF and whole-brain FC of EP-related seeds

Our findings indicated that HRDS-17 is not significantly correlated

with the ALFF of EP-related seeds. However, HRDS-17 was

TABLE 2 Altered regional amplitude of low frequency fluctuations of emotion processing and regulation seeds in MDD compared with HC
group (p < .003, FWE- and Bonferroni-corrected)

EP/ER Step Seed P FWE Cluster size Target Contrast MNI (X,Y,Z)

Emotion processing Visual MFG, LG, CUN n/s – – – –

Auditory IC, STG, CG n/s – – – –

Attention FG, IC, CG, TH n/s – – – –

Appraisal MFG, PCC n/s – – – –

Response MTG, AMY, FuG .003 184 R AMY HC < MDD 32, −20, −16

Emotion regulation Evaluation VLPFC n/s – – – –

Initiation DLPFC .014 76 L DLPFC HC > MDD −38, 18, 46

Execution AG, (pre) SMA n/s – – – –

Note: DLPFC was FWE-corrected and Bonferroni-uncorrected.

Abbreviations: AG, angular gyrus; AMY, amygdala; CG, cingulate gyrus; CUN, cuneus; DLPFC, dorsolateral prefrontal cortex; FG, frontal gyrus; FuG,

fusiform gyrus; HC, healthy control; IC, insular cortex; LG, lingual gyrus; MDD, major depressive disorder; MFG, middle frontal gyrus; MTG, middle

temporal gyrus; PCC, posterior cingulate cortex; pre-SMA, pre-supplementary motor area and SMA; STG, superior temporal gyrus; TH, thalamus; VLPFC,

ventrolateral prefrontal cortex.
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F IGURE 1 Altered regional
amplitude of low frequency
fluctuations of emotion processing
and regulation seeds in MDD
compared with HC group (p < .003,
FWE- and Bonferroni-corrected).
Major depressive disorder (MDD),
healthy control (HC), amygdala (AMY),
dorsolateral prefrontal cortex

(DLPFC)

TABLE 3 Altered whole-brain functional connectivity of emotion processing and regulation seeds in MDD compared with HC group
(p < .003, FWE- and Bonferroni-corrected)

EP/ER Step Seed P FWE Cluster size Target Contrast MNI (X,Y,Z)

Emotion processing Visual MFG, LG, CUN .001 328 MPFC HC < MDD −6, 34, 58

Auditory IC, STG, CG .002 148 R DLPFC HC < MDD 46, 40, 26

Attention FG, IC, CG, TH .0001 295 R IPL HC > MDD 34, −70, 28

Appraisal MFG, PCC n/s – – – –

Response MTG, AMY, FuG n/s – – – –

Emotion regulation Evaluation VLPFC .003 236 R IPS HC > MDD 34, −54, 38

Initiation DLPFC .001 293 L VLPFC HC > MDD −42, 56, 2

Execution AG, (pre) SMA n/s – – – –

Abbreviations: AG, angular gyrus; AMY, amygdala; CG, cingulate gyrus; CUN, cuneus; DLPFC, dorsolateral prefrontal cortex; FG, frontal gyrus; FuG,

fusiform gyrus; HC, healthy control; IC, insular cortex; IPL, inferior parietal lobule; IPS, intraparietal sulcus; LG, lingual gyrus; MDD, major depressive

disorder; MFG, middle frontal gyrus; MPFC, middle prefrontal cortex; MTG, middle temporal gyrus; PCC, posterior cingulate cortex; pre-SMA, pre-

supplementary motor area and SMA; STG, superior temporal gyrus; TH, thalamus; VLPFC, ventrolateral prefrontal cortex.

F IGURE 2 Altered whole-brain
functional connectivity of emotion
processing and regulation seeds in
MDD compared with HC group
(p < .003, FWE- and Bonferroni-
corrected). Major depressive disorder
(MDD), healthy control (HC), middle
prefrontal cortex (MPFC), dorsolateral
prefrontal cortex (DLPFC), inferior
parietal lobule (IPL), intraparietal
sulcus (IPS), ventrolateral prefrontal
cortex (VLPFC)
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TABLE 4 Mediation analysis findings
in MDD and HC groups

Effect

Path coefficient (p-value)

MDD HC

Direct

EP!ER −.604 (.001) −.165 (.308)

ER!SEE .305 (.318) −.126 (.429)

EP!SEE −.198 (.504) −.140 (.484)

Indirect

(β EP!ER * β ER!SEE) −.193 (.468) .022 (.619)

Total

[(β EP!SEE) + (β EP!ER * β ER!SEE)] −.391 (.002) −.119 (.553)

Note: Emotion processing (EP) as exogenous variable is indicated by the amplitude of low frequency

fluctuations (ALFF) of response seed (right amygdala), emotion regulation (ER) as mediator variable is

indicated by the ALFF of initiation seed (left dorsolateral prefrontal cortex) and regulatory behavior as

endogenous variable is indicated by the Skalen zum Erleben von Emotionen (SEE) scores. Direct, indirect,

and total effects are shown for major depressive disorder (MDD) and healthy control (HC) groups.

F IGURE 3 Mediation analysis
findings in MDD. Emotion processing
(exogenous variable) is indicated by
the amplitude of low frequency
fluctuations (ALFF) of response seed
(right amygdala), emotion regulation
(mediator variable) is indicated by the
ALFF of initiation seed (left
dorsolateral prefrontal cortex) and
regulatory behavior (endogenous
variable) is indicated by the Skalen
zum Erleben von Emotionen (SEE)
scores. β coefficients and p-values are
presented for MDD group

TABLE 5 Correlation of depression severity (Hamilton Rating Depression Scale-17) with whole-brain functional connectivity of emotion
processing and regulation seeds in MDD group (p < .003, FWE- and Bonferroni-corrected)

Step Seed P FWE Cluster size Target Contrast MNI (X,Y,Z)

Emotion processing Visual MFG, LG, CUN n/s – – – –

Auditory IC, STG, CG n/s – – – –

Attention FG, IC, CG, TH .0001 361 R IPL Negative correlation 34, −60, 30

Appraisal MFG, PCC n/s – – – –

Response MTG, AMY, FuG n/s – – – –

Emotion regulation Evaluation VLPFC n/s – – – –

Initiation DLPFC .003 188 R VLPFC Negative correlation −46, 50, −8

Execution AG, (pre) SMA n/s – – – –

Abbreviations: AG, angular gyrus; AMY, amygdala; CG, cingulate gyrus; CUN, cuneus; DLPFC, dorsolateral prefrontal cortex; FG, frontal gyrus; FuG,

fusiform gyrus; HC, healthy control; IC, insular cortex; IPL, inferior parietal lobule; LG, lingual gyrus; MDD, major depressive disorder; MFG, middle frontal

gyrus; MPFC, middle prefrontal cortex; MTG, middle temporal gyrus; PCC, posterior cingulate cortex; pre-SMA, pre-supplementary motor area and SMA;

STG, superior temporal gyrus; TH, thalamus; VLPFC, ventrolateral prefrontal cortex.
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negatively correlated with FC between the attention seed and right

IPL (FWE- and Bonferroni-corrected). Other FC results were not sig-

nificant (Table 5 and Figure 4).

3.3.2 | Correlation of depression severity with
regional ALFF and whole-brain FC of ER-related seeds

Our findings indicated that HRDS-17 is not significantly correlated

with the ALFF of ER-related seeds. However, HRDS-17 was nega-

tively correlated with FC between the initiation seed and right VLPFC

(FWE- and Bonferroni-corrected). Other FC results were not signifi-

cant (Table 5 and Figure 4).

4 | DISCUSSION

To our best knowledge, our study provided new evidences for the

model-based regional/connectivity alterations of affective areas, the

disrupted EP-ER interaction, and the affective neural correlates of

depression severity in MDD. Importantly, we aimed to implement a

7T functional imaging setup, well-suited to specify subcortical struc-

tures implicated in EP (e.g., amygdala) (Alkemade et al., 2020; Sladky

et al., 2013; Walter, Stadler, Tempelmann, Speck, & Northoff, 2008),

which are not efficiently documented using lower fields (Metzger

et al., 2010; Morris et al., 2019).

Our regional findings of EP-related seeds revealed an enhanced

ALFF of the right amygdala in MDD (Table 2 and Figure 1). The amyg-

dala is generally involved in the encoding of motivationally relevant

stimuli (Lindquist et al., 2012), generating the expressive and affective

characteristics of the emotional response (Park et al., 2019). Previous

MDD meta-analyses pointed to higher activation of amygdala during

exposure to negative stimuli (Hamilton et al., 2012; Palmer

et al., 2015). The elevated ALFF of amygdala also observed in a

resting-state meta-analysis (Ma et al., 2019) which probably provide

the susceptibility for prolonged/excessive processing of negative

information. Of note, there is evidence that amygdala activity is

affected by clinical confounders, that is, symptom severity, state/trait

anxiety and medication level (Brakowski et al., 2017; Li et al., 2018)

which render inconsistent findings across resting-state studies (Gray

et al., 2020; Li et al., 2017; Zhou et al., 2017).

According to our regional findings of ER-related seeds, ALFF of

the left DLPFC had a reduction trend in MDD (Table 2 and Figure 1).

The DLPFC is routinely associated with the inhibition of subcortical

limbic structures (Dixon, Thiruchselvam, Todd, & Christoff, 2017;

Etkin, Büchel, & Gross, 2015), that is, the contextual modulation of

emotional responses (Doré & Ochsner, 2015; Öner, 2018). Previous

MDD reviews highlighted the attenuated activation of prefrontal

areas during down-regulation of negative affect (Donofry, Roecklein,

Wildes, Miller, & Erickson, 2016; Zilverstand, Parvaz, &

Goldstein, 2017). The decreased ALFF of prefrontal cortex is also

reported in two resting-state meta-analyses (Wang et al., 2017; Zhong

et al., 2016) which probably provide the susceptibility for insufficient

dampening of the irrelevant emotional responses. It should be noted

that prefrontal activity is also affected by clinical confounders

(Brakowski et al., 2017; Li et al., 2018). Furthermore, there is some

evidence that MDD individuals are likely to involve compensatory

prefrontal resources during early/automatic stages of regulation.

However, when emotional experience is already passed and voluntary

control is necessitated, the additional recruitment of prefrontal struc-

tures seems to be impaired (see Rive et al., 2013 for a thorough

review).

Searching for the connectivity alterations of EP-related areas, our

findings showed an enhanced FC between the visual/auditory seeds

and prefrontal areas in MDD (Table 3 and Figure 2). Our model-based

visual/auditory seeds are highlighted in the identification and discrimi-

nation of internal versus external stimuli (Riedel et al., 2018). Impor-

tantly, the causal role of prefrontal areas in top-down modulation of

sensory inputs has been demonstrated (Zanto, Rubens, Thangavel, &

Gazzaley, 2011). Previous MDD studies pointed to the amplified mod-

ulatory role of prefrontal regions, which is presumably resulted in the

sustained anticipation of negative stimuli and/or suppression of posi-

tive ones (Park et al., 2019; Rive et al., 2013). We also found a

reduced FC between the attention seed and the right Inferior parietal

lobule (IPL) in MDD (Table 3 and Figure 2). Our model-driven atten-

tion seed (frontal gyrus, insula, cingulate gyrus, and thalamus) is asso-

ciated with attending to emotionally salient information (Kaiser

et al., 2015; Riedel et al., 2018). The parietal lobule is also activated in

F IGURE 4 Correlation of
depression severity (Hamilton Rating
Depression Scale-17) with whole-
brain functional connectivity of
emotion processing and regulation
seeds in MDD group (p < .003, FWE-
and Bonferroni-corrected). Major
depressive disorder (MDD), inferior
parietal lobule (IPL), ventrolateral

prefrontal cortex (VLPFC)
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attention switching and gaze shifting (Beevers, Clasen, Stice, &

Schnyer, 2010; Calder et al., 2007). The diminished connectivity of

parietal lobule in MDD has been previously reported (Disner, Beevers,

Haigh, & Beck, 2011), which is probably eventuated to dysfunctional

negative stimulus disengagement and/or positive stimulus engage-

ment. Unexpectedly, our appraisal seed did not show abnormal FC in

MDD (Table 3). This model-driven seed (MFG and PCC, as major hubs

of default mode network) is generally implicated in self-relevant inter-

pretation of stimulus meaning (Riedel et al., 2018; Xie et al., 2016).

Actually, the ruminative appraisals of MDD patients are generally

reflected in the hyperconnectivity of MFG and PCC (Manoliu

et al., 2014; Shao et al., 2018). As previously mentioned, we did not

compartmentalize the large-scale meta-analytic-driven EP- and ER-

related seeds, and the intra-connectivity of those concatenated areas

were not interrogated.

ER-related connectivity findings indicated a reduced FC between

the evaluation seed (VLPFC) and intraparietal sulcus (IPS) in MDD

(Table 3 and Figure 2). The VLPFC is responsible for evaluating the

ongoing emotional response, if necessary, inhibiting an initial appraisal

and shifting attention to additional adaptive evidences (Etkin

et al., 2015; Kohn et al., 2014). The IPS is also responsible for inhibi-

tory processes (Osada et al., 2019), detecting the priorities of atten-

tion focusing (Viviani, 2013). Taken together, it can be inferred that

decisions about the regulation necessity, in terms of inhibiting and/or

updating the current emotional state, may not be fairly detected in

MDD (Joormann & Stanton, 2016). In addition, our findings indicated

a reduced FC between the VLPFC and DLPFC in MDD (Table 3 and

Figure 2). The VLPFC is expected to project the regulation urgency to

DLPFC for regulation initiation (Dixon et al., 2017; Kohn et al., 2014).

Thus, it can be concluded that the regulation processes may not be

adequately initiated in MDD (Gross, Uusberg, & Uusberg, 2019).

Notably, our execution seed did not show abnormal FC in MDD

(Table 3). This model-based seed (angular gyrus, pre-SMA, and SMA)

is supposed to be implicated in motor, somatosensory and language

processes in order to generate a regulated emotional state (Kohn

et al., 2014). Interestingly, the normal function of the execution seed

amalgamates the sporadic evidences that MDD patients have enough

executory capacity for re-imagination of scenes and congruent rein-

terpretation, however, they are not likely to make use of ER strategies

spontaneously in everyday situations/non-instructed experiments

(Ehring, Tuschen-Caffier, Schnülle, Fischer, & Gross, 2010; Quigley &

Dobson, 2014). Nonetheless, if patients are exposed to well-justified

instructions triggering the primary stages of regulation (i.e., evaluation

and initiation), they will be subsequently able to implement the execu-

tion processes (Joormann & Stanton, 2016; Liu & Thompson, 2017).

Generally, our findings are consistent with this well-established notion

that various forms of psychopathologies (e.g., MDD) involve

dysfunctionality in some, but not necessarily all of regulatory steps

(Aldao, Nolen-Hoeksema, & Schweizer, 2010; Gross et al., 2019;

Khodadadifar et al., 2020).

Our second question was that how EP- and ER-related areas are

interactively linked to regulatory behavior, and whether this interac-

tion is disrupted in MDD. A previous model of healthy individuals

indicated a normal balance between EP and ER processes. That is to

say, higher amygdala reactivity prompts greater prefrontal activity,

which in turn reflects greater regulatory behavior (Doré et al., 2017).

Nonetheless, our bootstrapping analysis did not show any significant

EP-ER findings in HC group (Table 4 and Figure 3). It seems that EP-

ER homeostatic processes are mainly triggered in response to affec-

tive stimuli in healthy individuals. In our patient group, however,

higher ALFF of right amygdala predicted lower ALFF of left DLPFC

and weaker regulatory behavior in total. Although left DLPFC was not

a “full” mediator (i.e., the indirect effect (β Amygdala!DLPFC * β

DLPFC!SEE) was non-significant), still it makes the total effect signifi-

cant (Table 4 and Figure 3). That MDD patients, contrary to HC group,

exhibited significant EP-ER findings in our task-free assessment was

not quietly unexpected. Indeed, MDD individuals are usually encoun-

tered with endogenous ruminative thoughts which necessitates the

continuous involvement of EP and ER processes, without exposure to

exogenous affective stimuli (Davis, Foland-Ross, & Gotlib, 2018; Dis-

ner et al., 2011). Nonetheless, the pattern of EP-ER interaction in

MDD stands against the prototypic model of normal EP-ER (Doré

et al., 2017). Reduced coupling of amygdala-prefrontal during

reappraisal has been previously highlighted in MDD (Erk et al., 2010).

Casual inferences from effective connectivity findings also indicated

that amygdala hyperarousal is neither adequately transmitted to, nor

sufficiently inhibited by cognitive control hubs (see (Stuhrmann,

Suslow, & Dannlowski, 2011) for attenuated bottom-up/top-down

amygdala-prefrontal connections in MDD). In addition, behavioral evi-

dences implied that higher values in stimulus-specific subjective

arousal eventuates to inefficient and costly implementation of cogni-

tive control strategies (Sheppes et al., 2014), specifically in people

with greater depression scores (Deckert, Schmoeger, Auff, &

Willinger, 2019). Altogether, it seems that overburden of emotional

reactivity in amygdala may inversely affect cognitive control processes

in prefrontal cortices, which leads to diminished regulatory actions.

Future task-based studies can test this hypothesis by directly manipu-

lating amygdala arousal and tracking the elicited effects on mediated

DLPFC recruitment and subsequent regulatory behavior in MDD.

Last but not least, we aimed to assess the association between

depression severity and regional ALFF as well as whole-brain FC of

EP- and ER-areas in MDD patients. We found that depression sever-

ity is not significantly correlated with the ALFF of EP- and ER-related

seeds. Nonetheless, according to our FC analysis, the higher depres-

sion severity, the lower FC between the attention seed and right IPL.

As previously mentioned, the parietal lobule is involved in attention

switching (Beevers et al., 2010; Calder et al., 2007). The reduced con-

nectivity of IPL is probably eventuated to attention biases which sub-

sequently leads to negative affect (Disner et al., 2011; Disner,

Shumake, & Beevers, 2017). We also indicated that the higher depres-

sion severity, the lower FC between the initiation seed (DLPFC) and

right VLPFC (Table 5 and Figure 4). The hypoconnectivity of

frontoparietal regions is widely associated with dysfunctional cogni-

tive control of emotions in MDD (Gudayol-Ferré, Peró-Cebollero,

González-Garrido, & Guàrdia-Olmos, 2015; Kaiser et al., 2015). It

should be noted that several EP- and ER-related areas were regionally
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and/or connectively disturbed in our study, still not associated with

depression severity. First, severity scales are checked by patients' dec-

larations and clinicians' judgments, which are prone to various cogni-

tive biases and thereby, partly confound the reliability/validity of the

brain–behavior analyses. Second, the relationship of brain

dysfunctionality with disorder severity may not be fairly detected by

univariate analyses. That is to say, each disturbed neural structure

may not be directly correlated with symptom severity, still modulates

other circuitry(s) and indirectly affects depression severity.

The present study was not without limitations. First, we acknowl-

edge that replicability at low sample sizes (i.e., 20 MDD and 32 healthy

individuals) is relatively modest (Turner, Paul, Miller, & Barbey, 2018).

Second, the regulatory behavior was measured by SEE questionnaire

in our study. Nonetheless, the generalizability of SEE findings to other

established ER tasks and/or questionnaires (e.g., Emotion Regulation

Questionnaire Gross & John, 2003) should be further assessed. Third,

although we included medicated patients for ecological validity, the

resting-state networks are widely modulated by psychotropic medica-

tions (Tahmasian et al., 2015; Tahmasian et al., 2017; Wang

et al., 2015) (see Greene, Black, & Schlaggar, 2016 for pros/cons of

recruiting a medicated sample). Fourth, there is heterogeneity in how

people process and regulate complex emotions. Individual differences

in various personality traits, psychodynamic characteristics of adult

attachment and coping styles, and social-cognitive factors raise the

possibility of person-centered neurobiological markers underlying EP

and ER (John & Gross, 2007; Scheffel et al., 2019). Thus, those indi-

vidual differences should be considered in future studies to provide a

more faithful representation of depression pathophysiology. Fifth, sta-

tistical mediation is not evidence for true EP-ER causality. Effective

connectivity between amygdala and prefrontal cortex has been previ-

ously investigated in MDD (Stuhrmann et al., 2011), and needs to be

further associated with regulatory behavior. Recent lesion- or TMS-

network mapping (Padmanabhan et al., 2019; Siddiqi et al., 2020) may

also help to reveal the interactions of EP- and ER-related areas with

subsequent regulatory behavior. Finally, major depression is a disorder

of heterogeneity (Buch & Liston, 2020). Although low sample size did

not allow us, but prospective studies can take relevant clinical factors

(i.e., episode onset, number, duration, etc.) into consideration.

5 | CONCLUSION

Our study revealed the regional and/or connectivity alterations of EP-

and ER-related areas in MDD. According to the regional findings, an

elevated emotion response (accentuated ALFF of right amygdala) and

a diminished regulation initiation (attenuated ALFF of left DLPFC) was

observed. According to the whole-brain FC findings, sensory and

attention regions were connectively disturbed which probably suggest

cognitive biases (enhanced FC between the visual/auditory and pre-

frontal areas as well as diminished FC between the attention and IPL

areas). Furthermore, it might be assumed that regulation necessity is

neither sufficiently detected (decreased FC between the VLPFC and

IPS), nor adequately signaled for initiation (decreased FC between the

VLPFC and DLPFC). Our mediation analysis also indicated a contradic-

tory EP-ER interaction in MDD; overburden of emotional reactivity in

amygdala may inversely affect cognitive control processes in prefron-

tal cortices, which leads to diminished regulatory actions. Finally,

depression severity was linked with FC of EP- (attention) and ER-

related (initiation) areas.
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