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Abstract

Background: Endocrine disrupting chemicals (EDCs) are exogenous compounds that interfere with the endocrine
system of vertebrates, often through direct or indirect interactions with nuclear receptor proteins. Estrogen receptors
(ERs) are particularly important protein targets and many EDCs are ER binders, capable of altering normal homeostatic
transcription and signaling pathways. An estrogenic xenobiotic can bind ER as either an agonist or antagonist to
increase or inhibit transcription, respectively. The receptor conformations in the complexes of ER bound with agonists
and antagonists are different and dependent on interactions with co-regulator proteins that vary across tissue type.
Assessment of chemical endocrine disruption potential depends not only on binding affinity to ERs, but also on
changes that may alter the receptor conformation and its ability to subsequently bind DNA response elements and
initiate transcription. Using both agonist and antagonist conformations of the ERa, we developed an in silico approach
that can be used to differentiate agonist versus antagonist status of potential binders.

Methods: The approach combined separate molecular docking models for ER agonist and antagonist
conformations. The ability of this approach to differentiate agonists and antagonists was first evaluated using true
agonists and antagonists extracted from the crystal structures available in the protein data bank (PDB), and then
further validated using a larger set of ligands from the literature. The usefulness of the approach was demonstrated
with enrichment analysis in data sets with a large number of decoy ligands.

Results: The performance of individual agonist and antagonist docking models was found comparable to similar
models in the literature. When combined in a competitive docking approach, they provided the ability to
discriminate agonists from antagonists with good accuracy, as well as the ability to efficiently select true agonists
and antagonists from decoys during enrichment analysis.

Conclusion: This approach enables evaluation of potential ER biological function changes caused by chemicals bound
to the receptor which, in turn, allows the assessment of a chemical’s endocrine disrupting potential. The approach can
be used not only by regulatory authorities to perform risk assessments on potential EDCs but also by the industry in
drug discovery projects to screen for potential agonists and antagonists.
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Background
The endocrine system comprises a large system of glands
that secrete hormones into the circulatory system where
they travel to and exert their effects in target cells
throughout the organism. The system plays pivotal roles
in the regulation of homeostasis, growth and development
as well as in a wide range of other normal bodily functions
[1]. At the site of action, hormones exert their biological
effects through highly complex and integrated signaling
pathways which often involve the hormone receptors.
Chemicals can alter endocrine function through a variety
of molecular mechanisms, some of which involves these
receptors, resulting in a wide spectrum of developmental
and disease outcomes [2,3].
The terms endocrine disruptor or endocrine disrupting

chemicals (EDCs) were coined in the early 1990s [4] fol-
lowing increasing concerns and awareness among the
scientific community and public on the deleterious health
effects caused by these compounds. The World Health
Organization defined EDCs as “exogenous substances
that alter function(s) of the endocrine system and conse-
quently cause adverse health effects in an intact organ-
ism, or its progeny, or (sub)-populations”, and potential
EDCs as those chemicals that “possess the properties that
might be expected to lead to endocrine disruption” [5]. A
significant portion of the chemicals humans are exposed
to on a daily basis are among the putative EDCs. They
are found in drinking water as effluents from industry
and agriculture [6,7]. Pharmaceutical [8], pesticide [9],
plasticizer [10] and natural plant compounds such as
phytoestrogens [11] are among the wide range of EDC
sources. EDCs span an enormous range of chemical
structure classes, and have the potential to cause a wide
range of adverse health effects, where the developing
organism is particularly sensitive [12,13], including still-
births [14] and malformations of reproductive organs [8].
EDCs have also been implicated in a wide range of other
adverse health effects including infertility or reduced
fertility, precocious puberty, various cancers (e.g. breast
[15,16], cervical and vaginal cancers [17-19]), obesity, dia-
betes, cardiovascular [20,21], and immune disorders [22],
among others.
In response to growing evidence and concerns, the U.S.

government moved swiftly to develop screens to detect
potential EDCs, e.g. the Endocrine Disruptor Screening
Program (EDSP) (http://www.epa.gov/endo/pubs/edspo-
verview/chronology.htm) spearheaded by the Environ-
mental Protection Agency (EPA) [23,24]. The Food and
Drug Administration (FDA) had also developed a num-
ber of databases, including the Endocrine Disruptor
Knowledge Base (EDKB) [25], in the mid-1990s, and the
more recent Estrogenic Activity Database (EADB) [26] as
resources for the study of EDCs. Apart from that, a new

guidance document on endocrine disruption potential of
drugs had also been published by the FDA to monitor
EDCs in pharmaceutical products (http://www.fda.gov/
downloads/drugs/guidancecomplianceregulatoryinforma-
tion/guidances/ucm369043.pdf ).
Many hormone receptors are members of the nuclear

receptor superfamily which modulate various endocrine
mechanisms, often through acting as transcription fac-
tors, regulating gene expression involving development,
homeostasis and metabolism [27]. The estrogen recep-
tors (ERs), particularly the ERa subtype, have been
extensively studied with substantial evidence accumu-
lated of altered endocrine function through binding to
xenoestrogens [3,26,28-31]. The ER is a nonspecific bin-
der that interacts with structurally diverse ligands, alter-
ing normal estrogen signaling through genomic and
non-genomic pathways [31-34]. Xenoestrogens can act
as agonists, partial agonists, or antagonists to ERs, alter-
ing normal gene expression levels and functions modu-
lated by endogenous hormones [22]. The binding target
of these xenoestrogens is the ligand binding domain
(LBD) of the ERs. The LBD consists of twelve a-helices
(H1-H12) and a beta-hairpin (Figure 1a). The H12 of
LBD plays the key role of a molecular switch [35]
through adopting distinct ligand-dependent conforma-
tions crucial for receptor activation [36] (Figure 1b and
1c respectively). When bound to an agonist, the LBD
adopts an active conformation: H12 rests across H3 and
H11, forming a groove to accommodate co-regulator
binding and facilitate downstream activation process.
When bound to an antagonist, H12 is displaced from
this position resulting in the distortion of this co-regula-
tor binding groove and the inhibition of receptor activa-
tion [37].
A battery of validated assays, both in vivo and high-

throughput in vitro, have been developed to screen for
mimics that act either as estrogens or anti-estrogens,
but the cost of comprehensively testing hundreds of
thousands of man-made chemicals would be formidable
[38]. The timeline would also be highly protracted,
given that in over a decade, barely the tip of the iceberg
of the chemical universe, a few chemical classes, have
been tested [38,39]. Finally, experimental techniques
thus far validated are not comprehensive, as develop-
mental endpoints, means to detect levels of no biological
effect, and mixture and metabolism effects, among other
limitations, are not adequately represented. Suffice it to
say that a full EDC assessment across the universe of
chemicals constitutes a daunting problem, and any in
silico means to reduce costs and streamline the process
would be a welcome prospect [28].
Computational techniques have often been used to

complement experimental studies in order to assist with
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data analysis as well as improve results. In this instance,
rapid in silico screening can be used not only to help
identify and prioritize which class of compounds to
screen, but also reduce the number of compounds to be
tested. Docking is one of the popular techniques com-
monly used for a number of purposes, e.g. ligand pose
prediction, ligand binding affinity prediction as well as
identifying potential actives from a library of decoys in
virtual screening (VS) [40]. In the past, docking studies
performed on ERs have been carried out. A number of
these studies developed models for the purpose of
screening for potential ligands/EDCs based on either
docking alone or in combination with three-dimensional
(3D)-QSAR models: Zhang et al. [41] looked at both
ERa and ERb subtypes and successfully developed
QSAR and docking models using large sets of ligands
from various sources for the identification of potential
EDCs; also looking at both ERa and ERb subtypes, Wolo-
han et al.[42] built their model based on 3D-QSAR and
docking using a diverse set of 36 estrogen ligands. While
they demonstrated that the CoMFA models could cor-
rectly rank-order the ligands according to their relative
binding affinities, and thus could be used for screening of
novel subtype-selective ligands, incorporating results from
docking failed to introduce further improvement to the
existing predictions. Schapira et al. [43] docked over 5000
compounds across a range of nuclear receptors including

the ERs and showed that VS performed on these receptors
could be used to identify hits. Finally, Huang et al. [44]
assembled a database called the Directory of Useful
Decoys (DUD) using 2950 ligands across 40 targets (ERs
included). Varying levels of enrichment were reported for
the different targets studied, amongst which the results for
ER had been found to be good with significant early
enrichment. The above body of work shares a common
outcome: the docking results demonstrate that models
have utility to differentiate potential ligands (binders) from
decoys (non-binders). While these methods have been
shown to be useful, they however, (1) lack the ability to
distinguish agonists from antagonists, and are thus unable
to obviate or reduce experimental assays for further
understanding of the mechanisms of actions; and (2) do
not reflect the dynamic biological processes in the body
whereby ERa and ligands interact with each other, and
depending on the ligand type, leads to the adoption of dis-
tinct ERa conformations.
In view of this and as part of our continued research

interest in EDCs (past works include [25,26,28-30,45-49]),
we have developed an approach that can differentiate
ligands in accordance with likelihood of activating or inhi-
biting or blocking the receptor (i.e. agonist or antagonist,
respectively) and more closely mimics the dynamic nature
of competing ligand-ERa complexes where agonists and
antagonists impart different conformation changes not

Figure 1 Estrogen receptor ligand binding domain. 1a The ER LBD comprising twelve a-helices and a beta sheet/hairpin: The twelve a-
helices (H1-12) are colored differently for clarity; 1b conformation of an active ER and 1c conformation of an inactive ER. The major difference
between 1b and 1c lies in the H12 conformation, highlighted in red.
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represented by a single rigid conformation found in prior
docking models. Two separate docking models (SDMs)
were employed, one based on an ERa agonist conforma-
tion crystal structure and the other based on ERa antago-
nist crystal structure. The competitive docking approach
(CDA) uses both SDMs in that the agonist and antagonist
SDMs compete in determining whether an individual
ligand is assigned as an agonist or antagonist. The CDA
takes into account and compares the non-covalent interac-
tions between a specific ligand and the two separate dock-
ing models based on the respective docking scores of the
docked complex and, therefore, better reflects the recep-
tor-ligand interaction in reality whereby the more energe-
tically favorable complex is favored. A ligand is assigned to
be (in a winner take all strategy) the type, agonist or
antagonist, corresponding to the most favorable docking
score from the individual SDMs. We tested our models
using two sets of ER ligands (one extracted from PDB
crystal structures and another from the DUD [44]) and
assessed the quality of our SDMs and CDA through virtual
screening, using enrichment factors (EFs) as the perfor-
mance metric. Results obtained showed that our CDA was
able to differentiate agonists and antagonists with consid-
erable accuracy and that the qualities of the CDA as well
as its individual components (agonist and antagonist
SDMs) are comparable to the work of others [44].

Methods
Study design
Figure 2 depicts the overall study design and work flow.
A preferred agonist ERa structure and a preferred
antagonist ERa structure were selected from the PDB.
Three sets of ligands comprising both agonists and
antagonists as well as decoys were docked to the pre-
ferred ERa structures: the first set of ligands consisted
of ligands extracted from ERa crystal complexes in the
PDB; the second set were ER ligands obtained from the
DUD website (http://dud.docking.org); and the third set
consisted of ER agonist and antagonist inactive decoys,
also obtained from the DUD website. A competitive
approach was implemented in the docking procedures
to yield the final results. The main purposes for carrying
out these dockings were: firstly, to determine the ability
of the CDA to differentiate agonists and antagonists
using the first set of crystallographic ligands; secondly,
to further validate the agonist-antagonist differentiating
ability of the CDA using the second (larger) ligand set;
and thirdly, to use VS and EF calculations to evaluate
the quality and reliability of the CDA and its individual
agonist and antagonist SDM components. Structural
analyses were also performed on the ER crystal struc-
tures available in the PDB in order to assist in the ratio-
nalization of the docking results as well as to delineate

structural differences between the ERa structures bound
to different ligands.

ERa structures for structural analysis
The ERa crystal structures available in the PDB were
compiled for two main purposes: (1) to evaluate and
make the most reasonable decision on the selection of
two ERa structures (agonist and antagonist conforma-
tions) such that the chosen structures were the most
representative structures; (2) for verification and rationa-
lization of docking results.
Eighty four 3D structures of ERa ligand-binding domain

complexes were downloaded from the PDB. Multimeric
structures were reduced to monomeric and superimposed.
Four structures, PDB IDs 2G5O, 3Q97, 1A52 [50], 2B23
[51], were excluded from the analysis. Structures 2G5O and
3Q97 were excluded because they were bound to ligands
with unknown ligand type. Structure 1A52 was excluded
because it was purported to contain an aberrant helix 12
conformation as a result of crystallization [50]. The 2B23
structure was excluded because it was an apo-protein with
agonist-conformation-stabilized mutations [51].

ERa structures for docking
The 3D structures of complexes of ERa bound with an
agonist and an antagonist, i.e. estradiol (PDB ID: 1GWR)
and 4-hydroxytamoxifen (PDB ID: 3ERT), respectively,
were selected as the preferred docking target proteins. The
preferred proteins were chosen based on three criteria:
(1) highest possible resolution; (2) contained no mutations
or modified residues; and (3) bound to an endogenous/
well-studied ligand. While the first requirement ensured
that protein structures used for docking were of a good
quality, the second requirement was applied because some
mutations have been found to have profound effects on
the final conformation of a protein [35,37,51,52]. The
third requirement was imposed such that the structures
were a good representation of the proteins when bound to
a typical ligand. Table 1 shows the details of the selected
ERa structures for agonist and antagonist docking models.

Ligand sets
The first set of ligands consisted of 66 compounds
(47 agonists and 19 antagonists) that were extracted from
the ERa complexes downloaded from the PDB (see
Additional file 1 and Additional file 4). While the PDB
contained 83 ligand-bound ERa structures, some were for
the same ligand (e.g. estradiol and genistein) and were
excluded, and two were bound to ligands of undetermined
ligand type (PDB ID: 2G5O and 3Q97) and were also
excluded. The second set of ligands consisted of 106 ER
binders downloaded from the DUD, of which 67 were
agonists and 39 antagonists (see Additional file 2). The
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third set of ligands which contained 4018 ER decoys
(2570 agonist decoys and 1448 antagonist decoys), were also
downloaded from the DUD website (see Additional file 3).

Protein and ligand preparation
The preferred 3D ERa structures for docking agonists
(1GWR) and antagonists (3ERT) were preprocessed
before docking calculation using the Protein Preparation

Wizard tool within the Maestro program by Schrodinger
[53]. First, hydrogen atoms were added to the protein
structures, bond orders were assigned and crystallographic
waters were deleted. Then, the hydrogen bonds were opti-
mized at pH 7 using the PROPKA program in Schrodinger
before a restrained minimization was performed using the
OPLS_2005 force field [54] whereby the convergence for
the heavy atoms were set at RMSD 0.3 Å.
The crystallographic ligands, ER ligands and decoys

downloaded from DUD were prepared using the LigPrep
tool in Maestro. Possible ionization states were gener-
ated at pH 7.0 (+/- 2) using Epik [55,56], while the
stereoisomers were determined from the 3D structures
of the ligands.

Grid generation and molecular docking
Docking grids for both protein structures were generated
using Maestro: the grid box was centered at the cognate

Figure 2 Study design depicting the overall workflow of this study. Three ligand sets are used for docking. While the first set of ligands is
derived from the crystal structures available from the PDB, the second and third sets of ligands and decoys, respectively, are obtained from the
DUD website. Results from the first and second sets of docking will be used to evaluate the ability of the CDA to differentiate agonists and
antagonists while the results from the second and third sets of dockings will be combined and used to calculate enrichment factors.

Table 1 Selection of agonist and antagonist docking
structures.

Structure Resolution
(Å)

Mutation/Modified
residues

Bound ligand

1GWR
(agonist)

2.4 - Estradiol

3ERT
(antagonist)

1.9 - 4-
hydroxytamoxifen

Crystal structures selected from the PDB to be targets for the agonist and
antagonist docking and the associated details.
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ligands of the protein structures (estradiol and 4-hydro-
xytamoxifen respectively) while the maximum length of
the dock ligands were set to 20 Å, as shown in Figure 3.
Docking was performed with Glide using Standard Preci-
sion (SP) and the following parameters: ligand sampling
was set to flexible, energy window for ring sampling set
to 2.5 kcal/mol, number of poses per ligand at the initial
phase of docking was set to 5000, number of poses per
ligand kept for energy minimization was set to 400, and
maximum number of minimization steps was set to 100.
Post-docking minimization was allowed whereby the
number of poses included per ligand was set to 5. Only
one pose was written out per ligand in the final output.
Docking with SP instead of Extra Precision (XP) [57] was
used because the ultimate goal for this work was to use
the developed model to screen large ligand libraries having
up to hundreds of thousands of molecules. However, initial
docking of diethyl-(1R,2S,3R,4S)-5,6-bis(4-hydroxyphenyl)-
7-oxabicyclo[2.2.1]hept-7-ene-2,3-dicarboxylate (PDB ID:
2QH6 [51]) failed to produce any results; using XP in this
case overcame the problem.

Competitive docking approach agonist and antagonist
determination
The CDA has five possible outcomes in determining
ligand status, as shown in Table 2. If the ligand can be
docked to neither the agonist nor the antagonist ERa
structures, it is determined to be a non-binder. If it can
be docked to only the agonist ERa structure or only to
the antagonist ERa structure, it is determined to be an
agonist or antagonist, respectively. If the ligand can be
docked to both ERa structures, the determination corre-
sponds to the ERa structure with the lowest docking
score.

Post-docking analyses
EF defined in equation (1) was used for estimating VS
efficiency of the SDM and CDA:

EF =
TTscr

nscr
× Nc

TTc
(1)

Where TTscr indicates the number of the true targets (i.
e. agonists/antagonists) among the number of chemicals
screened nscr (i.e. agonists/antagonists and decoys) at a
given percentage of the entire dataset. Nc and TTc denote
the total number of chemicals and the total number of
true targets in the VS experiment, respectively. EF values
were calculated at different percentages of the total chemi-
cals to measure VS performance for screening agonists
and antagonists using the SDM and the CDA separately.
This was followed by VS efficiency comparative analyses.
The backbone RMSD and all-atom RMSD of the ERa

structures were calculated using equation (2) in a Matlab
script:

RMSD =

√
1
n

n∑
i=1

((Vix − Wix)
2 + (Viy − Wiy)

2 + (Viz − Wiz)
2) (2)

Where n denotes the number of atoms used in the cal-
culation and x, y and z denote the Cartesian coordinates
of atom i in the two ERa structures, V and W, being
compared.
The graphics of ERa structures in this paper were

generated using Maestro.

Results and discussion
Docking results of crystallographic ligands
Table 3 gives predictions by SDMs alone versus truth for
the crystallography ligands. Of 47 true agonists, 43 docked

Figure 3 Docking grid generation. Docking grids were generated for the ERa agonist (green) and antagonist structures (purple) using
Maestro. The boxes are centered at the cognate ligands i.e. estradiol and 4-hydroxytamoxifen respectively
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to both the agonist and antagonist SDMs, such that no
type determination can be made. This indicates that
majority (91.5%) of the agonists could not be differentiated
from the antagonists despite successfully docked in the
ERa conformation for agonists. The remaining four ago-
nists docked to only the antagonist SDM and were thus
falsely typed. Of the 19 true antagonists, 17 docked to only
the antagonist SDM, and were correctly typed, while the
remaining two docked to both SDMs such that no type
determination is possible. This indicates that most (89.5%)
of the antagonists were differentiated from the agonists.
Table 4 gives predictions by the CDA versus truth for

the crystallography ligands. CDA correctly predicted 35 of
47 true agonists, and falsely predicted 12 as antagonists.
The successful rate for agonist prediction was increased to
74.5% compared to 0% (0 of 47) of SDMs. For antagonists,
18 of 19 were correctly predicted, showing a slight
improvement compared to antagonist SDM (94.7% of
CDA vs 89.5% of antagonist SDM). Thus, CDA correctly
predicted type for 80.3% (53 of 66) ligands, compared to
only 25.8% (17 of 66) correct predictions using the SDMs
separately. The difference, of course, is solely due to
choosing ligand type based on lowest docking score for
ligands that docked to both SDMs.
The primary difference between ERa agonist and

antagonist molecules is molecular size, with agonists gen-
erally found to be the smaller. ERa agonists and antago-
nists alike have steroidal cores, but most antagonists
compared to agonists have bulky pendant side chains of
varying lengths attached to this steroid core, significantly

increasing molecule size [36,58]. It is precisely this differ-
ence that causes the difference in prediction accuracy
between the agonists and antagonists. The agonists (and
some smaller antagonists) are able to fit within both
agonist and antagonist ERa binding pockets, as depicted
in Figure 4, therefore leading to the likelihood of these
ligands being predicted as either an agonist or antagonist
by the CDA. Conversely, a significant number of antago-
nists are too large to be accommodated by the agonist
ERa binding pocket and only bind to the antagonist ERa.
This reason directly results in the higher prediction
accuracy for antagonists compared to the agonists.
The difference in the prediction accuracy can also be

seen as a product of rigid protein docking. Docking a flex-
ible ligand to a rigid receptor, as in this study, is a com-
mon practice. However, fixing protein conformation has
long been seen as a limitation of docking as proteins are
conformationally dynamic in reality [59,60]. Unfortunately,
allowing full protein flexibility is extremely computation-
ally expensive and remains impractical with the current
state-of-the-art [59]. Partially flexible docking i.e. allowing
side chain flexibility of a few key residues in the binding
pocket [59-61] is a reasonable trade-off between computa-
tional time and accuracy and can be used for improving
this docking study.
Despite the significant improvement observed in the

CDA, 13 molecules (12 agonists and 1 antagonist) were
incorrectly predicted. A collective ERa backbone struc-
tural analysis of the 80 ERa crystal structures (Figure 5)
revealed some interesting observations. Three compounds,

Table 2 Decision table used to determine ligand type based on the five possible outcomes of CDA.

Outcomes Ligand Type

Agonist SDM Antagonist SDM

Docking Negative Negative Non-binder

Positive Negative Agonist

Negative Positive Antagonist

Positive Positive Agonist (dock score for agonist SDM < antagonist SDM)

Positive Positive Antagonist (dock score for antagonist SDM < agonist SDM)

The first three rows of the table show straightforward ligand type determination. On the other hand, for a ligand that docks to both agonist and antagonist
SDMs, its ligand-type is determined using the dock scores of the respective SDMs whereby the lower score is favored over the higher. A positive outcome
indicates that a ligand can dock in the structure, vice versa for a negative outcome.

Table 3 SDMs predictions of crystallographic ligand set

Ligand type (truth) Total (Predicted)

Agonist Antagonist

Ligand type (Predicted) Not determinable (docks to both agonist and antagonist SDMs) 43 2 45

Non-binder (docks neither agonist nor antagonist SDM) 0 0 0

Agonist (docks agonist SDM only) 0 0 0

Antagonist (docks antagonist SDM only) 4 17 21

Total (truth) 47 19

The table shows the predictions made by the SDMs for the crystallographic ligand set versus truth. The columns represent the truth (agonist and antagonist)
while the rows represent the prediction outcomes (not determinable, non-binder, agonist and antagonist).
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(i) (2S,3R)-2-(4-2-[(3S,4S)-3,4-dimethylpyrrolidin-1-yl]
ethoxyphenyl)-3-(4-hydroxyphenyl)-2,3dihydro-1,4-ben-
zoxathiin-6-ol, (ii) (2S,3R)-3-(4-hydroxyphenyl)-2-(4-
{[(2R)-2-pyrrolidin-1-ylpropyl]oxy}phenyl)-2,3-dihydro-
1,4-benzoxathiin-6-ol, and (iii) 4-[1-(3-methylbut-2-en-1-
yl)-7-(trifluoromethyl)- 1H-indazol-3-yl]benzene-1,3-diol
(PDB ID: 1XP6, 1XPC, 3OSA respectively), despite being
reported as partial-agonists [37,62], were predicted to be
antagonists by our CDA. A closer look at the backbone
analysis revealed that these three compounds were bound
to ERa structures that more closely resembled the antago-
nist-bound conformations. A number of possible scenarios
could potentially explain this contradictory observations:
(1) the partial nature of these ligands (e.g. partial agonism/
antagonism) leads to the destabilization of the protein
structure instead of the adoption of a complete agonist or
antagonist conformation; (2) the final resultant conforma-
tion of the proteins is dictated more by the presence of

agonist- and antagonist-conformation inducing mutations
in these protein structures than by the type of the bound
ligand; and (3) the mis-assignment of these ligand types.
Scenario (1) may be applied to the first two compounds,
bound to 1XP6 and 1XPC. These compounds are partial
agonists arising from the modifications of the parent com-
pound dihydrobenzoxathiins, which is a selective ERa
modulator demonstrating antagonistic actions. The partial
agonistic characteristics introduced by the modifications
had resulted in the destabilization of the antagonist confor-
mation of the proteins particularly at the helix 12 position
[62] but did not cause the proteins to switch from an
antagonist conformation to an agonist conformation. This
is in line with the observations reported by Pike et al.[63]
in which a partial agonist showed lower efficacy when
compared to a full agonist. In addition to the first scenario,
the second scenario may also be applicable to the third
compound, a partial agonist bound to an ERa structure

Table 4 CDA predictions of crystallographic ligand set

Ligand type (truth) Total
(Predicted)

Agonist Antagonist

Ligand type
(Predicted)

Not determinable (docks to both agonist and antagonist SDMs) - - -

Non-binder (docks neither agonist nor antagonist SDM) 0 0 0

Agonist (docks agonist SDM only OR dock score for agonist SDM < antagonist
SDM)

35 1 36

Antagonist (docks antagonist SDM only OR dock score for antagonist SDM <
agonist SDM)

12 18 30

Total (truth) 47 19

The table shows the predictions made by the CDA for the crystallographic ligand set versus truth. The columns represent the truth (agonist and antagonist)
while the rows represent the prediction outcomes (non-binder, agonist and antagonist).

Figure 4 Docked ligands in the agonist and antagonist structures. The docked crystallographic ligands in the agonist (green) and
antagonist (purple) structures: These diagrams clearly show that ligands which are sufficiently small in size are able to fit within both agonist
and antagonist structures while larger ligands only fit into the antagonist structure.
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containing L536S and L372R mutations. These mutations
have been reported to stabilize ERa at antagonist confor-
mations [37]. Two other incorrect predictions involving
(17beta)-17-(E)2-[2-(trifluoromethyl)phenyl]vinyl) estra-1
(10),2,4-triene-3,17-diol and estradiol-pyridinium tetraace-
tic acid (PDB ID: 2P15 [35] and 2YAT [64]), can be rationa-
lized by the large molecular size of these compounds that
cannot be accommodated by the agonist ER conformation.
When bound to the 2P15 and 2YAT complexes, the
induced fit that occurred allowed these rather large agonists
to fit into their respective protein structures [35,64]. The
remaining agonists i.e. genistein, dimethyl(1R,4S)-5,6-bis(4-
hydroxyphenyl)-7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-
dicarboxylate, 2-amino-1-methyl-6-phenylimidazole[4,5-B]
pyrine, diethylstilbestrol, 2’-bromo-6’-(furan-3-yl)-4’-
(hydroxymethyl) biphenyl-4-ol, 4-[1-(but-3-en-1-yl)-7-
(trifluoromethyl)-1H-indazol-3-yl]benzene-1,3-diol and
4-[1-(3-methylbut-2-en-1-yl)-7-(trifluoromethyl)-1H-
indazol-3-yl]benzene-1,3-diol (PDB ID: 2QA8 [51],
2QR9 [51], 2QXM [51], 3ERD [65], 4DMA [66], 4IVY
[67] and 4IW8 [67]) that were predicted as antagonists
docked to both agonist and antagonist ER structures,

but scored better as antagonists due to more favorable
interactions. The reverse apply to the antagonist 4,4’-
(2,2-dichloroethene-1,1-diyl)diphenol (PDB ID: 3UUC
[68]) that was predicted as an agonist.
The structural differences between the agonist’s and

antagonist’s conformations were studied in finer detail
using five pairs of ERa structures (Figure 6) which were
found to be interesting ("agonist” with parentheses repre-
sents structure which was bound to an antagonist as
reported by the literature, but demonstrated an agonist
conformation, and vice versa for the “antagonist” struc-
ture). From the analysis of the all-atom RMSD, we
observed that the major differences between the agonist’s
and antagonist’s conformations lie in the loop regions
that connect helix 2 and helix 3 (residues 338-340) of the
ERa ligand binding domain, as well as, in the stretch of
residues that begin from the end of helix 11 to the end of
helix 12 (residues 532-548) (Figure 7). This is due to the
fact that in the agonist conformation, helix 12 is posi-
tioned against helix 11 and helix 3, therefore limiting the
mobility of helix 11 and helix 3 as compared to the
antagonist conformation [37].

Figure 5 Backbone analysis of ERa crystal structures. Structural analysis of the ERa crystal structures in the PDB was performed using RMSD.
Protein IDs 1-57 represent the agonist-bound conformations while 58-80 represent antagonist-bound structure according to the literature. A
number of structures in both agonist-bound and antagonist-bound categories have been found to deviate from the norm, displaying
characteristics which more resemble those of the other category. The orange circles situated at the top of the figure denote the incorrectly
predicted ligands with their associated PDB ID. The two chosen protein conformations i.e. agonist structure (PDB ID: 1GWR) and antagonist
structure (PDB ID: 3ERT), with a RMSD of 4.687 between each other, are also shown.
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Docking results of DUD ERa ligands
Table 5 gives predictions by agonist and antagonist
SDMs versus truth for ligands from the DUD database
containing ER binders for benchmarking. The overall
results are highly reminiscent of those obtained in the
crystallographic ligand set. No agonists could be differen-
tiated from antagonist. Of 67 true agonists, 66 docked to
both the agonist and antagonist ERa structures, such
that no type determination could be made. The remain-
ing agonist docked to only the antagonist ERa structure,
and was thus falsely typed. A better outcome was again
observed for the antagonists. Of the 39 true antagonists,
34 docked to only the antagonist ERa structure, and
were correctly typed, and two were unable to dock to any
of the two ERa structures, thus were predicted as non-
binders, while the remaining three docked to both ERa
structures such that no type determination was possible.
Table 6 gives predictions by CDA versus truth for the

DUD ligands. The CDA again was superior in agonist
prediction than the SDMs. CDA correctly predicted
70.1% (47 of 67) agonists and 92.3% (36 of 39) antago-
nists, as compared to SDMs: 0% and 87.2% for agonists
and antagonists respectively. The overall accuracy of
CDA for differentiating between agonists and antagonists
was improved to 78.3%, from 32.1% of the SDMs. The
improvement in typing agonists versus antagonists is

similar for the DUD ligands as for the crystallographic
ligands, with the majority of improvement occurring for
the agonists.
Figure 8 compares the prediction performance of

SDMs and CDA for both the crystallographic and DUD
ligands. Clearly, the CDA (in red) performed consistently
and significantly better than SDMs (in yellow), in all
cases, highlighting the predictive accuracy improvement
using CDA. While both SDMs and CDA performed com-
parably well in antagonist prediction, most improvement
was in agonist prediction.
Using 199 molecular descriptors, Li et al [69] developed

support vector machine, k-NN, probabilistic neural net-
work, and C4.5 decision tree structure-activity relationship
(SAR) models for predicting ER agonists based on a data
set of 243 agonists and 463 non-agonists. One 5-fold cross
validation was used to estimate the performance of their
models: 66.3-83.8% agonist prediction accuracy and 83.8-
91.1% non-agonist prediction accuracy. As a comparison,
our CDA had 74.5% and 70.1% agonist prediction accuracy
and 94.7% and 92.3% antagonist prediction accuracy for the
crystallographic and DUD ER ligands, respectively. Though
our results were similar to those from Li et al. [69], we
should point out that the comparison is not a head-to-head
comparison. First, majority of the non-agonists used by Li
et al. are ER non-binders instead of antagonists. Therefore,

Figure 6 All-atom analysis of the ERa crystal structures. The graph shows the all-atom RMSD for five pairs of ERa complexes found to be
interesting in the study. Note: “agonist” with parentheses represents structure which was bound to an antagonist according to the literature, but
demonstrated an agonist conformation, and vice versa for the “antagonist” structure. Letters G and N in front of the PDB IDs denote the types of
ligand bound to the structures, as reported in the literature. Major differences were found between the antagonist’s and antagonist’s
conformations whereby these differences were found to lie in the region between residues 338-340 (loop linking helix 2 and helix 3) and 532-
548 (end of helix 11 to end of helix 12). See Figure 7 for diagrams showing these differences.
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more precisely, Li et al. models differentiate between ER
agonists and ER non-binders - this, in comparison, is easier
than differentiating the biological functions of ER binders
(between agonist or antagonist), which is our objective.
Second, the performance of the SAR models was estimated
by only one run of 5-fold cross validation and, thus, the
validation results are not robust: different division of the
data set into five folds most likely have different perfor-
mance. In contrast to this, our method is protein structure
based and, thus, ligand set independent.

Virtual screening results
The VS calculation was done for the agonist SDM after
combining 67 true agonists and 2570 decoys from DUD.
The calculation was repeated for the antagonist SDM
after combining 39 true antagonists and 1448 decoys
from DUD. Next, the antagonist SDM result was
obtained for the 67 agonists and 2570 decoys, and the
agonist SDM results obtained for the 39 antagonists and
1448 decoys. Finally, the agonist SDM and antagonist
SDM results for each dataset were combined with the

Figure 7 Differences between the agonist’s and antagonist’s conformations. The differences of residues 338-340 (loop linking helix 2 and
helix 3) and 532-548 (end of helix 11 to end of helix 12) are shown in the five pairs of protein conformations as mentioned in Figure 6. Color
codes: 1QKT (orange), 2QA8 (blue), 2QGT (pink), 2Q6J (orange red), 3DT3 (green) and 1XP1 (light green). The cognate ligands of these structures
were also shown using the same color codes.

Table 5 SDMs predictions of DUD ER ligand set

Ligand type (truth) Total (Predicted)

Agonist Antagonist

Ligand type (Predicted) Not determinable (docks to both agonist and antagonist SDMs) 66 3 69

Non-binder (docks neither agonist nor antagonist SDM) 0 2 2

Agonist (docks agonist SDM only) 0 0 0

Antagonist (docks antagonist SDM only) 1 34 35

Total (truth) 67 39

The table shows the predictions made by the SDMs for the DUD ER ligand set versus truth. The columns represent the truth (agonist and antagonist) while the
rows represent the prediction outcomes (not-determinable, non-binder, agonist and antagonist).

Table 6 CDA predictions of DUD ER ligand set.

Ligand type (truth) Total
(Predicted)

Agonist Antagonist

Ligand type
(Predicted)

Not determinable (docks to both agonist and antagonist SDMs) - - -

Non-binder (docks neither agonist nor antagonist SDM) 0 2 2

Agonist (docks agonist SDM only OR dock score for agonist SDM < antagonist
SDM)

47 1 48

Antagonist (docks antagonist SDM only OR dock score for antagonist SDM <
agonist SDM)

20 36 56

Total (truth) 67 39

The table shows the predictions made by the CDA for the DUD ER ligand set versus truth. The columns represent the truth (agonist and antagonist) while the
rows represent the prediction outcomes (non-binder, agonist and antagonist).
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CDA. The VS performances were analyzed using EFs
plotted in Figure 9. The agonist and antagonist SDMs
had peak enrichments of about 40 and 22, respectively.
A high EF of about 40 was obtained for the agonist

SDM in the early stage of the screening, with a steep
subsequent decrease with increasing ligands screened,
indicating that most of the agonists were detected at a very
early stage of screening (less than 1%). Agonist screening

Figure 8 Prediction accuracy of the SDMs and CDA. The bar charts show the prediction accuracy of the SDMs (yellow) and CDA (red) for the
crystallographic and DUD ER ligand sets. The bar heights denote the total number of ligands in each category. In all cases, CDA outperformed
the SDMs, particularly in the case of agonist predictions.

Figure 9 Performance of SDMs and CDA in virtual screening. The lines show the enrichment factors calculated for the SDMs and CDA in
the agonists (green and cyan respectively) and antagonists (blue and red respectively) VSs. Larger differences are observed between the SDMs
and CDA for the agonist VS compared to antagonist VS, which show very little difference between the models.

Ng et al. BMC Bioinformatics 2014, 15(Suppl 11):S4
http://www.biomedcentral.com/1471-2105/15/S11/S4

Page 12 of 15



with the CDA, on the other hand, produced a peak EF of
24 at 2% chemicals, indicating that more agonists were
screened out compared to agonist SDM. The enrichment
for the antagonist SDM and CDA were generally similar in
shape and magnitude, and both less than for agonists, in
agreement with the results reported by Huang et al. [44]
but in contrast to docking results (Tables 3, 4, 5, 6) that
showed higher accuracy for antagonists.
In order to evaluate the quality of the individual dock-

ing models used in the CDA, a comparison of enrich-
ment for our SDMs and those reported by Huang et al.
(DUD database) [44] was made and the results summar-
ized in Table 7. Results were comparable at 1% and 20%
of chemicals screened. EFmax of our agonist SDM was
higher than Huang et al., i.e. 39.4 vs. 29.6. However, for
antagonist screening, Huang et al. reported a much
higher EFmax of 101.6, compared to our 21.8. The calcu-
lation to obtain the remarkably high EFmax value of
101.6 was impossible according to equation (1) and was
not demonstrated in the published article, therefore
warranting further verification.
Differences between the EFs of SDMs and CDA shown in

Figure 9 occur in early stages of < 3% of chemicals
screened. Table 8 shows that in the 1% to 3% interval, CDA
performed better than SDM. Although the differences were
modest (one should bear in mind the promiscuity of ERs
when it comes to ligand binding), the result adequately
demonstrated the potential usefulness of CDA in VS.

Conclusions
We have developed a competitive docking approach for
performing ligand-docking in ERs. The quality of the
individual components (SDMs) on which the CDA
depends was evaluated and found comparable to other
published models [44]. The CDA was demonstrated to
provide discriminatory power to segregate agonists and
antagonists at useful accuracy. It was also shown to

provide comparable enrichment to the results of
Huang et al. [44] in a large data set comprising true
and decoy ligands. The CDA could be useful as part of
an EDC screening program to identify and rank poten-
tial binders to aid setting of testing priority. The ability
to distinguish agonists from antagonists could be
further useful since some compounds could be tested
in either an agonist or antagonist assay, but not both,
reducing cost. The CDA approach is extensible to
other receptor targets both to screen for potential bin-
ders and to differentiate between agonists and antago-
nists, and is as applicable in drug discovery as for
regulatory testing purposes.
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Table 7 Comparison of enrichment factors of SDMs with
literature.

Agonist Antagonist

SDM Huang et al. SDM Huang et al.

1% 20.5 19.2 12.7 12.7

2% 17.9 - 21.6 -

3% 14.8 - 17.8 -

4% 13.9 - 15.3 -

5% 12.1 - 12.2 -

20% 3.8 4.5 3.2 1.3

Max 39.4 29.6 21.8 101.6*

Comparisons of the calculated EFs at different % of database screened and
EFmax for the SDMs reported in our work and Huang et al.[44]. *The
remarkably high EFmax reported by Huang et al. for antagonist may require
further verification.

Table 8 Comparison of enrichment factors of SDMs and
CDA.

Agonist Antagonist

SDM CDA SDM CDA

1% 20.5 23.6 12.7 12.7

2% 17.9 19.3 21.6 21.6

3% 14.8 14.8 17.8 17.8

4% 13.9 12.7 15.3 15.3

5% 12.1 10.3 12.2 12.2

20% 3.8 3.1 3.2 3.2

Max 39.4 23.6 21.8 21.6

Comparisons of the calculated EFs at different % of database screened and
EFmax for the SDMs and CDA. For agonist screening, CDA performs better at
the early stage (1-3%) compared to SDM. For antagonist screening,
comparable results are obtained. The EFmax for the SDMs are better than the
CDA, however, these peaks occur at a later stage of screening.
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