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ABSTRACT Despite the important discoveries reported by genome-wide association (GWA) studies, for most traits and diseases the prediction
R-squared (R-sq.) achieved with genetic scores remains considerably lower than the trait heritability. Modern biobanks will soon deliver
unprecedentedly large biomedical data sets: Will the advent of big data close the gap between the trait heritability and the proportion of
variance that can be explained by a genomic predictor? We addressed this question using Bayesian methods and a data analysis approach that
produces a surface response relating prediction R-sq. with sample size and model complexity (e.g., number of SNPs). We applied the
methodology to data from the interim release of the UK Biobank. Focusing on human height as a model trait and using 80,000 records
for model training, we achieved a prediction R-sq. in testing (n = 22,221) of 0.24 (95% C.I.: 0.23–0.25). Our estimates show that prediction
R-sq. increases with sample size, reaching an estimated plateau at values that ranged from 0.1 to 0.37 for models using 500 and 50,000
(GWA-selected) SNPs, respectively. Soon much larger data sets will become available. Using the estimated surface response, we forecast that
larger sample sizes will lead to further improvements in prediction R-sq. We conclude that big data will lead to a substantial reduction of the
gap between trait heritability and the proportion of interindividual differences that can be explained with a genomic predictor. However, even
with the power of big data, for complex traits we anticipate that the gap between prediction R-sq. and trait heritability will not be fully closed.
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IN the last two decades, genome-wide association (GWA)
studies (GWAS) (and meta-analyses of single-cohort GWA

results) have reported large numbers of variants associated
with important human traits and diseases (Lango Allen
et al. 2010; Speliotes et al. 2010; Voight et al. 2010; Ripke
et al. 2014; The SIGMA Type 2 Diabetes Consortium et al.
2014). However, in most cases the proportion of variance ex-
plained by genetic risk scores [prediction R-squared (R-sq.)]
remains substantially lower than the trait heritability (Maher
2008; Manolio et al. 2009). It has become clear that GWA
analyses based on standard cohort data lack the power to de-
tect small-effect variants and that these variants account for a
sizable fraction of the trait heritability. To tackle this problem,

several initiatives have been launched in the U.S. (Collins and
Varmus 2015; Gaziano et al. 2016), Europe (“UK Biobank”),
and Asia (“China Kadoorie Biobank”) for the development of
very large biobanks which will soon deliver biomedical data
sets comprising extensive and deep phenotype data linked to
high-quality genotype information on hundreds of thousands
of subjects. This leads current research to a fundamental ques-
tion: Will the advent of “big data” from biobanks close the gap
between prediction R-sq. and the trait heritability?

The gap between the trait heritability and prediction R-sq.
has two components (Goddard 2009). First, the amount of
variance that could be captured by a set of molecular markers
[e.g., single nucleotide polymorphisms (SNPs)], the so-called
SNP or genomic heritability (de los Campos et al. 2015a), can
be smaller than the trait heritability due to imperfect linkage
disequilibrium (LD) between the alleles at the SNPs used for
prediction and those at causal loci (QTL). Theoretically, with
full-genome sequences the genomic heritability should reach
the trait heritability. Empirical evidence suggests that com-
mon SNPs can capture a large fraction (anywhere between
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30 and 60%) of the heritability (Yang et al. 2010; Lee et al.
2012; de los Campos et al. 2013b; Llewellyn et al. 2013),
depending on the trait or disease of interest and the set of
SNPs available. However, genomic prediction uses SNP geno-
types and estimated effects. Thus, a second component of the
gap between the trait heritability and prediction R-sq. is given
by the accuracy of the estimated effects (Goddard 2009).
Theoretically, with an infinitely large sample size, effects
can be estimated without error and the prediction R-sq.
should reach the genomic heritability. Therefore, according
to the framework just outlined, the use of sequence data and
of very large data sets should lead to the end (or to a sub-
stantial reduction) of the gap between prediction R-sq. and
the trait heritability. The availability of very large biomedical
data sets such as the UK Biobank makes it possible to test this
hypothesis.

In this study,we use data from the interim release of theUK
Biobank (n� 150,000) to assess whether big data will lead to
a substantial reduction of the gap between prediction R-sq.
and trait heritability. To achieve this goal, we designed a
methodology that uses data and feature (i.e., SNPs) parti-
tions to quantify the effects of sample size and the number
of SNPs used on prediction R-sq. Similar approaches have
been applied (with considerably smaller sample sizes and
lower numbers of markers) in breeding populations to inves-
tigate the effects of the number of SNPs (Vazquez et al. 2010)
and sample size (Erbe et al. 2013) on prediction R-sq. For a
given SNP set, the methodology renders curves that relate
sample size with prediction R-sq. These curves can be used to
forecast prediction R-sq. as a function of sample size. Impor-
tantly, the methodology also yields an estimate of the maxi-
mum prediction R-sq. that can be achieved for a trait with a
SNP set if SNP effects were estimated with an infinitely large
sample size (i.e., without error). We applied the proposed
methodology using various statistical methods for estimating
SNP effects (including variable selection and shrinkagemeth-
ods) as well as with different strategies for selecting SNPs.
Our results show that the use of whole-genome regression
(WGR) methods trained with big data will lead to a substan-
tial reduction of the gap between the trait heritability and
prediction R-sq.

Materials and Methods

The UK Biobank is a cohort study consisting of about half a
million participants aged between 40 and 69 years who were
recruited in 2006–2010. The National Research Ethics Com-
mittee approved the study and informed consent was obtained
from all participants (UK Biobank 2007). Study details are
described elsewhere (UK Biobank 2007, 2015; Allen et al.
2014). An interim data release comprising genotype data for
152,729 individuals was made available in May 2015.

Phenotype

The trait considered in our study was adult standing height: a
highly heritable trait with a very complex genetic architecture

(Lango Allen et al. 2010) and a common human model trait
in quantitative genetic studies. We preadjusted height by age
and sex; the resulting adjusted trait had almost no associa-
tion with the first 10 marker-derived principal components
(in a set of 102,221 distantly related individuals with Cauca-
sian ancestry, the multiple R-sq. from the regression of ad-
justed height on the top 10 marker-derived eigenvectors was
0.00113).

Genotypes

Our primary analyses were based on genotyped SNPs from the
Affymetrix UK BiLEVE Axiom and Affymetrix UK Biobank
Axiom arrays (UK Biobank 2015), but we also considered us-
ing imputed genotypes provided by the UK10K project and the
Haplotype Reference Consortium (O’Connell et al. 2016). The
initial number of SNPs was 847,441 on genotyped SNPs and
72,355,667 on imputed genotypes. SNPs with a minor allele
frequency (MAF) ,0.1% and missing call rate .3% were fil-
tered out. A total of 589,028 markers on genotyped SNPs and
13,558,738 markers on imputed SNPs passed the filtering
steps just described. Statistics for genotype filtering were per-
formed using PLINK 1.9 (Chang et al. 2015).

Inclusion criteria

Individuals who withdrew from the study, those whose
reported sex did not match the genetic sex (as determined
by the UK Biobank), and those who did not have records
for height or had recorded height smaller than 147 cm
were removed. Based on genetic background provided
by the UK Biobank, we selected Caucasian subjects and con-
firmedtheir genetic race/ethnicityusingprincipal components.
Subsequently we identified a set of 102,221 distantly related
Caucasians. This set includes all pairs of individuals with
genomic relationships Gij ¼ p21Pp

k¼1ðxik 2 2ukÞðxjk 2 2ukÞ=
2ukð12 ukÞ, 0:03; here, xik and xjk are genotypes (coded
as 0, 1, or 2) at the kth SNP of the ith and jth individual,
respectively, and uk is the frequency of the allele counted at
the kth loci. Genomic relationships were computed using the
getG function of the BGData R package (https://github.com/
QuantGen/BGData).

Training and testing sets

The set of distantly related Caucasians was randomly split
into a training (TRN) (n=80K, K= 1000) and a testing (TST)
(n = 22,221) set. The TRN set was then used to estimate the
parameters of amodel and the TST setwas used to validate the
model. To assess the impact of sample size on prediction R-sq.,
the TRN set (n= 80K) was recursively partitioned into 2 (ran-
domly chosen) sets of n=40K, 4 of n=20K, 8 of n=10K, and
16 of n = 5K.

SNP sets

Weperformed GWA analyses on the entire TRN set (n=80K)
by regressing the adjusted trait on each of the SNPs available
using ordinary least squares. This was done using the GWAS
function of the BGData R package. We used GWA results to
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identify SNP sets consisting of the top-p SNPs (i.e., the p SNPs
with the smallest P-value), with p = 500, 1K, 2K, 5K, 10K,
20K, 50K, and 100K. SNP sets were formed using three
approaches: the top-p approach selected the p SNPs with
the smallest P-value without considering LD; top-p-LD1 and
top-p-LD2 approaches selected the p SNPs with smallest
P-value, subject to the restriction of including up to one or
two SNPs per LD block, respectively. Haplotype blocks were
determined using R-sq. (LD-R2) (Wall and Pritchard 2003)
computed using PLINK 1.9 with LD-R2 thresholds of 0.8 and
0.5 within a window of 250 kb. Sets with overlapping var-
iants were merged.

WGR models

The SNPs selected using the methods described above were
then used in Bayesian regression models of the form

yi ¼ mþ
Xp
j¼1

xijbj þ ei; i ¼ 1; . . . ; n;

where yi represents the adjusted height of the ith individual,
m is an effect common to all subjects, xij is the centered and
scaled genotype of the ith individual at the jth SNP, bj is the
effect of the allele coded as one of the jth SNP, and ei is an
error term assumed to follow independent and identically
distributed (IID) normal distributions with null mean and
variance VarðeiÞ ¼ s2

e : These models were fitted to the entire
TRN set and to each of the partitions using the BGLR R pack-
age (Pérez and de los Campos 2014). This package imple-
ments several Bayesian shrinkage and variable selection
procedures. Among them we considered the following: (i)
BRR (“Bayesian Ridge Regression”), a model where SNP ef-
fects are assumed to follow IID Gaussian distributions with
null mean and a variance VarðbjÞ ¼ s2

b: In the fully Bayesian
implementation used in BGLR, the variances, s2

e and s2
b; are

treated as unknown and estimated from data. (ii) BayesB
(Meuwissen et al. 2001), a model where SNP effects are as-
sumed to be drawn from a mixture with a point of mass at
zero and a scaled-t slab. The hyper-parameters of this model
include the proportion of nonzero effects, the degrees of free-
dom, and scale parameter of the t-slab. In BGLR, the degrees
of freedom parameter is set to five and the other two param-
eters are treated as unknown and estimated from the data.

In the twomethods just described, SNPeffects are assumed
to follow IID priors; this may represent a strong assumption.
Therefore, (iii)we also considered two “setmethods” (labeled
BRR-sets and BayesB-sets), which consist of extensions of the
BRR and BayesBmethods, respectively, where groups of SNPs
(Table 1) were assigned group-specific regularization param-
eters (variances in BRR, scale and proportion of nonnull-effect
SNPs, in BayesB). This approach allows for group-specific reg-
ularization (i.e., shrinkage and extent of variable selection) of
SNP effects.

For further details about the algorithms implemented in
BGLR, the reader is referred to the article by Pérez and de los
Campos (2014), and examples of how BGLR can be used to fit

set models can be found at https://github.com/gdlc/BGLR-R/
blob/master/inst/md/setMethods.md.

Genomic heritability estimates

We estimated genomic heritability using an approach de-
scribed in de los Campos et al. (2015a), and further discussed
in Lehermeier et al. (2017). To avoid bias (due to the use of
GWA-selected SNPs) in estimates of genomic heritability, we
estimated this parameter using data from the TST set. Briefly,
we fitted BayesB to data from the TST set and, at each iter-
ation of the Gibbs sampler, genomic values were computed
as gsi ¼

Pp
j¼1xijb

s
j ; where bs

j represents the sth sample of the
jth marker effect. A sample of the genomic variance was
obtained by computing the sample variance of the genomic

values, that is s
2ðsÞ
g ¼

hP22;221
i¼1

�
gsi2�gs

�2i
=22; 220; where

�gs ¼
hP22;221

i¼1 gsi
i.

22; 221 is the average genomic value. A

sample of the genomic heritability parameter was computed

using h2ðsÞg ¼ s
2ðsÞ
g

.�
s
2ðsÞ
g þ s

2ðsÞ
e

�
; where s2ðsÞ

e is a sample of

the error variance. The posterior distribution of the genomic
heritability was summarized using themean and posterior SD

of the h2ðsÞg : In addition, for comparison purposes, we also
report estimates of genomic heritability by a Gaussian mixed
model obtained with the genome-wide complex trait analysis
(GCTA) package (Yang et al. 2011).

Predictions in the UK Biobank TST set

Predictions were computed using bgi ¼ m̂þPp
j¼1xijb̂j; where

m̂ and b̂j are estimated coefficients (derived from the TRN
set or partitions of it) and xij is the centered and scaled ge-
notype of the ith individual of the TST set at the jth SNP.
Prediction R-sq. was assessed using squared Pearson’s cor-
relation between predicted and observed (preadjusted by
age and sex, as described above) height. SE for the esti-
mated squared correlations were obtained using 10,000
bootstrap samples of the vectors containing predicted height
and adjusted height. To assess potential scaling problems,
we also estimated the regression of the adjusted pheno-
type on predictions (yi ¼ aþ bŷi þ ei) using data from the
TST set.

Profiling of R-sq. values by sample size and SNP set

The genomic prediction literature offers several parametric
formulas to forecast prediction R-sq. as a function of trait
heritability, sample size, andmeasurements of the complexity
of the genome (e.g., the “number of independently segregat-
ing segments”) (Daetwyler et al. 2008; Goddard 2009;
Goddard et al. 2011). We attempted to fit the equation pro-
posed by Goddard et al. (2011), using sample size, the num-
ber of independent segments, and the trait heritability as free
parameters, to our empirical prediction R-sq. values; how-
ever, the equation did not fit the observed patterns well. On
the other hand, a simple curve R2ðniÞ ¼ að ffiffiffiffi

ni
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ b

p Þ þ di
fitted the observed patterns very well. Therefore, we fitted
this curve to each SNP set using nonlinear least squares and
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we used the estimated curves to forecast prediction R-sq. for
each SNP set as a function of the size of the data set used to
estimate the SNP effects.

Validation in an independent cohort

We also evaluated prediction R-sq. using data from the Ath-
erosclerosis Risk in Communities (ARIC) study. The data set
consists of 13,113 European and African Americans geno-
typedwith the Affymetrix 6.0 arraywith 841,820 SNPs. A few
duplicated samples were identified and removed. Only data
from European Americans (n= 9633 after initial quality con-
trol) were used. SNPs with an MAF of ,0.01 and a missing
call rate of 0.05 or larger were filtered out. Furthermore,
individuals that did not have a record for height or had
recorded height smaller than 147 cm tall were removed. A
total of 709,956 SNPs and 9591 individuals passed the filter-
ing steps.

We identified SNPs in common between the genotypes
available in ARIC and those genotyped in the UK Biobank.
There are only 75,316 genotyped SNPs in common between
ARIC and UK Biobank. However, there were 578,264 SNPs in
common between the genotyped SNPs of ARIC and those
imputed in the UK Biobank; therefore, we based our external
validation on those 578,264 SNPs. For these SNPs, we con-
ducted GWAS andWGR in the TRN set of the UK Biobank and
used theestimatedeffects topredictheight inARIC.Prediction
accuracy was assessed in the ARIC data set by correlating
genomic predictions with sex- and age-adjusted height.

Validation in non-Caucasians in the UK Biobank

Finally,weuseddata fromnon-Caucasian individuals to assess
the accuracy of trans-ethnic prediction. We quantified pre-
diction R-sq. on five disjoint groups of individuals identified
by the UK Biobank, these were: Chinese (n = 490), black or
black British (n = 903), Asian other than Chinese or Asian
British (n = 2334), Caribbean (n = 1145), and mixed be-
tween Caucasian and any other background (n = 809).

Data availability

This research has been conducted using the UK Biobank Re-
source under project identification number 15326. The data
are available for all bona fide researchers and can be acquired

by applying at http://www.ukbiobank.ac.uk/register-apply/.
The ARIC data set was obtained from the dbGaP under ac-
cession number phs000280.v3.p1 (https://dbgap.ncbi.nlm.
nih.gov/aa/dbgap_request_process.pdf) (Mailman et al. 2007).
The Institutional Review Board (IRB) of Michigan State
University has approved this research with the IRB number
15-745.

Results

The large sample size of the TRN set (n = 80K) led to large
numbers of SNPs that were highly significantly associated
with height (Figure 1).

We used the results presented in Figure 1 to form SNP sets
(Table 1), and with this we studied the effects of the number
of markers used (p) on genomic heritability and on prediction
R-sq. Both prediction R-sq. and genomic heritability esti-
mates increased with the number of SNPs used (Figure 2;
Supplemental Material, Figure S1 and Table S1 in File S1)
achieving values of 0.22 (95% C.I.: 0.21–0.23) and 0.45
(95% Bayesian credibility regions: 0.43–0.46), respectively.
The estimated genomic heritability obtained with BayesB
was very similar to those obtained with a GCTA (Table S1
in File S1). For small SNP sets (e.g., p = 500), the estimated
genomic heritability and prediction R-sq. were similar; how-
ever, while genomic heritability estimates increased steadily,
the prediction R-sq. plateaued with �10K SNPs. Conse-
quently, there was a widening gap between genomic herita-
bility estimates and prediction R-sq. This gap can be largely
attributed to the reduction in the accuracy of estimated ef-
fects that takes place as the ratio between the number of SNPs
(p) used in the model and sample size (n) decreases. This
factor is addressed in more detail in the next section.

In Figure 2, we reported the squared correlation between
predictions and adjusted phenotypes as a measure of predic-
tion accuracy. The squared correlation coincides with
R2 ¼ 12 ½Varðy2 ŷÞ=VarðyÞ� only when the regression of
phenotypes on predictions equals one. In our study, the re-
gression of phenotypes on predictions in the TST set was
close to one (Table S2 in File S1); however, there was a clear
trend for the regression coefficient to become smaller than
one as the number of SNPs used in the model increased.

Table 1 Grouping of SNPs into sets The shaded cells represent SNP sets included in each model.

GWA ranka [1;500] [501;1000] [1001;2000] [2001;5000] [5,001;10,000] [10,001;20,000] [20,001;50,000]

SNP set (no. of SNPs) 1 (500) 2 (500) 3 (1000) 4 (3000) 5 (10,000) 6 (10,000) 7 (30,000)
Model

Top-500

Top-1K

Top-2K

Top-5K

Top-10K

Top-20K

Top-50K

a SNPs were ranked from the smallest to the largest GWAS P-value (derived from the TRN set).
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Consequently, there was a small gap between the squared
correlation and the traditional R2 statistic. However, this
problem can be easily addressed by scaling predictions using
a linear model, y ¼ aþ bŷ þ e; with regression coefficients
derived from a calibration set. To demonstrate this, we used
5000 records of the TST set to estimate the regression co-
efficient b and used the estimated coefficient to scale predic-
tions. Subsequently, we used the remaining 17,221 data
points of the TST set to evaluate the traditional R2 and the
squared correlation for the unscaled ðŷÞ and scaled (~y ¼ b̂ŷ)
predictions. After scaling, there was almost no difference be-
tween the traditional R2 and the squared correlation (Table
S3 in File S1).

Forecasting the maximum prediction R-sq. that can be
achieved with a SNP set

To obtain further insight on the combined effects of sample
size andnumber of SNPs onprediction accuracy,we evaluated
prediction R-sq. for predictions derived using partitions of the
TRN set. For each of the SNP sets evaluated, prediction R-sq.
increased with sample size (Figure 3); however, the rate of
increase, and whether the curve relating prediction R-sq.
with sample size reached a plateau, varied with the size of
the SNP set used. For models using 500 SNPs, the prediction
R-sq. increased rapidly with sample size and quickly reached
a plateau with an estimated maximum prediction R-sq. of
�0.1 (95% C.I.: 0.09–0.10). For models using 1K and 2K
SNPs, the shape of the curve was similar to that of models
using 500 SNPs; however, the maximum prediction R-sq.
achieved increased with the number of SNPs used. Finally,
for models using a large number of SNPs (e.g., p$ 10K), the
curves relating prediction R-sq. with sample size increased
steadily with sample size without reaching a clear plateau.

For small SNP sets, a maximum prediction R-sq. can be
safely inferred from the plots presented in Figure 3. However,
for SNP sets with 10K or more SNPs, such a maximum is not

obvious. However, a simple nonlinear curve of the form
R2ðniÞ ¼ að ffiffiffiffi

ni
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ b

p Þ þ di (blue lines in Figure 3) fitted
the observed patterns very well. The estimated asymptotic
prediction R-sq. (estimated parameter a; represented by the
horizontal blue dashed lines in Figure 3) increased from a
value of �0.1 with 500 SNPs to a value of 0.37 for panels
including 50K SNPs (Figure 3). For models using up to 10K
SNPs, the estimated values of parameter a and of the genomic
heritability (represented by the red dashed lines in Figure 3)
were very close. However, for SNP sets with 20K or more
SNPs, the genomic heritability estimate was higher than the
estimated maximum prediction R-sq.

The results presented above were based on SNPs selected
from GWA P-values and on prediction equations estimated
using model BayesB. Next, we present results obtained with
alternative methods for selecting SNPs as well as different
Bayesian models for estimating SNP effects.

Exploiting multi-locus LD between markers and QTL
increases prediction R-sq.

Selecting markers based on the GWA P-values can lead to the
inclusion of multiple SNPs in (high) mutual LD, and this may
not be optimal from a predictive perspective. To address this
potential limitation, we considered constraining the selection
of SNPs to either one (top-p-LD1) or two (top-p-LD2) SNPs
per “LD-block.” LD-blocks were formed using LD-R2 thresh-
olds of 0.8 and 0.5. For the 598,028 genotyped SNPs, those
thresholds rendered a total 534,228 and 449,807 SNP sets
(LD-blocks), respectively (Table S4 in File S1). For models
using,10K SNPs, the top-p-LD1 and top-p-LD2methods out-
performed the top-p approach (Figure 4). However, with 10K
SNPs or more, the top-p-LD1 approach was outperformed by
the top-p-LD2 and top-p methods (Figure 4).

Variable selection methods outperform shrinkage
methods at high marker density

To shed light on the effect of the statistical method used on
predictionR-sq.,wefitted fourdifferentmodels (BRR,BayesB,
BRR-sets, and BayesB-sets) and compared their predictive
performance for varying numbers of SNPs. For models using
a small number of SNPs (e.g., p,10K), all the methods per-
formed similarly (Figure 5); however, as the number of SNPs
used in the model increased, the performance of these set
methods (both BayesB-sets and BRR-sets) improved slightly
and that of the BRR deteriorated slightly. Consequently, with
50K SNPs the set methods outperformed the prediction ac-
curacy of BRR and BayesB. Using 100K SNPs (results not
shown in Figure 5), model BayesB-sets achieved a prediction
R-sq. of 0.24 (95% C.I.: 0.23–0.25). Inspection of estimates
of regularization parameters (see Tables S5, S6, and S7 in
File S1) and of estimated effects (Figure S2 in File S1) from
each of these methods shows that assigning a single Gaussian
prior to all SNPs (method BRR) leads to overshrinkage of the
SNPs with larger effects. This can be prevented either by
using variable selection models, such as in BayesB, or with
set methods.

Figure 1 Manhattan plot for human height. Results were obtained single
marker least-squares regression of sex- and age-adjusted height applied
to the TRN data set of 80,000 distantly related Caucasian individuals. The
horizontal lines are –log10(P-value) cutoffs used to group markers into
sets (see Table 1).
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Imputation of genotypes to higher marker density did
not improve prediction R- sq.

Previous results were based on genotyped SNPs from the UK
BiLEVE Axiom and the UK Biobank Axiom arrays. The max-
imum prediction R-sq. that can be achieved with this set of
SNPs is limited by the extent of LD between the SNPs in the
array and the set of causal variants. Genotype imputation to
higher SNP density can in principle lead to higher LD between
markers and QTL, and this could result in higher prediction
R-sq. To assess this, we repeated the analyses presented in
Figure 4 using imputed genotypes (13,558,738 SNPs after
quality control). The use of imputed genotypes did not lead
to higher prediction R-sq. for any of the marker densities
evaluated (Figure S3 and Table S8 in File S1). However,
the slope of the curves relating prediction R-sq. to numbers
of markers suggests that, for very large numbers of SNPs
(.50K), using the high-density imputed genotypes may lead
to a slightly higher prediction R-sq. than what could be
achieved using genotyped SNPs. To assess this, we fitted
BayesB-sets with the top-p 100K SNPs chosen from the im-
puted genotypes. However, the prediction R-sq. achieved in
the TST set (0.20, C.I.: 0.19–0.21) was not larger than the
one achieved when using 100K SNPs chosen from the geno-
typed SNPs (0.24, C.I.: 0.23–0.25).

External validation in a U.S. cohort

The results presented so far were all based on independent
TRN–TST sets from the UK Biobank. To assess the validity of

the prediction equations on an independent data set, we also
evaluated prediction R-sq. using data from the ARIC study.
Predictive ability evaluated in ARIC increased with the num-
ber of SNPs used (Figure 6); however, there was a gap be-
tween the prediction accuracy achieved by the same
prediction equations in UK Biobank TST and ARIC. Several
factors can contribute to this reduction in prediction R-sq.
First, different platforms were used in ARIC and the UK Bio-
bank, and the clear majority (87%) of the SNPs selected in
the UK Biobank were imputed. Second, although in both
cases we used data from individuals of Caucasian back-
ground, there may be small differences in ethnic background
between the two cohorts, with the ARIC cohort being a bit
more diverse than the UK Biobank. Finally, since the two data
sets originated in different countries, there may be (likely
small) differences due to genetic-by-environmental interac-
tion. Interestingly, the reduction in prediction R-sq. observed
between the internal (UK Biobank TST) and external (ARIC)
validation increased with the number of SNPs used, suggest-
ing that large-effect QTL may have effects that are more sta-
ble across cohorts.

Discussion

GWAS have reported large numbers of variants associated
with many important complex traits and diseases. However,
the proportion of variance accounted for by GWA-significant
SNPs remains low; this has limited the adoption of genomic
technologies in precision medicine. The relatively poor pre-
dictionaccuracy achievedwith scores basedonGWA-significant
SNPshas led to an increased interest in theuse ofWGRmethods
(de los Campos et al. 2010a). One line of research (Yang
et al. 2010) uses WGRs (predominantly ridge regression-
type methods such as G-BLUP) to estimate the proportion
of variance that could be captured by regression on sets of
SNPs. Empirical estimates suggest that genotyped SNPs
can capture anywhere between 30 and 60% of the trait heri-
tability (Yang et al. 2010; Lee et al. 2012; de los Campos et al.
2013b; Llewellyn et al. 2013). More recently, studies using
rare and common variants suggest that the amount of var-
iance that could be captured by regression on SNPs could be
even higher, approaching the trait heritability (Yang et al.
2015). However, as argued by Makowsky et al. (2011),
these results do not necessarily reflect the ability of a model
to predict future outcomes. Unfortunately, the few studies
that (until recently) have used G-BLUP-type methods for
prediction of complex traits using distantly related individ-
uals (de los Campos et al. 2013b) were based on relatively
small training data sets. Consequently, the prediction R-sq.
reported were not considerably higher than what can be
obtained using genetic scores based on GWAS-significant
SNPs (de los Campos et al. 2013b). Better results have been
obtained using family data (de los Campos et al. 2012;
Vazquez et al. 2012); however, as noted by the authors,
these results pertain to “family-based” risk prediction and
are not applicable in the general population (Makowsky

Figure 2 Genomic heritability and prediction R-sq. increase with the
number of SNPs (p) used. SNPs were selected based on a GWAS con-
ducted in the TRN data set (n = 80K, K = 1000). Prediction R-sq. and
genomic heritability were evaluated in the TST set (n = 22,221). Marker
effects and genomic heritability were estimated using model BayesB. The
vertical bars provide 95% Bayesian credibility regions and 95% C.I.’s for
the genomic heritability and prediction R-sq. estimates, respectively.
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et al. 2011; Vazquez et al. 2012, 2016; de los Campos et al.
2013b).

The main explanation for the relatively disappointing pre-
diction accuracy achievedwithWGRmethods in prediction of
disease risk with unrelated individuals has been that the
number of SNP effects that need to be estimated is usually
large relative to sample size. This leads to low accuracy of
estimatedeffectsandconsequently toawideninggapbetween
the genomic heritability and prediction R-sq. In principle, the
useof bigdata should lead to a substantial reductionof thegap
between prediction R-sq. and the trait heritability. Our results
support this hypothesis.

Using 80K records formodel training and top-100KGWAS-
selected SNPs, we were able to achieve a prediction R-sq. of
0.24 (95% C.I.: 0.23–0.25, model BayesB-sets). This repre-
sents approximately one-third of the trait heritability. The

Genetic Investigation of ANthropometric Traits (GIANT) con-
sortium reported an R-sq. of 0.17 using 2K SNPs selected
based on GWAS meta-analysis (n = 253,288) (Wood et al.
2014). For the same number of SNPs, we obtained a similar
prediction R-sq. (�0.16, Table S9 in File S1). However, we
also observed that higher prediction R-sq. can be achieved
using more SNPs (up to 0.24 with 100K SNPs).

Canela-Xandri et al. (2016) also used data from the in-
terim release of the UK Biobank to assess prediction accu-
racy of human height using a G-BLUP (a model similar to the
BRR used here). Using p = 319,038 common SNPs (MAF .
0.05) and n = 114,264 individuals for model training, they
achieved a prediction correlation of 0.53 (a squared correla-
tion of 0.28) on a testing set of n = 9583 white Caucasians
individuals. This value is higher than what we reported here
for model BayesB-sets with p= 100K SNPs (0.24). However,

Figure 3 Polygenic prediction coupled with big data closes a sizable fraction of gap between prediction R-sq. and trait heritability. Each panel shows the
average prediction R-sq. (s) achieved in the testing set (n = 22,221) by the number of SNPs used (p = 500, 1K,⋯; 50K, K = 1000) vs. the size of the data
set used to train models. The solid blue curve corresponds to a nonlinear function, R2ðnÞ ¼ a

ffiffiffi
n

p
=

ffiffiffi
n

p þ b; fitted by least squares. The dashed blue
horizontal line gives the estimated maximum prediction R-sq. (â) for each SNP set. The dashed red horizontal line gives the estimated genomic heritability
of the SNP set (estimated using data from the TST set).
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the two studies are not strictly comparable due to two main
reasons. First, the TST set used in our study (n = 22,221)
included individuals that were distantly related to those used
for TRN (all TRN–TST genomic relationships satisfied
Gij,0.03); therefore, our TRN and TST sets were distantly
related. On the other hand, in Canela-Xandri et al. (2016),
the individuals used for validation had at least one genomic
relationship .0.0625 with the individuals used for model
training; therefore, in the study Canela-Xandri et al., individ-
ual in the training and testing set were not as distantly related
as in our study. Second, our training size was 30% smaller
(n TRN = 80K compared with n = 114,264). However, de-
spite the differences in the size of the TRN set and the rela-
tionships between TRN and TST sets, the two studies suggest
that using a training size of the order of 100K subjects can
lead to a prediction R-sq. for human height of �30–35% of
the trait heritability.

Even for traits affected by large numbers of small-effect
loci, a sizable fraction of the SNPs available in a modern SNP
array is likely to be inweakornoLDwithQTL.RemovingSNPs
that are in linkage equilibrium with QTL should not reduce
genomic heritability and can lead to more accurate estimates
of effects; therefore, as previously shown in other studies
(Lango Allen et al. 2010), preselection of SNPs can be an
effective strategy when deriving equations for prediction of
complex human traits. However, how many SNPs should be
used? Our study shows that, because of the tradeoff existing
between genomic heritability and the accuracy of estimated
effects, this question does not have a universal answer. For
example, for TRN data sets with n= 5K samples or fewer, the
maximum prediction R-sq. was achieved with p = 5K SNPs
(Figure S1 in File S1); however, for models trained with
larger sample sizes (e.g., n = 80K), the prediction R-sq. con-
tinued to increase as more SNPs were added to the model,
reaching a plateau with�10K SNPs (e.g., with model BayesB,
see Figure S1 in File S1).

The statistical model used to estimate effects has received a
great deal of attention in both the animal and plant genomic
literature (Gianola et al. 2009; Habier et al. 2011; de los
Campos et al. 2013a; Wimmer et al. 2013). However, this
has not been the case in human genetics where most of the
WGR studies published are based on shrinkagemethods. This
is rather surprising considering that variable selection is po-
tentially more relevant when LD spans over short regions; a
situation that is more likely in human genomes than in those
from breeding populations.We compared shrinkage and vari-
able selection methods and, overall, did not find very large
differences between methods. However, this is partially a
consequence of (i) the complexity of the trait analyzed (hu-
man height), which is characterized by having large numbers
of small effects loci; and (ii) the use GWA-selected SNPs (by
preselecting SNPs, large numbers of the SNPs with no effects
are removed in the first step). In this setting, and when the
number of SNPs selected is moderate (e.g., p# 2K), different
estimation methods lead to very similar prediction R-sq.
However, when using large numbers of SNPs (e.g., p $

10K), we observed that models based on a single normal
distribution of effects (BRR) led to overshrinkage of the esti-
mates of large-effect variants (Figure S2 in File S1) and to lower
prediction R-sq. (Figure 5). Therefore, when p is large, it seems
clear that either using variable selectionmethods (e.g., BayesB)
or grouping SNPs into sets according to some proxy of the size
of their effects (as done here in BRR-sets and BayesB-sets) can
lead to higher prediction R-sq.

In this study, we have focused on additive models where
SNPs enter linearly in the prediction equation and are as-
sumed to be the same for all individuals. For some traits and
diseases, it is possible that higher prediction accuracy could be
achieved by accounting for nonadditive effects (e.g., domi-
nance, epistasis). In high-dimensional models, epistasis could
be captured using semiparametric methods such as kernel
regressions (e.g., de los Campos et al. 2010b). However, for

Figure 4 Prediction R-sq. achieved
vs. number of SNPs used in the
model, by marker selection strat-
egy. Prediction R-sq. achieved in
the UK Biobank TST set (n =
22,221) obtained with models
fitted using a training data set of
80,000 subjects vs. the number of
SNPs used. BayesB models were
fitted using genotyped SNPs and
three different strategies for SNP
selection: top-p includes the p SNPs
with the smallest GWA P-value,
top-p-LD1 and top-p-LD2 select
the p SNPs with smallest GWA
P-value (derived from the TRN set)
subject to the restriction of choos-
ing only one or two SNPs per
LD-block, respectively. LD-blocks
were determined using an LD-R2

threshold of 0.8 (left) and 0.5
(right).
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many traits and diseases, including anthropometric traits
such as human height, the gap between the broad and the
narrow sense heritability (Falconer and Mackay 1996) is small.
In such cases, the potential to improve prediction accuracy
by accounting for nonadditive effects is limited. Likewise,
for some traits and diseases, incorporating genetic-by-
environmental interactions could be an avenue to further
improve prediction accuracy. However, this is unlikely the
case for prediction of human stature of individuals without
nutritional deprivation.

In recent years, there has been an important debate as to
whether and how to deal with near collinearity (a phenom-
enon that can emerge when using multiple markers in high
LD) in genomic analysis of complex traits. This debate has
been largely centered on the problem of estimating genomic
heritability (Gianola et al. 2009; de los Campos et al. 2013b).
Here, we approach the problem from a predictive perspective
by comparing methods that use either one or two SNPs per
LD block with a method that selects SNPs based on GWA P-
values irrespective of the LD structure. The latter approach
leads to the selection of multiple markers per LD block. When
a small number (e.g., p = 500) of SNPs was used, the top-p-
LD1 method was better than the method using the top-p
SNPs. This happens because when only a few SNPs are used,
the SNPs selected by the top-p method clustered in a few
regions and did not provide a good coverage of the genome.
This can be avoided by choosing only one or two SNPs per LD
block. However, for prediction equations based on a larger
number of SNPs (e.g., p $ 10K) the methods that used mul-

tiple markers per LD block (either top-p-LD2 or top-p) out-
performed the top-p-LD1 method, suggesting that exploiting
multi-locus LD between markers and QTL is needed to
achieve higher prediction R-sq. This seems to be an instance
where the realms of inference (e.g., estimation of genomic
heritability) and prediction needs to be distinguished: high
LD between predictors can lead to problems for inferences
about variances and about individual marker effects; how-
ever, multi-locus LD seems to be an important feature to be
exploited when it comes to prediction.

Previous studies suggest that the use of genotypes imputed
to high marker density (e.g., �17 million) (Yang et al. 2015)
can lead to estimates of genomic heritability considerably
higher than those obtained with common SNPs. However,
in our study models based on imputed genotypes did not yield
higher prediction R-sq. than those based on genotyped SNPs.
When only a small number of variants (e.g., p = 1K) were
used, the prediction R-sq. of models based on genotyped
SNPs was higher than the one obtained when those SNPs
were selected from both genotyped and imputed SNPs. With
higher marker density (e.g., models with p = 100K), models
based on genotyped and imputed SNPs performed similarly.

The UK Biobank also provides data from non-Caucasian
subjects.Whenweused the prediction equationsderived from
theTRNset topredict individuals ofotherethnicbackgrounds,
we observed a substantial reduction in prediction R-sq. (Fig-
ure S4 in File S1). The additive effects of SNPs can depend on
both allele frequencies and LD patterns (de los Campos et al.
2015b; Lehermeier et al. 2015). These two features of ge-
nomes are likely to vary between populations, making linear
models such as the one considered here useful within the
population that was used to estimate effects. Interestingly,
the gap between the within- and across-ethnic group predic-
tion R-sq. increased as the number of SNPs included in the

Figure 6 An external validation in a U.S. cohort yields moderately high
prediction R-sq. Each bar shows the prediction R-sq. by combinations of
genotypes and numbers of SNPs in ARIC (n TST = 9591) and UK Biobank
(n TST = 22,221) cohorts. The vertical bars represent 95% C.I.’s. UKB, UK
Biobank.

Figure 5 Prediction R-sq. achieved vs. number of SNPs, by the statistical
model used. Prediction R-sq. achieved in the UK Biobank TST set (n =
22,221) obtained with models fitted using a TRN data set of 80,000
subjects vs. the number of SNPs used. The top-pmarker selection strategy
was used on genotyped SNPs and marker effects were estimated using
different methods: BRR (a shrinkage Bayesian estimation method), BayesB
(a Bayesian shrinkage and variable selection methods), and BRR-sets and
BayesB-sets with set-specific regularization parameters.

Genomic Prediction Using Big Data 1143

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300271/-/DC1/FileS1.docx


model grew from 500 to 50K. This suggests that the extent of
effect heterogeneity between populations is likely to be smaller
for large-effect variants and larger for variants with small ef-
fects. The vast majority of the GWA data collected in the last
two decades originates from individuals of Caucasian origin
(Bustamante et al. 2011; Popejoy and Fullerton 2016). The
results reported here for trans-ethnic prediction highlight the
importance of further investing in the collection of large data
sets for non-Caucasian individuals.

Conclusion

Will big data close the missing heritability gap? Our results
indicate that even for a highly complex trait such as standing
height, the use of polygenic prediction coupled with big data
can close a sizable fraction of thegap between trait heritability
and prediction R-sq. With a TRN size of 80K records we were
able to achieve apredictionR-sq. of about one-thirdof the trait
heritability.

Soon, much larger data sets with several hundreds of thou-
sands of individual phenotype–genotype records will become
available. Forecasting prediction R-sq. for such data sets implies
extrapolating beyond the sample size considered here and is a
question that can only be answered once such data sets become
available.However, thefitted response curves (Figure3) suggest
that, for the top-50K SNPs identified in this study, the (esti-
mated) maximum prediction R-sq. that could be achieved is
0.37. These forecasts pertain to the set of 50K SNPs that was
selected using GWA P-values derived from a training set of 80K
samples. If onehad access to 1million records, theGWASwould
bemore accurate and this would likely lead to the selection of a
better 50K SNP set than the one selected here. Moreover, with
1 million records it is likely that models using .50K will out-
perform those based on the top-50K SNPs. Therefore, we con-
clude that the advent of big data will lead to a sizable
improvement of our ability to predict complex human traits
and diseases. This can make genomic prediction of many mod-
erately heritable traits and diseases practically useful.

Acknowledgments

The authors thank the participants and the personnel in
charge of generating, curating, and maintaining the data of
the UK Biobank and Atherosclerosis Risk in Communities
studies, and Dr. Kyle Grimes for helping us on improving the
quality of our manuscript. G.d.l.C., A.I.V., H.K., and A.G. had
financial support from National Institutes of Health grants
R01 GM-099992 and R01 GM-101219. This work was
supported in part by Michigan State University through
computational resources provided by the Institute for Cyber-
Enabled Research.

Literature Cited

Allen, N. E., C. Sudlow, T. Peakman, and R. Collins; UK Biobank,
2014 UK biobank data: come and get it. Sci. Transl. Med. 6:
224ed4.

Bustamante, C. D., E. G. Burchard, and F. M. De La Vega,
2011 Genomics for the world. Nature 475: 163–165.

Canela-Xandri, O., K. Rawlik, J. A. Woolliams, and A. Tenesa,
2016 Improved genetic profiling of anthropometric traits us-
ing a big data approach. PLoS One 11: 1–12.

Chang, C. C., C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell
et al., 2015 Second-generation PLINK: rising to the challenge
of larger and richer datasets. Gigascience 4: 7.

Collins, F. S., and H. Varmus, 2015 A new initiative on precision
medicine. N. Engl. J. Med. 372: 793–795.

Daetwyler, H. D., B. Villanueva, and J. A. Woolliams, 2008 Accuracy
of predicting the genetic risk of disease using a genome-wide ap-
proach. PLoS One 3: e3395.

de los Campos, G., D. Gianola, and D. B. Allison, 2010a Predicting
genetic predisposition in humans: the promise of whole-genome
markers. Nat. Rev. Genet. 11: 880–886.

de los Campos, G., D. Gianola, G. J. M. Rosa, K. A. Weigel, and J.
Crossa, 2010b Semi-parametric genomic-enabled prediction of
genetic values using reproducing kernel Hilbert spaces methods.
Genet. Res. 92: 295–308.

de los Campos, G., Y. C. Klimentidis, A. I. Vazquez, and D. B.
Allison, 2012 Prediction of expected years of life using
whole-genome markers. PLoS One 7: e40964.

de los Campos, G., J. M. Hickey, R. Pong-Wong, H. D. Daetwyler,
and M. P. L. Calus, 2013a Whole-genome regression and pre-
diction methods applied to plant and animal breeding. Genetics
193: 327–345.

de los Campos, G., A. I. Vazquez, R. Fernando, Y. C. Klimentidis,
and D. Sorensen, 2013b Prediction of complex human traits
using the genomic best linear unbiased predictor. PLoS Genet. 9:
e1003608.

de los Campos, G., D. Sorensen, and D. Gianola, 2015a Genomic
heritability: what is it? PLoS Genet. 11: e1005048.

de los Campos, G., Y. Veturi, A. I. Vazquez, C. Lehermeier, and P.
Pérez-Rodríguez, 2015b Incorporating genetic heterogeneity
in whole-genome regressions using interactions. J. Agric. Biol.
Environ. Stat. 20: 467–490.

Erbe, M., B. Gredler, F. R. Seefried, B. Bapst, and H. Simianer,
2013 A function accounting for training set size and marker
density to model the average accuracy of genomic prediction.
PLoS One 8: e81046.

Falconer, D. S., and T. F. C. Mackay, 1996 Introduction to quanti-
tative genetics, Ed. 4. Longmans Green, Harlow, UK.

Gaziano, J. M., J. Concato, M. Brophy, L. Fiore, S. Pyarajan et al.,
2016 Million veteran program: a mega-biobank to study ge-
netic influences on health and disease. J. Clin. Epidemiol. 70:
214–223.

Gianola, D., G. de los Campos, W. G. Hill, E. Manfredi, and R.
Fernando, 2009 Additive genetic variability and the Bayesian
alphabet. Genetics 183: 347–363.

Goddard, M., 2009 Genomic selection: prediction of accuracy and
maximisation of long term response. Genetica 136: 245–257.

Goddard, M. E., B. J. Hayes, and T. H. E. Meuwissen, 2011 Using
the genomic relationship matrix to predict the accuracy of ge-
nomic selection. J. Anim. Breed. Genet. 128: 409–421.

Habier, D., R. L. Fernando, K. Kizilkaya, and D. J. Garrick,
2011 Extension of the bayesian alphabet for genomic selec-
tion. BMC Bioinformatics 12: 186.

Lango Allen, H., K. Estrada, G. Lettre, S. I. Berndt, M. N. Weedon
et al., 2010 Hundreds of variants clustered in genomic loci
and biological pathways affect human height. Nature 467:
832–838.

Lee, S. H., T. R. DeCandia, S. Ripke, J. Yang Schizophrenia Psy-
chiatric Genome-Wide Association Study Consortiumet al.,
2012 Estimating the proportion of variation in susceptibility
to schizophrenia captured by common SNPs. Nat. Genet. 44:
247–250.

1144 H. Kim et al.



Lehermeier, C., C.C. Schön, and G. de los Campos, 2015 Assessment
of genetic heterogeneity in structured plant populations using
multivariate whole-genome regression models. Genetics 201:
323–337.

Lehermeier, C., G. de los Campos, V. Wimmer, and C. C. Schön,
2017 Genomic variance estimates: with or without disequilib-
rium covariances? J. Anim. Breed. Genet. 134: 232–241.

Llewellyn, C. H., M. Trzaskowski, R. Plomin, and J. Wardle,
2013 Finding the missing heritability in pediatric obesity: the
contribution of genome-wide complex trait analysis. Int.
J. Obes. 37: 1506–1509.

Maher, B., 2008 Personal genomes: the case of the missing heri-
tability. Nature 456: 18–21.

Mailman, M., M. Feolo, Y. Jin, M. Kimura, K. Tryka et al.,
2007 The NCBI dbGaP database of genotypes and phenotypes.
Nature 39: 1181–1186.

Makowsky, R., N. M. Pajewski, Y. C. Klimentidis, A. I. Vazquez, C.
W. Duarte et al., 2011 Beyond missing heritability: Prediction
of complex traits. PLoS Genet. 7: e1002051.

Manolio, T. A., F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff
et al., 2009 Finding the missing heritability of complex diseases.
Nature 461: 747–753.

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard,
2001 Prediction of total genetic value using genome-wide
dense marker maps. Genetics 157: 1819–1829.

O’Connell, J., K. Sharp, N. Shrine, L. Wain, I. Hall et al.,
2016 Haplotype estimation for biobank-scale data sets. Nat.
Genet. 48: 817–820.

Pérez, P., and G. de los Campos, 2014 Genome-wide regression
and prediction with the BGLR statistical package. Genetics 198:
483–495.

Popejoy, A. B., and S. M. Fullerton, 2016 Genomics is failing on
diversity Alice. Nature 538: 161–164.

Ripke, S., B. M. Neale, A. Corvin, J. T. R. Walters, K.-H. Farh et al.,
2014 Biological insights from 108 schizophrenia-associated
genetic loci. Nature 511: 421–427.

Speliotes, E. K., C. J. Willer, S. I. Berndt, K. L. Monda, G. Thorleifsson
et al., 2010 Association analyses of 249,796 individuals reveal
18 new loci associated with body mass index. Nat. Genet. 42:
937–948.

The SIGMAType 2 Diabetes Consortium, A. L. Williams, S. B. Jacobs,
H. Moreno-Macías, A. Huerta-Chagoya et al., 2014 Sequence var-
iants in SLC16A11 are a common risk factor for type 2 diabetes in
Mexico. Nature 506: 97–101.

UK Biobank, 2007 UK Biobank: protocol for a large-scale prospec-
tive epidemiological resource, pp. 1–112. Accessed May 7, 2016.

Available at: http://www.ukbiobank.ac.uk/wp-content/uploads/
2011/11/UK-Biobank-Protocol.pdf.

UK Biobank, 2015 Genotyping and quality control of UK Biobank,
a large-scale, extensively phenotyped prospective resource, pp.
1–27. Accessed May 7, 2016. Available at: https://biobank.ctsu.
ox.ac.uk/crystal/docs/genotyping_qc.pdf.

Vazquez, A. I., G. J. M. Rosa, K. A. Weigel, G. de los Campos, D.
Gianola et al., 2010 Predictive ability of subsets of single nu-
cleotide polymorphisms with and without parent average in US
Holsteins. J. Dairy Sci. 93: 5942–5949.

Vazquez, A. I., G. de los Campos, Y. C. Klimentidis, G. J. M. Rosa, D.
Gianola et al., 2012 A comprehensive genetic approach for
improving prediction of skin cancer risk in humans. Genetics
192: 1493–1502.

Vazquez, A. I., Y. Veturi, M. Behring, S. Shrestha, M. Kirst et al.,
2016 Increased proportion of variance explained and pre-
diction accuracy of survival of breast cancer patients with
use of whole-genome multiomic profiles. Genetics 203:
1425–1438.

Voight, B. F., L. J. Scott, V. Steinthorsdottir, A. P. Morris, C. Dina
et al., 2010 Twelve type 2 diabetes susceptibility loci identified
through large-scale association analysis. Nat. Genet. 42: 579–
589.

Wall, J. D., and J. K. Pritchard, 2003 Haplotype blocks and link-
age disequilibrium in the human genome. Nat. Rev. Genet. 4:
587–597.

Wimmer, V., C. Lehermeier, T. Albrecht, H. J. Auinger, Y. Wang
et al., 2013 Genome-wide prediction of traits with different
genetic architecture through efficient variable selection. Genet-
ics 195: 573–587.

Wood, A. R., T. Esko, J. Yang, S. Vedantam, T. H. Pers et al.,
2014 Defining the role of common variation in the genomic
and biological architecture of adult human height. Nat. Genet.
46: 1173–1186.

Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders et al.,
2010 Common SNPs explain a large proportion of the herita-
bility for human height. Nat. Genet. 42: 565–569.

Yang, J., S. H. Lee, M. E. Goddard, and P. M. Visscher,
2011 GCTA: a tool for genome-wide complex trait analysis.
Am. J. Hum. Genet. 88: 76–82.

Yang, J., A. Bakshi, Z. Zhu, G. Hemani, A. A. E. Vinkhuyzen et al.,
2015 Genetic variance estimation with imputed variants finds
negligible missing heritability for human height and body mass
index. Nat. Genet. 47: 1114–1120.

Communicating editor: J. Wall

Genomic Prediction Using Big Data 1145

http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf
https://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping_qc.pdf
https://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping_qc.pdf

