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Although the concept of 
“bone quality” is at least 15 
years old [1], the term has 

recently sparked much discussion and 
debate among clinicians and clinical 
researchers [2–5]. At a recent National 
Institutes of Health conference on 
bone quality, the term was defi ned as: 
“The sum total of characteristics of the 
bone that infl uence the bone’s resistance to 
fracture” [6]. 

Where Did the Defi nition 
Come From?

This defi nition arose from the results 
of multicenter clinical trials that 
evaluated the effects of two classes of 
drugs—antiresorptive bisphosphonate 
therapy (alendronate and risedronate) 
and selective estrogen receptor 
modulator therapy (raloxifene)—on 
the prevention of osteoporotic fragility 
fractures [7,8]. While these studies 
reported consistent reductions in the 
incidence of fractures, the treatment 
effects could not be explained by 
contemporary changes in dual X-ray 
absorptiometric bone mineral density 
(BMD), the present clinical standard 
of bone fragility. These confl icting 
fi ndings led to speculation that the 
antiresorptive drugs had additional 
skeletal effects upon a feature of the 
bone called “bone quality” [7–12]. 

The idea of bone quality, and the 
explanation for the confl icting results, 
linked together two important notions: 
(1) antiresorptive drugs acted by 
suppressing bone turnover through 
inhibiting bone resorption, and (2) 
increased bone turnover (mainly the 
increased bone resorption, as detected 
by bone markers) compromises the 
bone strength through deteriorated 
bone microarchitecture (a trait 
that cannot be captured by BMD 
measurement but could potentially 
be improved by antiresorptive 
treatment) [4]. 

Bone quality is now a widely 
embraced concept that seems to offer 

a solution to the classic paradox of 
osteoporosis: while low BMD values 
are associated with increased relative 
risk of fracture at the population 
level, the predictive value of BMD in 
an individual patient remains quite 
marginal [13–15]. And to further 
support the concept of bone quality, 
inclusion of increased bone turnover 
in fracture-predicting models has 
somewhat improved the ability to 
predict fracture risk independently of 
BMD [8,16–19]. 

Flaws in the Concept

Although the concept of bone quality 
might seem attractive for all of the 
reasons discussed above, nevertheless 
the notion has three major conceptual 
fl aws. 

BMD and bone quality do not 
explain fractures. First, although BMD 
indeed shows a strong correlation with 
whole bone strength in the laboratory 
setting (r up to ~0.9) [20], in the 
clinical setting, paradoxically, the 
overall proportion of various fragility 
fractures attributable to low BMD 
(indicating reduced bone strength) 
remains modest (from 0% to 44%) 
[15]. In other words, when looking at 
all types of fractures combined, over 
half occur among people who cannot 
be classifi ed as having osteoporosis 
in the sense of the World Health 
Organization’s operational defi nition 
of osteoporosis (BMD 2.5 standard 
deviations or more below the young 
adult reference level). In fact, BMD is 
only a modest risk factor for fractures; 
about 85% of the contribution to 
the fracture risk in general, or to 
the rise in fracture risk with age, is 
unrelated to BMD [15,21]. In other 
words, the concept of bone quality is 
invoked to explain fracture risk that 
cannot be attributed to BMD, but it 
seems impossible that bone quality 
could realistically explain 85% of all 
fractures.

BMD and bone quality are largely 
inseparable. Second, the concept of 
bone quality rests on a commonly 
held idea that BMD and bone quality 
would independently account for bone 
fragility in totality. But this idea is a 

fallacy. Basically, BMD refl ects the 
bulk of material (bone mass) of which 
the bone, as an organ, is made [22]. 
BMD thus denotes a lumped measure 
of virtually everything within the 
measured bone site (i.e., bone cross-
sectional size and dimensions, cortical 
thickness and porosity, trabecular 
thickness and number, mineralization 
of bone material), but it denotes 
nothing specifi cally. Thus, there is 
not much left to be accounted for 
by subtle architectural and material 
properties (i.e., factors that allegedly 
account for bone quality). This simply 
means that BMD and most bone 
quality characteristics, measurable 
in vivo, are intertwined and largely 
inseparable. 

Flaws in defi ning bone quality. Third, 
the defi nition of bone quality is too 
imprecise, incorporating a pool of 
“non-BMD” indices of bone fragility 
(or, even more broadly, the portion 
of fracture risk that is not predicted 
by BMD [6]). Neither do we have an 
established measurement, indicator, or 
unit for bone quality. We don’t even 
have criteria for defi ning “good” or 
“bad” bone quality. 
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The Problem of Measurement

“If you can not measure it, you can 
not improve it.”

Lord Kelvin

In business and industry, quality is 
classically defi ned as “fi tness for use” 
[23] or “conformance to requirements” 
[24]. Extrapolating from these 
standard business defi nitions of quality, 
“good” bone quality would mean a 
high level of resistance to fractures, 
or extrapolating even further [6], 
resistance to all factors accounting 
for fracture risk. One might then ask 
whether the likelihood of a fracture 
is solely dependent on bone strength, 
and accordingly, whether a fracture 
that resulted from mild or moderate 
trauma is a direct index of “bad” bone 
quality. 

However, this kind of simplistic 
thinking ignores the fact that the 
etiology of any type of fracture 
among older adults is multifactorial, 
involving many extra-skeletal risk factors 
much stronger than the bone per se 
(measured by conventional BMD) [25–
33]. In this respect, one should recall 
that bone quality, by defi nition, cannot 
be but a bone-based trait only [2]. 

Even if the problems with the 
defi nition of bone quality could be 
solved, the fundamental problem with 
the bone quality concept is common 
to all new diagnostic tests [34]: the 
clinical value of a new diagnostic 
test depends on whether it improves 
patient outcomes beyond the outcome 
achieved with current diagnostic tests 
(here, the BMD and other well-known 
risk factors of fractures). As mentioned 
previously, it is true that highly 
increased bone turnover has been 
shown to improve the ability to predict 
some types of fractures independently 
of BMD [8,17,18]. However, so far we 
have little proof that the biochemical 
markers of bone turnover would be 
able to make a clinically relevant 
impact on the predictive ability of 
fracture independently of the well-known 
risk factors of fractures. 

For example, incorporating a single 
non-skeletal risk factor (gait speed) 
into the predictive equation along with 
BMD and bone markers was shown to 
clearly diminish the fracture predictive 
ability of bone markers [17]. Thus, it 
remains quite utopian to envision that 
a pure bone-derived measure (e.g., 
BMD complemented by bone quality) 

could ever cover all these extra-skeletal 
risk factors, too, and thus, predict solely 
the individual occurrence of fractures. 

The prevailing understanding 
of bone quality supposes that the 
primary property of bones is their 
capacity to resist fractures. But this is a 
misconception. The human skeleton is 
basically a locomotive apparatus, which 
is continually adapting to habitual 
loadings [35,36] and is particularly fi t 
for endurance activities [37]. Given 
the intrinsic locomotive function and 
the metabolic pressure to keep the 
skeleton light, there is a compromise 
between the bone’s actual, functionally 
adequate strength and the maximum 
attainable strength. Bone has a great 
capacity to become substantially 

stronger through appropriate 
structural adaptations whenever 
needed to cope with increased 
functional demands [36]. However, 
while the skeleton can be reasonably 
well adapted to customary, functional 
loadings (Figure 1A), it is defi nitely not 
adapted to unusual loadings caused 
by occasional falls (or by other similar 
trauma-related events) [38]. Under 
such circumstances weak bone regions 
can become unduly stressed, possibly 
beyond their load-bearing capacity, 
initiating a fracture (Figure 1C). Fully 
in line with this fact, the relative risk 
of hip fracture can rise to up to 30 
when the fall-induced impact directly 
hits the greater trochanter of the 
proximal femur [26,28,39]. It is thus 

doi:10.1371/journal.pmed.0040027.g001

Figure 1. Bone Fractures, Car Accidents, and Direction of Impact
Analogous to automobiles designed to run on their wheels, the human skeleton is adapted to 
bipedal gait and the resulting habitual locomotive loadings (Figure 1A). In terms of safety, the 
design of cars is optimized to keep the driver and passengers in the cockpit intact during collisions 
from the typical directions of impact, the front or rear (Figure 1B). However, a similar or even 
smaller force can cause profound damage to the cockpit if it comes from an atypical (unforeseen) 
direction (Figure 1C). Analogously, the capacity of the skeleton to resist fractures during accidents 
is generally good when the loading caused by a traumatic incident is a moderate magnifi cation 
of the loading experienced during habitual activities (i.e., within the inherent safety margin of 
bone), except in some cases where the incident force exceeds the bones’ capacity to withstand the 
loading without structural failure (Figure 1B). In many cases of older adults’ fractures, however, the 
incident loading in terms of direction, rate, and magnitude is essentially different from the loading 
that bones are adapted to (Figure 1C). Such cases can be caused, for example, by careless lifting of 
a shopping bag with straight knees [42,48] or a sideways fall directly onto the hip [26,30].
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quite understandable that the external 
loads from these non-habitual incidents 
cause most (up to ~90%) hip and wrist 
fractures [26,30,39] and also account 
for at least half of vertebral fractures 
[40–42]. 

Conclusion

In the end, the only reasonable 
mechanism by which any bone-targeted 
medication reduces fractures is through 
increasing the whole bone strength 
(one way or another). Accordingly, if 
we were able to accurately determine 
whole bone strength of individuals 
on antiresorptive therapy, the alleged 
discrepancy underlying the concept 
of bone quality would not exist. As 
the whole bone strength provides the 
ultimate measure of true bone quality, 
the paradox of osteoporosis appears 
to simply stem from our inherent 
inability to determine directly the 
actual bone strength of an individual in 
vivo. However, this inability cannot be 
taken as a justifi cation to introduce an 
obscure and ill-defi ned concept such as 
bone quality. 

If it really must be used, the term 
bone quality should refer only to the 
capacity of bones to withstand a wide 
range of loading without breaking—
though we already have a proper term 
for such capacity, the whole bone 
strength. Therefore, we must strive 
to reliably estimate the whole bone 
strength in vivo. In this context, the 
new 3-dimensional imaging techniques 
of the actual bone structure and 
macroanatomy seem an interesting 
and promising option [43–47] that will 
hopefully help in solving the important 
clinical issue of bone fragility in the 
near future. �
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