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Abstract: Mitochondria are involved either directly or indirectly in oncogenesis and the 
alteration of metabolism in cancer cells. Cancer cells contain large numbers of abnormal 
mitochondria and produce large amounts of reactive oxygen species (ROS). Oxidative 
stress is caused by an imbalance between the production of ROS and the antioxidant 
capacity of the cell. Several cancer therapies, such as chemotherapeutic drugs and 
radiation, disrupt mitochondrial homeostasis and release cytochrome c, leading to 
apoptosome formation, which activates the intrinsic pathway. This is modulated by the 
extent of mitochondrial oxidative stress. The peroxiredoxin (Prx) system is a cellular 
defense system against oxidative stress, and mitochondria in cancer cells are known to 
contain high levels of Prx III. Here, we review accumulating evidence suggesting that 
mitochondrial oxidative stress is involved in cancer, and discuss the role of the 
mitochondrial Prx III antioxidant system as a potential target for cancer therapy. We hope 
that this review will provide the basis for new strategic approaches in the development of 
effective cancer treatments. 
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1. Mitochondria and Cancer 

As the main energy producers in cells, mitochondria subject substrates to oxidative 
phosphorylation, thereby generating the energy molecule ATP. During this process, mitochondria 
inevitably generate reactive oxygen species (ROS). ROS are involved in the regulation of many 
physiological processes, including cell signaling, but are harmful to cells if produced in excessive 
amounts. Furthermore, mitochondria, which are crucial regulators of the intrinsic pathway of 
apoptosis, perform vital and lethal functions in physiological and pathological contexts [1,2]. 
Mitochondria control the activation of apoptotic effector mechanisms by regulating the translocation of 
pro-apoptotic proteins from the mitochondrial intermembrane space to the cytosol. In addition, they 
play a major role in multiple forms of non-apoptotic cell death [3]. In this context, mitochondrial 
abnormalities occur in various diseases, including cardiovascular, neurodegenerative, metabolic 
diseases, and cancer. 

In cancer cells, key mitochondrial regulators of cell death and other processes are often altered [4]. 
Cancer-cell mitochondria differ structurally and functionally from their normal-cell counterparts [4,5]. 
Rapidly growing tumors readily become hypoxic due to the inability of the local vasculature to supply 
an adequate amount of oxygen. Furthermore, mutations in mitochondrial and nuclear DNA that affect 
components of the mitochondrial respiratory chain result in inefficient ATP production, ROS 
overproduction, and oxidative damage to mitochondria and macromolecules [5]. Over 70 years ago, 
Warburg pioneered research into alterations in mitochondrial respiration in the context of cancer and 
proposed a mechanism to explain how they evolve during the carcinogenic process [6]. This process 
differs from that in normal cells, which utilize oxidative phosphorylation primarily for growth and 
survival. Although the observation of high rates of aerobic glycolysis in tumor cells has been 
corroborated, the role of mitochondria in tumor cells has been contentious [7]. The major role of 
aerobic glycolysis in cancer cells is likely to be the generation of glycolytic intermediates for the 
pentose phosphate pathway in nucleotide and phospholipid synthesis, while glycolytic ATP generation 
is likely to be important for survival under hypoxic conditions [8]. The glutamine-fueled TCA cycle 
generates ATP, ROS, nicotinamide adenine dinucleotide phosphate (NADPH), amino acids, and lipids. 
The synthesis of ATP requires large amounts of oxygen, which routinely leads to the generation of 
ROS such as hydrogen peroxide, the superoxide anion, and organic peroxide [9]. These ROS can cause 
cellular damage if they are not detoxified by antioxidant systems. Increased mitochondrial ROS 
generation and the disturbance of peroxiredoxin (Prx) production in cancer cells may lead to oxidative 
stress and the induction of apoptosis. The Prx system is a cellular defense system against oxidative 
stress. Mitochondria in cancer cells are known to contain high levels of Prx III and Prx V [10–14]. 
However, Prx V founds in various compartments in the cell, including mitochondria, peroxisome and 
nucleus [15–17]. Moreover, mitochondria are a major site of hydrogen peroxide generation in  
cells [18]. Prx III prefers to scavenge hydrogen peroxide, which will be the target for up to 90% of 
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H2O2. In contrast, Prx V behaves more effectively as a scavenger of peroxynitrite [19–22]. Here, we 
discuss the role of the mitochondrial Prx III antioxidant system being exclusively present in 
mitochondria as a potential target for cancer therapy, and examine the effects of antioxidant proteins 
on ROS in mitochondria. We hope that this review article will advance our understanding of 
mitochondrial biology in cancer, and provide a basis for designing new strategies to achieve effective  
cancer treatment. 

2. Mitochondrion-Targeting Cancer Therapy 

Mitochondria are known to play a key role in apoptosis and to trigger cell death via several 
mechanisms, including the disruption of electron transport and energy metabolism, the release or 
activation of proteins that mediate apoptosis, and the alteration of the cellular redox potential [23–25]. 
Apoptotic cell death is characterized by a host of morphological and biochemical features, including 
mitochondrial outer membrane permeabilization (MOMP) and the release of pro-apoptotic  
proteins [26]. In response to pro-apoptotic stimuli, including ROS and Ca2+ overload, the permeability 
transition pore complex (PTPC) assumes a high-conductance state that deregulates the entry of small 
solutes into the mitochondrial matrix along their electrochemical gradients[1]. This mitochondrial 
permeability transition (MPT) results in immediate dissipation of the mitochondrial membrane 
potential and osmotic swelling of the mitochondrial matrix. As the surface area of the inner membrane 
considerably exceeds that of the outer membrane, the MPT eventually leads to MOMP (Figure 1). The 
MPT can be triggered by agents that increase cytosolic Ca2+ concentrations or stimulate ROS 
generation. The mitochondrial pore, a putative multimeric complex situated at mitochondrial contact 
sites, mediates the MPT. Based on biochemical evidence, the standard model for the PT pore consists 
of a voltage-dependent anion channel (VDAC) in the outer membrane, adenine nucleotide translocase 
(ANT), and cyclophilin D (CypD) in the matrix (Figure1A; [27,28]. As shown in Figure 1A, the 
VDAC has always been considered a key component of the PTPC. However, considerable recent 
evidence suggests that the conclusions of standard model studies were incorrect (Figure 1B). Closure 
of the VDAC has been shown to increase the influx of Ca2+ into mitochondria [29], which has the net 
effect of inducing, rather than inhibiting, the MPT. Moreover, recent genetic studies have confirmed a 
regulatory role for CypD in the MPT [30,31]. Mice lacking ANT or the VDAC still exhibit a classical 
MPT response that is inhibited by cyclosporine A [32,33]. Thus, current genetic strategies indicate that 
only CypD functions as a necessary effector of the MPT, and suggest that alternative proteins and/or 
mechanisms must play roles in mitochondrial-dependent cell mortality via the PT pore. Because two 
proposed models for the PT pore have not yet been fully elucidated, the PT pore is not sufficiently well 
characterized to be a target for anticancer drugs. Although the exact molecular identity of the effectors 
of the MPT is under debate, it is agreed to be a crucial step in cell death. 
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Figure 1. Molecular mechanisms of the mitochondrial permeability transition (MPT) and 
mitochondrial apoptotic cell death. (a) Mitochondrial outer membrane permeabilization 
(MOMP) leads to apoptogenic protein release. Bax or Bak forms a pore in the OM after 
activation by a BH3-only protein such as Bid (after the truncation of Bid by caspase-8). 
The opening of the PT pore allows an influx of water and ions into the matrix, causing 
matrix swelling. This leads to rupture of the OM and the release of intermembrane space 
(IMS) proteins. The permeability transition pore complex (PTPC) is a highly dynamic 
supramolecular entity that can comprise a voltage-dependent anion channel (VDAC), 
adenine nucleotide translocase (ANT), and cyclophilin D (CypD). Other proteins, 
including the peripheral benzodiazepine receptor (PBR), hexokinase (HK), and creatine 
kinase (CK), may also be associated with the PTPC. It is not clear whether the PTPC has a 
role under physiological conditions. Mitochondria exhibit a high mitochondrial 
transmembrane potential, which is generated by the respiratory chain and exploited for 
ATP generation. It has been proposed that under these conditions the PTPC exists in a  
low-conductance state, thereby contributing to the exchange of small metabolites between 
the cytosol and the mitochondrial matrix, a process that is predominantly mediated by 
mitochondrial solute carriers. However, under pathological conditions characterized by a 
high Ca2+ concentration, increased oxidative stress, low levels of ATP, and mitochondrial 
depolarization, the complex forms an open pore between the inner and outer membranes, 
allowing the free diffusion of solutes across the membranes. The opening of the PTPC 
results in mitochondrial swelling, mitochondrial Ca2+ efflux, and the release of apoptogenic 
proteins such as cytochrome c and Smac from the IMS. (b) Alternative models proposed in 
light of recent findings in gene-targeted mice. A VDAC is no longer part of the model and 
it appears that an OM component may not be necessary for this process. ANT now appears 
to be more of a regulatory protein, and only CypD remains as an established component. In 
contrast, the mitochondrial phosphate carrier (PiC) has been added to the model as a 
candidate component of the pore-forming unit of the MPT pore.  
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Because most cancer cells have increased resistance to the activation of MOMP and escape 
apoptosis as a result of various modifications in apoptosis regulators, including Bcl-2 family members, 
p53, and caspases [34], various mitochondrion-targeted cancer treatment strategies have been 
developed in the last decade [35,36]. These strategies focused mainly on the development of 
compounds that regulate mitochondrial Bcl-2 family proteins, modulate MOMP and hyperpolarized 
mitochondria inner membrane potential sensing, or target high levels of ROS and overexpressed 
receptors in cancer cells [35]. An excellent previous review by Fulda et al. summarized examples of 
mitochondrion-targeted compounds (Table 1); [36]. Numerous molecules that are currently in use or 
being tested in clinical trials act on mitochondria [37]. Clinically approved anticancer drugs such as 
etoposide [38], paclitaxel [39], and vinorelbine [40], as well as an increasing number of experimental 
anticancer drugs, including ceramide [41], MKT077 [42], and CD437 [43], have been found to act 
directly on mitochondria to trigger apoptosis. Several classes of compounds with distinct mechanisms 
of action can stimulate the MPT and mitochondrial apoptosis in cancer cells, pointing to some 
functional redundancy and suggesting the likely existence of alternative biochemical cascades leading 
to mitochondrial membrane permeabilization. Thus, the selective targeting of cancer cells using 
mitochondrial-targeted agents is likely to attract great interest. A better understanding of the key 
pathophysiological differences between mitochondria in cancer cells and their counterparts in  
non-cancerous cells will undoubtedly be instrumental in increasing the level of selectivity of 
mitochondrion-targeted anticancer agents. Nevertheless, a limited number of studies have evaluated 
agents targeting the mitochondrial ROS regulatory system. 

Table 1. Examples of mitochondrion-targeted compounds.  

Class Compound Action(s)/targets 

Modulators of the BCL-2 protein 
family 

A-385358 BCL-XL 

ABT-263, ABT-737 BCL-2, BCL-XL, BCL-W 

AT-101 BCL-2, BCL-XL, BCL-W, MCL1 

GX15-070 (Obatoclax) BCL-2, BCL-XL, BCL-W, MCL1 

HA14-1 BCL-2 

Metabolic inhibitors 

3-bromopyruvate HK2–VDAC interaction 

Dichloroacetate PDK inhibition 

HK2 peptide HK2–VDAC interaction 

LDH-A shRNA LDH-A 

Methyl jasmonate HK2–VDAC interaction 

SB-204990 ATP citrate lyase 

Orlistat Fatty acid synthase 

Soraphen A Acetyl-CoA carboxylase inhibition 

2-deoxy-D-glucose HK2 
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Table 1. Cont. 

VDAC- and/or ANT-targeting 

agents 

Clodronate ANT inhibition 

GSAO ANT cross linker 

Lonidamine ANT ligand 

PK11195 PBR ligand 

Arsenic trioxide ANT ligand, ROS production 

Retinoids 

All-trans-retinoic acid ANT ligand 

CD437 Permeability transition pore complex 

ST1926 Perturbation of Ca2+ homeostasis 

HSP90 inhibitors 

Gamitrinibs Mitochondrial HSP90 ATPase inhibition 

PU24FCI, PU-H58, PU-H71 HSP90 inhibition 

Shepherdin Inhibition of the HSP90–survivin interaction 

Natural compounds and 

derivatives 

α-tocopheryl succinate Ubiquinone-binding sites in respiratory complex II 

Betulinic acid Permeability transition pore complex 

Resveratrol F1-ATPase 

ANT, adenine nucleotide translocase; BCL-2, B-cell lymphoma protein 2; BCL-W, also known as BCL2-like protein 2 

(BCL2L2); BCL-XL, also known as BCL2-like protein 1 (BCL2L1); CD437, 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-

naphthalene carboxylic acid; HA14-1, 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate; 

GPx, glutathione peroxidase; GSH, reduced glutathione; HK, hexokinase; HSP90, heat shock protein, 90 kDa; LDH-A, 

lactate dehydrogenase A; MCL1, myeloid cell leukemia sequence 1; PBR, peripheral benzodiazepine receptor; PDK, 

pyruvate dehydrogenase kinase; PU24FCl, 8-(2-chloro-3,4,5-trimethoxybenzyl)-2-fluoro-9-(pent-4-ynyl)-9H-purin-6-

amine; PU-H58 (8-(6-bromobenzo[d][1,3]dioxol-5-ylthio)-9-(pent-4-ynyl)-9H-purin-6-amine; PU-H71, 8-(6-

iodobenzo[d][1,3]dioxol-5-ylthio)-9-(3-(isopropyl amino)propyl)-9H-purin-6-amine; ROS, reactive oxygen species; 

shRNA, short hairpin RNA; SOD, superoxide dismutase; ST1926, (E)-3-(4′-hydroxy-3′-adamantylbiphenyl-4-yl)acrylic 

acid; VDAC, voltage-dependent anion channel. Adapted from [36] with permission. 

3. Regulation of the Mitochondrial Antioxidant System 

Since the discovery that electron leakage and incomplete reduction of oxygen occur in the 
respiration chain [44], mitochondria have been considered a major contributor to cellular oxidative 
damage due to their generation of ROS. Moreover, mitochondria possess a multilevel network of 
enzymatic and non-enzymatic antioxidant systems for the detoxification of H2O2 (Figure 2). The 
biological significance of mitochondrial ROS has been highlighted by the targeted deletion or 
overexpression of antioxidant proteins. For example, superoxide dismutase (SOD) 2, thioredoxin (Trx) 
2, Prx III and Prx V have been reported to constitute a novel antioxidant defense system that detoxifies 
ROS generated in mitochondria [45,46]. Prx3-knockout (KO) mice were showed aberrant regulation of 
oxidative stress. Proteomic analysis and gene expression analysis in adipocytes from Prx3-KO mice 
also showed defect in mitochondria biogenesis along with enzymes involved in glucose/lipid 
metabolism and oxidative phosphorylation [47]. Trx2-KO mice have an embryonic lethal  
phenotype [48]. SOD2-KO mice typically die within 3 weeks of birth as a result of severe 
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neurodegeneration and mitochondrial oxidative damage [49,50]. Prx V was associated with the 
mitochondrial pathway of apoptosis and calcium loading capacity of mitochondria, as well as changes 
in mitochondrial morphology [14]. The homozygous glutathione peroxidase (GPx)1-KO mice 
appeared healthy and manifested no increased sensitivity to hyperoxia or increased levels of protein 
carbonyl groups or lipid peroxides [51]. However, a protective role for GPx1 became apparent, when 
the GPx1 KO and control mice were subjected to extreme oxidative stress such as that associated with 
ischemia-reperfusion injury or treatment with paraquat or a bolus of H2O2 [52,53]. In mammalian cells, 
GPx1 is the major isoform and is expressed in all tissues; it is localized predominantly in the cytosol, 
but a small proportion (10%) of GPx1 molecules is also present in the mitochondrial matrix [51,54,55]. 
Thereby, it remains unclear whether the effect of GPx1-KO under these conditions was attributable to 
the absence of the enzyme form the cytosol or from mitochondria, or from both. To date, the 
multiplelevel network of antioxidant system in mitochondria has been extensively discussed in a 
number of recent publications. Based on these studies, mitochondrial-targeted agents emerge as a 
means to selectively target tumors. Here, we provide a comprehensive compendium on the 
mitochondrial-targeted compounds for the treatment of human cancer.   

Multiple compounds act on components of the antioxidant system to induce ROS generation and 
apoptosis. Reportedly, the increase in intrinsic ΔΨm correlates with increased malignancy (apoptosis 
resistance and tumor progression) [56], suggesting that cytotoxic agents that permeabilize the 
mitochondrial membrane, such as compounds that induce the overproduction of ROS, are effective 
anticancer drugs in cancer cells. The inhibition of antioxidant systems is an alternative way to induce 
ROS accumulation. Compounds that inhibit antioxidant systems include the SOD inhibitors  
2-methoxyestradiol, choline tetrathiomolybdate (ATN-224), and mangafodipir; buthionine 
sulfoximine, imexon, and phenylethyl isothiocyanate (PEITC), which cause glutathione (GSH) 
inhibition or depletion; and menadione, motexafin gadolinium, β-lapachone, elesclomol (STA-4783), 
arsenic trioxide, parthenolide, dimethylamino-parthenolide (DMAPT), and bistetrahydrofuranic 
acetogenins, which induce ROS production (Table 2). 

2-methoxyoestradiol inhibits angiogenesis by reducing endothelial cell proliferation and inducing 
endothelial cell apoptosis, and selectively kills human leukemia cells by inhibiting SOD, thereby 
causing superoxide accumulation [57]. Several Phase I/II trials in patients with solid malignancies or 
multiple myeloma have demonstrated that 2-methoxyoestradiol is well tolerated and causes disease 
stabilization [58–60]. Similar effects are produced by the intracellular copper-chelating agent  
ATN-224 [61]. ATN-224 is an orally bioavailable, second-generation tetrathiomolybdate analog with 
potential antiangiogenic and antineoplastic activities. Mangafodipir is a SOD mimic with catalase and 
GSH reductase activities. Consisting of manganese ions chelated to fodipir (dipyridoxyl diphosphate; 
DPDP), it scavenges oxygen free radicals such as the superoxide anion, hydrogen peroxide, and the 
hydroxyl radical, potentially preventing oxygen free radical damage to macromolecules such as DNA 
and minimizing oxygen free radical–related chemotoxicity in normal tissues. In cancer cells, it has 
been shown to increase H2O2 levels and to potentiate the antitumor activity of paclitaxel in a mouse 
xenotransplant colon cancer model [62]. Moreover, it is being tested in a Phase II trial in patients with 
colon cancer. 

Buthionine sulfoximine irreversibly inhibits γ-glutamylcysteine synthetase. It increases ROS levels 
by inhibiting the synthesis of reduced GSH [63]. Imexon depletes the GSH pool due to its  
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thiol-binding activity [64]. Buthionine sulfoximine and the alkylating agent melphalan are being 
evaluated in Phase II clinical trials in patients with melanoma or relapsed/refractory ovarian cancer. 
PEITC, which is thiol modifier, preferentially causes ROS overproduction, mitochondrial oxidative 
damage, MOMP, and apoptosis in cancer cells, presumably due to their increased ROS levels [65,66]. 
The compound is known effects on the selenoprotein thioredoxin reductase, glutathione reductase and 
intracellular GSH levels. Moreover, Prx III is early oxidized after exposure of this compound [67]. 

Figure 2. Antioxidant system for H2O2 removal in mitochondria. Reactive oxygen species 
(ROS), in the form of O2

– and H2O2, have multiple intra- and extramitochondrial sources. 
O2

– is converted to H2O2 through the action of superoxide dismutase (SOD) 2 and /or 
spontaneous dismutation. H2O2 can diffuse into the mitochondrial matrix, where it is 
removed via three systems/mechanisms: 1) peroxiredoxin (Prx) III coupled to thioredoxin 
(Trx) 2 and Trx reductase (TrxR) 2; 2) glutathione peroxidase (GPx) coupled to glutathione 
(GSH) and GSH reductase (GR); and 3) non-enzymatic scavenging by redox compounds. 
The peroxidatic cysteine Cys-SH is selectively oxidized by H2O2 to Cys-SOH, which then 
reacts with the resolving cysteine Cys-SH of the other subunit in the homodimer to form an 
intermolecular disulfide bond. Subsequently, the disulfide bond is specifically reduced by 
Trx2, which in turn receives reducing equivalents from nicotinamide adenine dinucleotide 
phosphate (NADPH) via TrxR2. The Cys-SOH generated is oxidized to Cys-SO2H, leading 
to peroxidase inactivation. Reactivation of the enzyme is achieved by reduction of the  
Cys-SO2H moiety in a reaction that requires ATP hydrolysis and is catalyzed by 
sulfiredoxin (Srx), with reducing equivalents provided by physiological thiols (RSH) such 
as GSH and Trx. The respiration substrates malate/glutamate and succinate provide energy 
in the form of reducing covalents (NADPH), which are maintained by ΔΨm-dependent 
transhydrogenase and tricarboxylic acid (TCA) cycle enzymes. NADPH is utilized by the 
reductases in the peroxidase system (TrxR and GR) to reduce disulfide bonds formed in 
proteins during the detoxification of H2O2.  
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Table 2. Development and clinical status of anti-cancer drugs targeting the mitochondrial 
oxidative system.  

Target Compound Action(s)/target(s) Development status (ClinicalTrials.gov) Ref. 

SOD 

2-methoxyestradiol SOD inhibition Completed: Phase I in solid tumors [68,69]  

ATN-224 SOD inhibition 

Closed: Phase II in combination with 
temozolomide in advanced 
melanoma 

Closed: Phase II in prostate cancer 

[61] 

Mangafodipir SOD mimic 
Active: Phase II in patients who have 

moderate oxaliplatin neuropathy 
Completed: Phase II in colon cancer 

[62] 

GPx 

Buthionine 
sulfoximine (BSO) 

GSH synthesis 
inhibition 

Active: Phase I in resistant or recurrent 
neuroblastoma 
Completed: Phase II in combination with 

melphalan in metastatic melanoma 
and relapsed or refractory ovarian 
cancer 

[63] 

Imexon 
(Amplimexon) GSH depletion 

Active: Phase II in follicular and aggressive 
lymphomas 
Completed: Phase II in multiple myeloma 

and in combination with 
gemcitabine in pancreatic cancer 

Closed : Phase I/II in combination with 
dacarbazine in stage III and stage IV 
metastatic melanoma 

[64] 

PEITC GSH depletion, GPx 
inhibition 

Active: Phase II in preventing lung cancer in 
smokers 

Phase I in lymphoproliferative 
disorders 

Completed: Phase I in preventing lung cancer 
in smokers 

[65] 

ROS 
over-
producti
on 

Menadione ROS production Closed: Phase I in patients treated with 
EGFR inhibitors [34] 

Motexafin 
gadolinium ROS production 

Not yet open (active): Phase IV to determine 
the efficacy of biennial screening 
with MRI in breast cancer 

Active: Phase II in diffuse pontine gliomas, 
malignant brain tumors, and stage 
IV renal cell carcinoma etc. 

Closed or completed: 35 clinical trials 

[70] 

β-lapachone   
(ARQ 501) ROS production 

Completed: Phase II in pancreatic cancer (in 
combination with gemcitabine), 
metastatic leiomyosarcoma and 
metastatic squamous cell cancer of 
the head and neck; Phase I in 
combination with docetaxel in 
carcinoma 

[71] 

STA-4783 
(Elesclomol sodium) ROS production 

Active: Phase I in relapsed or refractory acute 
myeloid leukemia; Phase II in 
ovarian epithelial, fallopian tube, 
and primary peritoneal cancers 

Closed (temporarily): Phase I/II in metastatic 
prostate cancer (solid tumors) 

[72,73] 
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Table 2. Cont. 

ROS over-
production 

Arsenic trioxide 
(Trisenox) 

ROS production, ANT 
ligand 

Active: Phase IV in relapsed promyelocytic 
leukemia etc. (13 ongoing clinical 
trials) 

Closed or completed: 60 clinical trials 

[74] 

DMAPT ROS production Discovery [75] 

Parthenolide ROS production Discovery [76] 

Bistetrahydrofuranic 
acetogenins 

ROS production Discovery [77] 

Menadione binds to and inhibits the activity of the PTPs that dephosphorylate and inactivate 
epidermal growth factor receptor (EGFR) and erythroblastic leukemia viral oncogene homolog 2 
(ErbB2) in human keratinocytes. Local reversal of EGFR and ErbB2 inhibition associated with the 
systemic administration of EGFR inhibitors may help alleviate EGFR inhibitor–mediated skin toxicity. 
Menadione undergoes futile redox cycles in the respiratory chain. Thiol cross-linking agents, such as 
diamide, bismaleimido-hexane, and dithiodipyridine, cause ANT thiol oxidation and can bypass B-cell 
lymphoma 2 (BCL-2)–mediated cytoprotection [78,79]. β-lapachone is bioactivated by 
NAD(P)H:quinone oxidoreductase-1 (NQO1), causing futile oxidoreduction that generates high levels 
of superoxide, and is currently under clinical investigation, as a monotherapy or in combination with 
gemcitabine, in patients with pancreatic and head-and-neck cancer. STA-4783 induces oxidative stress, 
increasing levels of ROS such as hydrogen peroxide in both cancer cells and normal cells. Because 
tumor cells have elevated levels of ROS compared with normal cells, the increase in oxidative stress 
beyond baseline levels elevates ROS levels beyond sustainable levels, exhausting tumor cell 
antioxidant capacity. This may result in the activation of the mitochondrial apoptosis pathway [72]. 
Arsenic trioxide is a small-molecule arsenic compound with antineoplastic activity. Although the 
mechanism of action of arsenic trioxide is not completely understood, it causes damage to or 
degradation of the promyelocytic leukemia protein/retinoic acid receptor-α (PML/RARα) fusion 
protein; induces apoptosis in acute promyelocytic leukemia cells and many other tumor cell types; 
promotes cell differentiation and suppresses cell proliferation in many different tumor cell types; and is 
pro-angiogenic. Parthenolide is a sesquiterpene lactone that can cause allergic reactions. It has  
anti-inflammatory, antimicrobial, and anticancer properties, activates the tumor suppressor p53, and 
inhibits nuclear factor-kappa B (NF-κB) and the signal transducer and activator of transcription 3 
(STAT-3; [80]. It also induces intracellular oxidative stress, which is manifested by increased ROS 
levels and activation of c-Jun N-terminal kinase (JNK). The water-soluble parthenolide analog 
DMAPT, which swiftly kills leukemic stem cells from both myeloid and lymphoid leukemias, is also 
highly cytotoxic to bulk leukemic cell populations. Molecular studies have found that the key activities 
of DMAPT include the induction of oxidative stress responses, the inhibition of NF-κB, and the 
activation of p53 [75]. Natural bistetrahydrofuranic acetogenins show growth inhibitory activity 
against human breast, lung, liver, and colon cell lines [77]. Recently, structure–activity relationship 
(SAR) analysis has led to the synthesis of promising new derivatives with improved antitumor 
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properties. However, trials of numerous ROS-regulating compounds, including menadione and  
STA-4783, have been discontinued due to safety concerns.  

4. Peroxiredoxin III: A Potential Mitochondrial Target for Cancer Therapy 

Peroxiredoxins are a family of enzymes that catalyze the reduction of hydrogen peroxide and 
hydroperoxides to water and alcohol, respectively [81,82]. The six isoforms of mammalian Prx (I–VI) 
are classified into three subfamilies (2-Cys, atypical 2-Cys, and 1-Cys) based on the number and 
position of the cysteine (Cys) residues that participate in catalysis. Also, the Prxs can be categorized by 
their subcellular localization; Prx I, II and VI found in the cytoplasm, Prx IV in the endoplasmic 
reticulum, Prx III in the mitochondria, and Prx V found in various compartments in the cell, including 
peroxisomes and mitochondria. Prx I–IV (2-Cys Prx subfamily) have two conserved Cys residues. In 
the catalytic cycle of the 2-Cys Prxs, the conserved N-terminal Cys sulfhydryl (Cys-SH) is first 
oxidized by peroxides to Cys sulfenic acid (Cys-SOH), which then reacts with the conserved  
COOH-terminal Cys-SH of the other subunit in the homodimer to form a disulfide bond. The Prx V is 
an atypical 2-Cys Prx that becomes oxidized at the peroxidatic cysteine (Cys48) to a sulfenic acid, 
which condenses with a resolving cysteine (Cys152) within the same polypeptide to form an 
intramolecular disulfide linkage [16]. In contrast, Prx VI has only one Cys residue is involved in the 
peroxidase activity Prx VI (1-Cys), and unlike the other members, does not use thioredoxin as a 
reductant. The N-terminal Cys-SH of Prx VI is readily oxidized, but the resulting Cys-SOH does not 
form a disulfide because of the unavailability of another Cys-SH nearby [83,84]. As the physiological 
reductant, Prx VI utilizes GSH via the formation of disulfide with GSH mediated by πGST.  

The hyper-proliferative property of cancer cells is known to be associated with increased production 
of intracellular ROS [85]. Moreover, many reports have claimed an association between alterations in 
the protein level of Prx isoforms. Such Prxs serve divergent functions, such as protecting cells against 
oxidative stress, regulating cell signaling associated with H2O2, and influencing cell differentiation and 
proliferation, immune responses, and apoptosis [82,86,87] Recent studies reported elevated expression 
of Prx I in several human cancers, including non-small cell lung cancer (NSCLC) [88,89], oral  
cancer [90], breast cancer [11], and liver cancer [91]. Prx II levels are increased in breast, 
mesothelioma, and head-and-neck cancers [10,92]. While increased Prx II expression rendered 
leukemia and stomach cancer cells resistant to various chemotherapeutic agents [93,94], 
downregulation of Prx II sensitized head-and-neck cancer cells to radiation and gastric carcinoma to 
cisplatin [95,96]. Moreover, downregulation of Prx II enhances apoptotic cell death induced by tumor 
necrosis factor (TNF)-α and TNF-related apoptosis-inducing ligand (TRAIL). Importantly, cytosolic 
Prx II regulates caspase-8 activation, but exerts no influence on sustained JNK activation [97]. 
Downregulation of Prx I was shown to sensitize lung cancer cells to radiation and reduce  
metastasis [98,99], and to increase the sensitivity of prostate cells to androgen ablation treatment [100]. 
Prx IV is decreased in stomach cancers [101]; may play an important role in protecting cells from 
ionizing radiation-induced apoptosis in head-and-neck squamous cell carcinoma [102]; in lung cancer 
cells, Prx IV interacts with surfiredoxin and the interaction axis leads to acceleration of tumor growth 
and metastasis formation in vivo [103]. Prx V represented antioxidant functions in the lung cartilage, 
and brain [104–106]. Overexpression of Prx V was reported to protect Chinese hamster ovary cells 
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from oxidative stress; suppressed p53-dependent apoptosis [107]; promoted differerentiation, and 
reduced apoptosis in the mice muscle cells [108] and human tendon cells [109]. However, it still 
remains unknown whether the function of this protein is restricted to its antioxidant activity, and 
position of major compartments to protect cells from cell death. Prx VI is decreased in a mouse that is 
susceptible to experimental atherosclerosis [110] and is elevated in the spinal cord of mice expressing 
mutant superoxide dismutase1 [111]; in brains of patients with parkinsonian dementia [112], sporadic 
Creutzfeldt-Jacob disease [113], and Pick disease [114]; in the healing edge of skin wounds [115]; and 
in experimental cellular premature senescence [116]. Especially, it is elevated in lungs with malignant 
mesothelioma [10] or high grade squamous cell carcinoma [117].  

Like cytosolic Prx I and Prx II, mitochondrial Prx III is overexpressed in hepatocellular  
carcinoma [12] and breast cancer [11]. The overexpression of Prx III can protect cells against oxidative 
injury [13,118], whereas the deletion of Prx III in HeLa cells can increase intracellular levels of H2O2 
and sensitize cells to the induction of apoptosis by staurosporine and TNF-α [119]. Furthermore, the 
abundance of Prx III was found to be reduced in the brains of patients with Alzheimer’s disease and 
Down syndrome, possibly rendering the neuronal cells of these patients more vulnerable to  
cell death [120]. 

The role of Prx III in the scavenging of mitochondrial H2O2 has recently been emphasized. 
Originally cloned from murine erythroleukemia cells, Prx III has been identified as a gene induced by 
oncogenic c-Myc [121]. Its specific localization to mitochondria [122,123] suggests that Prx III, 
together with its mitochondrion-specific electron suppliers Trx2 and Trx reductase (TrxR) 2 [124,125], 
might provide a primary line of defense against H2O2 produced by the mitochondrial respiratory  
chain [126,127], as SOD2 does against the superoxide radical. In the presence of excess H2O2, Prx III 
is highly sensitive to oxidative inaction. Hyperoxidation of Prx III has been observed in cultured cells 
following prolonged exposure to high levels of H2O2 or drugs that generate H2O2 [128–130]. Moreover, 
hyperoxidized Prx III is reduced more slowly that hyperoxidized Prx I and II in the cytoplasm [129] 
and the slow reduction will enable the hyperoxidized form of Prx III to accumulate under certain 
conditions. Therefore, hyperoxidized Prx III formation by H2O2 leads to an increase in mitochondrial 
H2O2 and that this may influence the progression of apoptosis.  

In addition, sulfiredoxin (Srx) plays a crucial role by reducing hyperoxidized Prx III via 
translocation into mitochondria. Noh et al. reported that the overexpression of mitochondrion-targeted 
Srx efficiently promotes the restoration of Prx III and results in cellular resistance to apoptosis, with 
enhanced elimination of mitochondrial H2O2 and decreased rates of ΔΨm collapse [131]. Thus, a  
Trx-related antioxidant system composed of Trx2, TrxR2, and Prx III has been closely associated with 
the regulation of apoptosis and the redox control of MPT pores for the release of cytochrome c 
[79,94,132]. However, rare attempts to characterize Prx III and its electron suppliers have produced 
intriguing results that demonstrate the removal of exogenous ROS by actively respiring mitochondria. 

5. Outlook and Future Perspectives  

Most of the currently used cytotoxic anticancer therapeutics have no clear-cut cell specificity, yet 
tend to kill tumor cells more efficiently than normal cells. With rare exceptions, single drugs at 
clinically tolerable doses have not been able to cure cancer. Prolonged drug exposure may result in 
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cumulative toxicity. The clinical efficacy of chemotherapy must be enhanced, its attendant toxicity 
reduced, and resistance overcome. To overcome multidrug resistance in cancer cells, recent 
chemotherapeutics could be used in combination with other molecules. In the 1960s and early 1970s, 
drug combination regimens were developed based on the known biochemical actions of available 
anticancer drugs, rather than on their clinical efficacy. However, such regimens were largely 
ineffective [133,134]. The era of effective combination chemotherapy began when a number of active 
drugs of different classes became available for use in combination to treat acute leukemia and 
lymphomas. After this initial success with hematologic malignancies, combination chemotherapy was 
applied to the treatment of most solid tumors. 

Structural and functional mitochondrial alterations associated with malignant transformation seem 
to be phenomena common to many types of cancer. Most classical anticancer agents engage signaling 
pathways that lie upstream of mitochondria and converge on mitochondria due to their role as 
integrators of pro-death and pro-survival signals. MOMP occurs as a consequence of upstream 
signaling events that are frequently deregulated in human cancers and that become resistant to a 
number of conventional therapeutic strategies targeting upstream MOMP regulators. Anticancer drugs 
that target mitochondria have the potential to bypass the resistance mechanisms that evolved in 
response to treatment with conventional chemotherapeutics. The combined use of mitochondrion-
targeted agents with conventional chemotherapeutics and other chemotherapeutic drugs, such as ROS 
scavenger inhibitors or ROS inducers, may be necessary to achieve maximum efficacy. The 
pharmacological depletion of ROS scavengers in cancer cells markedly reduces their clonogenicity and 
results in radiosensitization. As mentioned above, recent studies have shown that the overexpression of 
Prx III and its electron donors can protect cells, whereas their depletion induced cell death in cancer 
cells. Therefore, drugs targeting Prx III and the mitochondrion-specific electron suppliers Trx2, TrxR2, 
and Srx may potentially be administered in combination with various chemotherapeutic agents, 
including cisplatin, paclitaxel, and etoposide. However, caution must be exercised to prevent a 
potential increase in toxic side effects. A comprehensive understanding of mitochondrial biology in 
cancer cells and the interaction between cellular metabolism and drug action is essential in the 
development of mitochondrion-targeted agents for cancer treatment. 
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