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Abstract
The discovery of cis-regulatory modules (CRMs) is a challenging problem in computational

biology. Limited by the difficulty of using an HMM to model dependent features in transcrip-

tional regulatory sequences (TRSs), the probabilistic modeling methods based on HMMs

cannot accurately represent the distance between regulatory elements in TRSs and are

cumbersome to model the prevailing dependencies between motifs within CRMs. We pro-

pose a probabilistic modeling algorithm called SMCis, which builds a more powerful CRM

discovery model based on a hidden semi-Markov model. Our model characterizes the regu-

latory structure of CRMs and effectively models dependencies between motifs at a higher

level of abstraction based on segments rather than nucleotides. Experimental results on

three benchmark datasets indicate that our method performs better than the compared

algorithms.

Introduction
The regulation of gene expression involves the binding of transcription factors (TFs) to tran-
scription factor binding sites (TFBSs) [1, 2]. The TFBSs bound by the same transcription factor
usually share a conserved DNA sequence pattern called a DNAmotif. In higher eukaryotes,
gene expression is cooperatively regulated by a number of transcription factors binding to vari-
ous TFBSs. These TFBSs are tightly clustered and form cis-regulatory modules (CRMs) to
recruit bound transcription factors and perform more elaborate and accurate regulation. These
CRMs are usually scattered across large genomic regions and have lengths ranging from several
tens of base pairs (bp) to several thousands of base pairs. We refer to the functional regions
harboring CRMs as transcriptional regulatory sequences (TRSs); TRSs include promoter
regions, distal DNA regions such as enhancers located in introns, and even other intergenic
regions that are far from transcription start sites (TSSs) but still perform implicit regulatory
functions. Playing pivotal roles in the regulation of gene expression, CRMs are believed to have
a specific regulatory structure, as shown in Fig 1. The computational discovery of CRMs is a
key step for constructing a regulatory network.

Experimental identification of the biochemical features [3] closely associated with CRMs,
such as occupancy by transcription factors and histone modifications, is an effective method
for the discovery of CRMs. However, the experimental determination of these features is costly

PLOSONE | DOI:10.1371/journal.pone.0162968 September 16, 2016 1 / 17

a11111

OPEN ACCESS

Citation: Guo H, Huo H, Yu Q (2016) SMCis: An
Effective Algorithm for Discovery of Cis-Regulatory
Modules. PLoS ONE 11(9): e0162968. doi:10.1371/
journal.pone.0162968

Editor: Martina Stromvik, McGill University, CANADA

Received: March 17, 2016

Accepted: August 31, 2016

Published: September 16, 2016

Copyright: © 2016 Guo et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported in part by the
National Natural Science Foundation of China under
Grant 61173025, 61373044, and 61502366, the
China Postdoctoral Science Foundation under Grant
2015M582621, and the Fundamental Research
Funds for the Central Universities under Grant
JB150306. The funder had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0162968&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


and time consuming, and this approach can be limited by the number of antibodies and cell
types available. Therefore, it is necessary to discover CRMs with the aid of computational
methods.

The computational methods used to predict CRMs face the following challenges. The CRMs
have flexible structural organization; in a CRM, partial motifs show order preferences, and the
distances between them are not fixed. It is difficult to accurately describe such a CRM structure.
Eukaryotic regulatory regions are usually large, and the motifs constituting CRMs are often
short and degenerate, typically 4–20 bp long. It is difficult to identify motifs in such a large
potential search space [4, 5]. This challenge makes it difficult to look for CRMs by identifying
their component motifs directly from sequences.

Most CRM discovery methods take advantage of the following general features of CRMs: i)
Clustering of motifs: multiple cooperating transcription factors binding to a CRMmay lead to
the clustering of motifs in a small sequence region. ii) Evolutionary conservation: functional
sequences exhibit a lower frequency of mutations than non-functional sequences over evolu-
tionary time. iii) Available motif profiles (from existing motif databases such as TRANSFAC
[6] and JASPAR [7]): it is simpler to search for motif instances by using profile matrices from
motif libraries than to perform de novomotif prediction using computational methods.

A variety of models and methods have been proposed to predict CRMs [3, 8–15] in eukary-
otic genes. Different methods take advantage of different features of CRMs and use diverse
search strategies. These methods can be classified into the following three categories according
to the search strategies.

One group of methods searches for CRMs based on window clustering and makes use of the
clustering of motifs. Some methods, such as MSCAN [16] and MCAST [17], use a simple
means of representing a CRM as a region with a high density of motifs within a window. These
methods infer CRMs by counting the number of occurrences of given motifs within a sequence
window. Other methods use combinatorial search approaches to look for clusters of motifs
that co-occur significantly within a given size window; for example, CisMiner [13] detects
CRMs by the fuzzy clustering of closely located motifs and CPModule [18] identifies CRMs
based on itemset mining. In essence, the methods in this category assume that the motifs
within each sequence window are independent and identically distributed. Moreover, it is not a
trivial task to determine a reasonable window size and score thresholds.

A second group of methods builds probabilistic models for CRMs and identifies the sequence
regions matching a statistical model of a motif cluster better than a background model. Except

Fig 1. Regulatory structure of a CRM. A CRM is a sequence segment that contains instances of multiple motifs. The orientations of the motifs,
the distance between motifs and the relationships between motifs may be key properties of CRMs.

doi:10.1371/journal.pone.0162968.g001
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for a small number of methods based on discriminative models, such as HexDiff [19], regula-
tory Potential [20] and CRFEM [21], these methods use generative models. The most com-
monly used generative model is the HMM [22]. The HMM can provide a statistically reliable
measure of the occurrences of CRMs and motifs, and it can characterize the regulatory struc-
ture of CRMs. Additionally, the expectation-maximization (EM) algorithm used in model
learning can automatically estimate a large number of model parameters. The methods based
on HMMmodels often represent TRSs that contains motifs and CRMs as observations gener-
ated by a hidden Markov stochastic process. Compared with the window clustering methods,
the methods in this category do not require the consideration of window sizes and score
thresholds. Early methods, such as CisModule [23] and Cluster-Buster [24], implement sim-
ple HMMmodels with the states describing motifs and intra-module and inter-module back-
grounds to infer CRMs. Geometric distributions for state durations in the HMM putatively
specify the inter-motif and inter-module distances. However, these methods only model com-
binations of motifs; they do not consider any preferential ordering of motifs within a CRM.
Later methods, such as Stubb [25] and BayCis [26], further extend this model by introducing
transitions between motif states.

A third group of methods searches for CRMs in evolutionarily conserved regions. Some
methods, such as MorphMS [27] and StubbMS [25] (the multi-species version of Stubb), first
identify conserved regions by using pairwise or multiple sequence alignments in the regulatory
regions of related genes, then model the motif clusters within those regions by using a TFBS
evolution stochastic model to identify conserved CRMs. However, since the regulatory regions
of most genes suffer from a large number of events such as shuffling, deletion and duplication,
these methods are difficult to align them. To get around this problem, other methods, such as
EEL [28] and ReLA [29], have been proposed. These methods align the pre-identified motif
instances instead of raw sequences to detect conserved motif cluster regions. Although the
methods in this category have shown promising prediction performance for CRMs, they are
limited to related species and thus do not always work.

Of all these methods, the probabilistic modeling methods based on HMMs are the most
common and most effective. However, the traditional HMM has two drawbacks that limit its
prediction performance. First, HMM state durations are implicitly assumed to be geometric
distributions. This assumption is unrealistic because the distances between motifs within a
CRMmay not be well described by a geometric distribution. Second, the HMM is an unwieldy
way to model large numbers of dependences. Current methods based on HMMs usually
assume that motifs within a CRM are generated independently by corresponding HMMs.
However, transcription factors bound to a CRM cooperate with each other to regulate gene
expression. This behavior implies that the motifs corresponding to these transcription factors
may be correlated. Thus, the independence assumption may cause predictions to be inaccurate.
Although the HMMmay be extended to model these correlations by adding extra states and
parameters, the extended model may require excessive computational work.

To address these problems, this paper presents a probabilistic modeling method called
SMCis. The method builds a CRM discovery model based on a hidden semi-Markov model
(HSMM) [30]. We use this sophisticated HMM at a higher level of abstraction (i.e., segments
rather than nucleotides) to characterize the regulatory structure of CRMs. Unlike general CRM
discovery methods, we consider the distances and ordering of motifs within a CRM instead of
simply regarding a CRM as a cluster of motifs. Specifically, we infer the CRM structure from
the frequencies of motif occurrences and the dependences and distance specificities between
motifs within a CRM. The dependences and distance specificities between motifs within a
CRM encode gene regulation information. Modeling these features helps to improve the accu-
racy of CRM discovery. We test our method on three annotated real biological datasets and
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compare it with current published methods. Experimental results suggest that our method per-
forms better than the compared algorithms.

Materials and Methods
The HSMM has more modeling power than the HMM and can explicitly model the state dura-
tions and the long-range dependencies between observations and states. Thus, the HSMM is a
natural and effective approach for modeling TRSs and CRMs. We used an HSMM to character-
ize the organization of TRSs and the putative transcriptional regulatory structure of CRMs.
The structure models the dependencies and distance specificities between motifs within a CRM
and describes the internal organization of a CRM.

In this section, we first introduce the details of the model. Then, the algorithms for learning
and inference are given. Finally, we describe an algorithm to reduce the search space of the
model.

Construction of the HSMM
The HSMM [30] is an extension of the classical HMM. In contrast to an HMM, each state of
which emits one observation, each state of the HSMM can emit strings of observations. In our
model, an observation denotes an observed nucleotide. The observations emitted by an HSMM
state are governed by a segment model. The segment model gives a joint model for random-
length strings of observations. Formally, given an observation sequence o1:t = o1o2. . .ot gener-
ated by state s, the segment model [31] can be expressed as follows:

Pðo1:t; tjsÞ ¼ PðtjsÞPðo1:tjt; sÞ ¼ dsðtÞesðo1:tÞ ð1Þ

The segment model consists of a duration distribution ds(t), describing the probability that
observations generated by state s have length t, and an emission model es(o1:t), giving the emis-
sion probability that state s generates the particular observations o1:t.

We use an HSMM to describe the regulatory structure of TRSs. Fig 2 shows the HSMM state
diagram that describes the regulatory structure of a TRS. In the HSMM, TRSs containing CRMs
are organized in a two-level hierarchy. At the top level, each TRS is viewed as a concatenation of
CRMs and inter-module (global) backgrounds. At the bottom level, each CRM is considered a
combination of motifs and intra-module (local) backgrounds. The motifs and intra-module
backgrounds at the bottom level are viewed as nucleotide segments but are not further divided.
Formally, in the model, a CRM is denoted by two dummy states, cs and ce, where cs initializes a
CRM instance and ce correctly terminates the CRM instance. Let bg and bc denote the global and
local backgrounds, respectively. We letM = {m1,m2, . . .,mK} represent the set of motif states
and defineM' = {m1',m2', . . .,mK'} to be its reverse complement. In addition, to make the
HSMMwell defined, we add the initial state S and the termination state E. Therefore, the state
space of the whole model is denoted byH = {S, E}[{cs, ce}[M [M' [{bg}[{bc}.

To capture the dependencies between adjacent motifs within a CRM, we define the direct
transitions between motif states, as shown in Fig 2. Dependencies between motifs within a
CRM implicitly specify the ordering in the spatial arrangement of these motifs. The ordering of
motifs within a CRMmay affect combinatorial transcriptional regulation [32]. Thus, modeling
the dependencies between motifs helps to uncover the mechanism of TFBS regulation within a
CRM.

Motifs within a CRMmay comply with specific spacing requirements to allow correspond-
ing transcription factors to bind to them. Several previous studies [33] have suggested that a
large number of motif pairs suffer from distance constraints under selection forces and exhibit
significant distance specificity in human promoters. To model the motif distance specificity,
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we approximate the state durations of intra-module backgrounds with a more flexible distribu-
tion instead of the geometric distribution implicitly assumed by an HMM.

The HSMM contains three types of emission states: motif statem2M[M', global back-
ground state bg and local background state bc. Once entering an emission state, the HSMM first
resorts to a duration model to determine the duration for the visit. Then, it uses a state emis-
sion model to emit this number of nucleotides until it transitions to the next state. The specific
state duration and state emission models are defined in the following sections.

State duration model
In the model, state duration models are addressed by the length distributions that represent the
length characteristic of nucleotides generated by a particular state.

Position weight matrices (PWMs) [34] of all the motifs are obtained directly from databases
(such as TRANSFAC and JASPAR). Given a motif statem, let wm be its length. The following
formula defines the probability distribution that a sequence generated by the motif statem has
length um:

dmðumÞ ¼
1; if um ¼ wm

0; if um 6¼ wm

:

(
ð2Þ

In our model, we do not make any assumption regarding the distance distribution between
CRMs and we still use a geometric distribution. The probability that a background sequence
generated by the global background state bg has length ug is defined as follows:

dbg ðugÞ ¼ ð1� pgÞu�1pg ; ð3Þ

where pg is the parameter of the distribution.
The sequence modeled as an intra-module background defines the distance between adja-

cent motif instances. The geometric distribution under an HMM is not a good approximation
of the distance between motifs. Based on previous research [26], we use a negative binomial
distribution to approximate the distribution of the distances between motifs. This distribution

Fig 2. The SMCis HSMM state transition diagram. Nodes represent emission states, including motifs,
inter-module backgrounds and intra-module backgrounds. Shadow nodes represent the initial and
termination states of the model and the initial and termination states of the CRMs. Arrows indicate
permissible transitions between states.

doi:10.1371/journal.pone.0162968.g002
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is given as follows:

dbcðucÞ ¼
uc � 1

r � 1

 !
puc�rð1� pÞr; ð4Þ

where bc is the local background state, uc is the length of a local background sequence generated
by the state bc, and r and π are the parameters of the distribution function.

State emission model
The HSMM state emission models define joint probability distributions of nucleotides at par-
ticular sites generated by a particular state.

For the global background and local background states, we use themth order andm'th
order local Markov models, respectively. In a kth order local Markov model with k =m orm',
the probability of generating a background sequence o1:v is given as follows:

ebðo1:vÞ ¼
Yv
i¼1

Pðoijoi�k:i�1Þ; ð5Þ

where b denotes the global or local background state.
In Eq (5), p(oi|oi-k:i-1) is the conditional probability of the nucleotide oi occurring at position

i given k preceding nucleotides oi-k:i-1. This probability can be computed as follows:

Pðoijoi�k:i�1Þ ¼
Pðoi�k:iÞXT

oi¼A

Pðoi�k:i�1; oiÞ
: ð6Þ

In Eq (6), p(oi-k:i) and p(oi-k:i-1) are estimated from the frequencies of all (k+1)-mers and all
k-mers in an i-centered window with length 2D, respectively. Here, D is a predefined parame-
ter. To optimize the computational efficiency, a sliding window approach is used. The sliding
window approach scans the whole sequence in one pass, and the conditional probabilities of
nucleotides at all positions are calculated. The detailed steps are as follows:

1. Count each (k+1)-mer within the current window, and calculate and store the conditional
probability of the nucleotide at each position within the current window.

2. Move the window in a fixed step size, update counts of the (k+1)-mers within the current
window, and calculate and store the conditional probability of the nucleotide at each posi-
tion within the current window.

3. Repeat steps i) and ii) until the conditional probabilities of the nucleotides at all positions
are calculated.

For the motif state, we use the standard product multinomial (PM) model [35]. The PM
model is a simple motif model based on PWMs, which assumes that nucleotides at all posi-
tions in the motifs are independent. Given a motifm, let its PWM Θ = [θ1, θ2, . . ., θL], where
θi (1� i� L) is a column vector of the frequencies of nucleotides A, T, G and C. The probabil-
ity of generating a motif instance o1:L by the motif statem is given as follows:

emðo1:LÞ ¼
YL
i¼1

yoi ;i; ð7Þ

where oi is the nucleotide at position i of the motif instance o1:L.

An Effective Algorithm for Discovery of Cis-Regulatory Modules

PLOS ONE | DOI:10.1371/journal.pone.0162968 September 16, 2016 6 / 17



Inference and learning
In an HMM, model parameters can be estimated by using the Baum-Welch algorithm [36].
The Baum-Welch algorithm uses the EM algorithm [36] to find the maximum likelihood esti-
mate of model parameters. We extend this algorithm to obtain an algorithm called the modi-
fied Baum-Welch to estimate the model parameters of our HSMM.

Given a TRS o, let s denote one of its state paths and let u denote the corresponding duration
sequence. Let θ denote all of the model parameters. The likelihood of a TRS is defined as fol-
lows:

LðyÞ ¼
X
s;u

Pðs; u; ojyÞ: ð8Þ

Let θt represent the value of parameter θ at t-th iteration, and the corresponding Q-function
[36] is defined as the likelihood of conditional expectation:

QðyjytÞ ¼
X
s;u

Pðs; ujo; ytÞlogPðo; s; ujyÞ: ð9Þ

We compute Eq (9) by using the modified Baum-Welch algorithm based on the EM algo-
rithm to iteratively converge to a locally optimal θ.

Once the model is trained, we use the Posterior Viterbi algorithm [37] to discover CRMs in
the TRSs. Combining ideas of the Viterbi algorithm [36] and the posterior decoding algorithm
[36], the Posterior Viterbi algorithm finds the legal path with the maximum joint posterior
probability in the posterior probability space. Formally, given an un-annotated TRS o1:T, the
Posterior Viterbi algorithm is used to find a state path s = s1:N and a corresponding state dura-
tion sequence u = u1:N according to the following equation:

ðs; uÞ ¼ argmax
N;s¼si:N2Ap

YN
i¼1

Pðsi; uijo1:T ; yÞ; ð10Þ

where N is the possible number of states and Ap is the set of the allowed posterior paths
through the HSMMmodel.

Reducing the search space
The HSMM can provide better expressive power than the HMM, but it adds an additional
dimension to infer state durations and needs to explicitly evaluate different segmentations in
the learning and inferring of the model [31]. Here, each segmentation determines a mapping
from a TRS to a set of state labels corresponding to a state path. To reduce the search space,
we locate all putative motif instances of given PWMs that are significant matches and may
form a CRM before parsing a TRS. In parsing the TRS, the HSMM only considers the state
paths through the positions of the motif matches and combines these pre-identified motif
instances to identify the best motif clusters as candidate CRMs.

Results
We tested our method on three real biological datasets: the muscle-specific expression system,
the liver-specific expression system and the Drosophila early embryonic development system.
We refer to these as the muscle dataset, the liver dataset and the Drosophila early development
dataset, respectively. The sequences in the muscle and liver datasets are from co-regulated
genes, and the sequences in the Drosophila early development dataset are from orthologous
genes.
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We chose six methods and compared their prediction performances with that of SMCis on
these datasets. These methods encompass a wide spectrum of extant models: BayCis [26],
Stubb [25], MSCAN [16], MotEvo [38], Cluster-Buster [24] and ReLA [29].

Evaluation
To avoid bias toward any particular measure, we used the correlation coefficient (CC) [39] and
the F1-score [40] of precision and recall to evaluate the overall prediction performance of our
method on all datasets.

Not all of the evaluated methods provide information about motifs within the predicted
CRMs; thus, we compared the results at the nucleotide level. Given the prediction results of a
method, the CC and F1 scores are defined as follows:

CC ¼ TP� TN‐FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞðFPþ TNÞðTPþ FPÞðTNþ FNÞp ; ð11Þ

F1 ¼ 2� Pr� Re
Prþ Re

: ð12Þ

In Eq (11), TP is the number of nucleotides correctly predicted as CRMs, TN is the number
of nucleotides correctly predicted as background, FP is the number of actual background nucle-
otides mistakenly predicted as CRMs, and FN is the number of actual CRM nucleotides mistak-
enly predicted as background. In Eq (12), the precision and recall are defined as follows:

• Precision (Pr), Pr = TP / (TP + FP), measures the ratio of correctly predicted CRMs to the
total number of predicted CRMs.

• Recall (Re), Re = TP / (TP + FN), measures the ratio of correctly predicted CRMs to the total
number of actual CRMs.

Because it uses all four values, TP, TN, FP and FN, the CC is a balanced measure of the overall
performance of a method. The CC is interpreted statistically as the correlation between positions
in predicted CRMs and positions in actual CRMs. The value of CC ranges from -1 to +1; a value
of +1 indicates that the prediction results are fully coincident with the actual results, and a value
of -1 means the opposite; the value tends toward 0 when the predictions are close to random.

Precision and recall are antagonistic measures, which means that a higher recall usually
comes at the cost of lower precision. The F1-score is defined as the harmonic mean of the
antagonistic pairs to balance them. The value of the F1-score ranges from 0 to +1, with +1 indi-
cating perfect predictions.

Results on the muscle and liver datasets
The datasets. The muscle and liver datasets were originally compiled by Wasserman et al.

[41, 42], and these datasets have been widely used to evaluate the prediction performance of
CRM discovery methods. Klepper et al. [8] expanded the datasets and used them as bench-
marks. The two datasets used here were from Klepper et al. [8].

The muscle dataset consists of five motifs and 24 sequences. The five motifs are Mef2, Myf,
Sp1, SRF and Tef, which play important roles in the transcriptional regulation of vertebrate
muscle gene expression. The average length of the 24 sequences is 850 bp, and these sequences
come from rat, human, chicken and cow. The 24 sequences contain 84 instances of the five
motifs in total. Each sequence contains one CRM. The average length of these CRMs is 120 bp,
ranging from 14 to 294 bp.
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The liver dataset includes four motifs and 12 sequences. The four motifs are HNF-1, HNF-
3, HNF-4 and C/EBP, which regulate liver-specific gene expression. Each of the 12 sequences,
except for the sequenceM19524 (943 bp long), has a length of 1 Kbp, and the sequences come
from human, mouse, rat and chicken. These sequences contain 14 CRMs in total, and each
sequence has one or two CRMs. The lengths of these CRMs range from 22 to 176 bp, and the
average length is 112 bp.

Experimental setup. For the two datasets, we used all sequences as the training and test
sets. For the methods Stubb, MSCAN and MotEvo, which depend on a window size, we set the
window size to 200 bp and kept the remaining parameters at their default values. The default
settings were kept in the other methods.

CRM prediction performance. For all the methods, we calculated the CC, F1-score, preci-
sion and recall by summing up all four values TP, TN, FP and FN over all sequences on each of
the two datasets, as shown in Figs 3 and 4.

Fig 3 shows that SMCis has the highest CC and F1-score on the muscle dataset; its predic-
tion precision is higher than that of other methods, and its recall is more than half of these
methods. As is apparent from Fig 3, different methods have different trends and achieve differ-
ent balances on this dataset. MotEvo, Stubb, Cluster-Buster and ReLA tend to make predictions
with very high recall, but they make a lot of false predictions and do not achieve reasonable bal-
ances between precision and recall. BayCis tends to make conservative predictions to ensure
high precision, and this is reflected in the fact that its recall is significantly lower than that of
the other methods. MSCAN emphasizes neither precision nor recall but provides very high
precision while ensuring high recall.

As shown in Fig 4, all methods except ReLA produced better predictions on the liver dataset
than the muscle dataset. SMCis had the highest CC score and F1-score on this dataset. Although
SMCis had a mid-level recall score, it had high precision that was only slightly lower than that
of MSCAN and significantly higher than other methods.

Results on the Drosophila early development dataset
The datasets. For the dataset, we used seven motifs—Gt, Hb, Tll, Cad, Kni, Bcd and Kr—

which drive the transcriptional regulation of Drosophila early embryonic development, and we
downloaded PWMs for these motifs from the iDMMPMM database [43]. We selected a subset
containing nine genes: kni, Kr, hb, tll, btd, eve, h, ftz and prd, from the genes that orchestrate
the anterior-posterior axis patterning in the Drosophila early embryo. For each gene, all avail-
able orthologous sequences were collected for the learning and inference of the model. We
defined each gene search region as a sequence region 40 Kbp long, which was obtained by
extracting 20 Kbp downstream and upstream of the TSS. Ortholog information and chromo-
some coordinates were acquired from the FlyBase database [44]. The seven motifs and nine
genes constitute the Drosophila early development dataset used in the experiment. We col-
lected CRMs for these genes from the REDfly database [45], merged the overlapping CRMs,
and then took them as a benchmark.

Experimental setup. SMCis was further compared with the other methods on the Dro-
sophila early developmental dataset. For Stubb, we chose its multi-species version StubbMS (a
Stubb module, which is referred to as Stubb in the following description). StubbMS extends
Stubb by applying phylogenetic comparisons between related organisms. These methods were
tested on the dataset as follows:

1. For SMCis and BayCis, on for each gene dataset, we took D.melanogaster genes as the test
set (the REDfly database only collected the annotated CRMs of D.melanogaster genes and
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had not yet collected CRMs of other Drosophila species genes) and orthologous genes from
other species of Drosophila as the training set.

2. For MotEvo and Cluster-Buster, we tested them on the whole orthologous group but only
focused on the predictions on D.melanogaster genes.

3. For Stubb, which requires a pairwise sequence alignment, we selected the species used in the
original paper (D.melanogaster and D. virilis) and tested Stubb on the corresponding genes.

4. For MSCAN, which predicts CRMs on a single sequence, we tested it only on the corre-
sponding D.melanogaster genes.

5. For ReLA, on each gene dataset, we designated the corresponding D.melanogaster gene as
the reference sequence, and the other Drosophila species genes were compared with the ref-
erence sequence.

Fig 3. Performance of all methods on the muscle dataset.

doi:10.1371/journal.pone.0162968.g003
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For the methods that depend on a window size, we set the window size to 800 bp (approxi-
mately the average length of CRMs on this dataset) and kept the remaining parameters at their
default values. The default settings were maintained for the other methods.

CRM prediction performance. For each method, we counted TP, FP, TN and FN on each
gene dataset and then calculated the CC scores of the predicted results on the gene dataset. To
evaluate the overall performance of all the methods on the whole dataset, we also calculated all
the measures for each method on the whole Drosophila early development dataset.

Fig 5 shows CC scores for all the methods on each gene dataset. Overall, SMCis achieved a
better prediction performance than the other methods. SMCis had the highest CC scores on
four of the nine genes tested: hb, eve, h and ftz. It had the second best CC scores on btd and tll
and the third best on kni and Kr.

Fig 5 shows that the prediction performance of all methods exhibited a relatively consistent
tendency on most gene datasets. We speculate that the properties of the CRMs of different
genes, such as CRM length and the number of motifs involved, may have a significant impact

Fig 4. Performance of all methods on the liver dataset.

doi:10.1371/journal.pone.0162968.g004
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on the performance of CRM discovery methods. Generally, the CRMs that are long and
contain multiple instances of known motifs are easier to predict. For instance, the eve enhancer
eve_stripe_3+7 contains up to 49 instances of the four motifs, including kni and hb, and all
the methods correctly predicted the CRM. Although it is difficult to design a perfect search
strategy that is insensitive to data, most of the probabilistic modeling methods exhibited good
adaptability.

Fig 6 shows all of the measures for these methods on the whole dataset. The CC scores and
F1-scores of all the methods dropped more sharply on this dataset compared with the results
on the muscle and liver datasets. Despite this, the scores were higher than all other compared
methods for both CC and F1-score. SMCis still achieved stable prediction performance; it had
the highest prediction precision while ensuring a reasonable recall.

Compared with the muscle and liver datasets, the sequences on theDrosophila early develop-
ment dataset are much longer and the CRM lengths are more varied, which may affect the
prediction performances of the methods. On this dataset, the methods showed significant differ-
ences in prediction performance. ReLA achieved better performance than most of the methods,

Fig 5. CC scores of all methods, calculated for single genes on theDrosophila early development dataset.

doi:10.1371/journal.pone.0162968.g005
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despite its poor performance on the muscle and liver datasets. In contrast to its good perfor-
mance on the muscle dataset, MSCAN performed very poorly on this dataset; its CC score was
the lowest, and its F1-score was only slightly higher than that of Stubb, which had the lowest CC
score. One explanation for this may be that it is difficult for window-based clustering methods
to determine reasonable window sizes and score thresholds on this dataset. MotEvo also uses a
window-based clustering strategy, but it achieved better performance than MSCAN. MotEvo
builds a Bayesian probability model to score motifs clustering within a sliding window, which
also illustrates that probabilistic modeling methods may have better adaptability to different
types of data. Taking advantage of the evolutionary conservation between species, Stubb had
high prediction precision (only second to SMCis), but its recall score was the lowest out of all
the methods. SMCis does not directly make use of conservation by aligning sequences, but it
implicitly considers the evolutionary conservation between species by characterizing the

Fig 6. Performance of all methods on the wholeDrosophila early development dataset.

doi:10.1371/journal.pone.0162968.g006
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conserved regulatory structures of co-regulated or orthologous sequences based on the HSMM.
This additional information helps to improve the prediction performance of SMCis.

Discussion and Conclusions
In this paper, we present SMCis, a probabilistic modeling method for predicting CRMs that
builds a more powerful CRM discovery model based on an HSMM. In this model, we charac-
terize the regulatory structure of a TRS at a higher level of abstraction (sequence segments
rather than nucleotides). Our model views a TRS as a combination of CRMs and inter-module
backgrounds and further represents a CRM as a combination of motifs and intra-module back-
grounds. Paying more attention to the modeling of the CRM internal structure, we consider
not only dependencies between motifs within a CRM but also the distance specificities between
the motifs. Compared with other probabilistic modeling methods for CRM discovery, SMCis
has the following advantages.

1. The level of abstraction at sequence segments rather than single nucleotides makes the
model representations more natural. Representing the regulatory structure of a TRS with a
hierarchical organization and explicitly defining CRM states makes the overall architecture
of the model clearer.

2. Compared with other methods based on HMMs, our model is more flexible. In the model,
we can build an individual model for each type of segment (corresponding to the states of
the HSMMmodel). For example, we can introduce more sophisticated models to capture
dependencies between nucleotide sites within a motif. Moreover, our model can use any
duration distribution with a specific meaning or a combination of distributions; it is not lim-
ited to the implicit geometric distribution in the HMM.

To further improve the prediction performance of CRMs, we will continue working on the
following issues in follow-up studies. We will collect more CRM annotations and use more sys-
tematic approaches, such as k-fold cross validation, to aid in the selection of model parameters.
We will also consider using a Bayesian approach to add a priori information and other soft con-
straints, which will make our method more adaptable to new data because it more easily leads to
over-fitting to the training data completely based on the likelihood of the observed data.
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