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Abstract

One of the newer classes of targeted cancer therapeutics is monoclonal antibodies. Monoclonal 

antibody therapeutics are a successful and rapidly expanding drug class due to their high 

specificity, activity, favourable pharmacokinetics, and standardized manufacturing processes. 

Antibodies are capable of recruiting the immune system to attack cancer cells through 

complement-dependent cytotoxicity or antibody dependent cellular cytotoxicity. In an ideal 

scenario the initial tumor cell destruction induced by administration of a therapeutic antibody can 

result in uptake of tumor associated antigens by antigen-presenting cells, establishing a prolonged 

memory effect. Mechanisms of direct tumor cell killing by antibodies include antibody recognition 

of cell surface bound enzymes to neutralize enzyme activity and signaling, or induction of receptor 

agonist or antagonist activity. Both approaches result in cellular apoptosis. In another and very 

direct approach, antibodies are used to deliver drugs to target cells and cause cell death. Such 

antibody drug conjugates (ADCs) direct cytotoxic compounds to tumor cells, after selective 

binding to cell surface antigens, internalization, and intracellular drug release. Efficacy and safety 

of ADCs for cancer therapy has recently been greatly advanced based on innovative approaches 

for site-specific drug conjugation to the antibody structure. This technology enabled rational 

optimization of function and pharmacokinetics of the resulting conjugates, and is now beginning 

to yield therapeutics with defined, uniform molecular characteristics, and unprecedented promise 

to advance cancer treatment.
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Introduction

Cancer, in its most basic definition, is a class of diseases characterized by abnormal cell 

growth. Cancer affects essentially all macro-organisms, and paleo-pathologic findings 

suggest that cancer has existed since long before humans [1]. The earliest known recorded 

case of cancer, a breast cancer, was found in an ancient Egyptian medical text (the Edwin 

Smith Papyrus written circa 3000 B.C.), which described the ailment as a grave disease with 

no treatment [2]. Since its initial identification 5000 years ago, the treatments for cancer, 

while varying wildly in the specific methods and outcomes, have remained quite consistent. 

Essentially every medical procedure for cancer throughout history employed surgical and 

chemotherapeutic intervention, and recognized that early diagnosis and intervention were 

necessary for successful treatment [3-6]. The causes and progression of cancer, however, 

remained essentially a complete mystery until around mid-19th century.

Tumor metastasis was originally described by the 1st century Roman physician Anulus 

Celsus, in his De Medicina encyclopedia of medicine [1]. Celsus described secondary 

tumours and recurrences of breast cancer in the armpits, and noted that in advanced cases 

death may be caused by spreading of the disease to distant organs [7]. It took another 2000 

years, however, to develop the modern model for cancer progression and metastasis. 

Campbell De Morgan, after 34 years of clinical study, developed his model for the “focal 

origin of cancer” [8]. In a series of publications between 1872 and 1874, De Morgan 

described cancer as a disease that arose locally before spreading, first to the lymph nodes 

and then throughout the body [9-11]. Furthermore, it was around this time that chemical 

carcinogens were first discovered in association with occupation risk of lung cancer. Miners, 

and other industrial workers, where shown to have significantly higher rates of lung cancer, 

which researchers eventually attributed to the inhalation of arsenic, bismuth and other 

chemicals in the form of mine dust [12]. In the following decades, the discovery of both x-

rays and radioactivity revolutionized the treatment and diagnosis of cancer. Importantly, both 

of these types of ionizing radiation were eventually also identified as another significant 

source of carcinogenesis [12].

In the decades following these discoveries, more cancer research took place than during the 

prior centuries combined. First and foremost, the hypotheses that cancer was caused by 

demons, moral and religious deviations, and humoral imbalances were largely disabused by 

this point [13]. The discoveries of the mid to late 19th century coupled with the advent of in 
vitro and in vivo cancer models resulted in a great advancement in the field of cancer 

research [5,13,14]. During this time, histopathological staging of tumours was first 

introduced, a number of new cancers and carcinogens were discovered, and in vitro and in 
vivo techniques enabled early investigation in carcinogenesis and the biology and 

biochemistry of cancer cells [13,15,16]. The connection between genetics and cancer, which 

was first suggested in the mid to late 19th century, was not discovered until the early 20th 

century with the advent of in vivo cancer biology and genetically controlled animal strains 

[8,13,17].

One of the most important discoveries of this time was made by German biochemist Otto 

Warburg in 1924 [18]. He discovered that cancer cells metabolize glucose in a manner that is 
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distinct from the main energy metabolism pathway used by normal cells and tissues. While 

normal cells derive energy primarily from oxidative phosphorylation through mitochondrial 

respiration, cancer cells use glycolysis, even in the presence of sufficient oxygen to support 

mitochondrial oxidative phosphorylation [19-24]. This discovery is the basis for positron 

emission tomography (PET) imaging of tumours, an invaluable tool in modern cancer 

diagnosis and treatment, based on the differential uptake of 18F labelled glucose derivatives 

by cancer cells compared to normal cells [25-29].

Warburg went on to hypothesize that this phenomenon was not just a feature of cellular 

transformation, but that cancer was caused by mitochondrial damage, resulting in lower 

oxidative phosphorylation and higher levels of glycolysis [30]. Since then, the cancer 

research community has largely discredited this hypothesis, stating that the metabolic 

changes observed in cancer are a result of cellular transformation with the anaerobic tumor 

microenvironment selecting for increased glycolysis. Down-regulation of oxidative 

phosphorylation in response to oncogene activation was considered an advantage for tumor 

cells that could foster adaptation to hypoxic conditions [31-33]. However, Warburg’s 

hypothesis may have been more appropriate than initially given credit for. During the current 

renaissance of research into cancer metabolism, there have been a number of studies 

showing that damaged mitochondria directly facilitate a more aggressive cancer phenotype, 

and that normalization of mitochondrial function in cancer cells can reduce tumorigenesis 

and metastatic activity [34-43]. Thus, while mitochondrial dysfunction in conjunction with 

oncogenic events may not be the exclusive cause of all cancers, as Warburg initially 

hypothesized; mitochondrial functionality is certainly intimately involved in tumorigenesis 

and cancer progression [44-46].

The era of the late 19th and early 20th century also provided the very first examples of 

cancer immunotherapy, another area of cancer research that is currently undergoing a 

renaissance of research [8,12]. Clinical reports in the late 19th century described occasional 

spontaneous remission of various cancers when patients co-presented with infectious 

diseases, notably erysipelas [47]. This phenomenon prompted investigation by William B. 

Cooley into the infection of cancer patients with various infectious agents, e.g. Serratia 
marcescens or Streptococcus pyogenes, or administering extracts of these bacteria, in 

attempt to induce remission [48,49]. The idea behind Cooley’s toxin therapy is that the 

administered infectious agent or toxin would result in systemic immune activation with a 

desired side effect of tumor cell destruction by the activated immune system [50,51]. Even 

though the results and methods gained significant criticism over the years, Coley claimed 

great success, reporting an estimated 80% 5-year survival rate for diseases with no other 

treatment options [52-54]. Despite the literally unbelievable success rate, and the eventual 

discontinuation of Coley’s toxin cancer treatment, this approach was the first example of 

attempting to artificially induce an immune response as a cancer treatment; the basis for 

many of today’s promising cancer therapies.

Coinciding with the discontinuation of Coley’s toxin cancer treatments in the 1950s, was the 

discovery of tumor associated antigens: the next great advancement in the field of cancer 

immunotherapy [8,55]. The discovery of tumor associated antigens resulted in a massive 

amount of research over the following decades to identify new tumor associated antigens 
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and develop therapies to take advantage of these new discoveries [56-69]. Unfortunately, 

efforts towards the development of cancer vaccines, and other immune based cancer 

therapies over this time period were largely ineffective [8,55,70]. However, the efforts 

towards the research of tumor associated antigens laid the groundwork for modern 

monoclonal antibody therapy and other immunotherapies for cancer. Concurrent with this 

research in cancer immunotherapy, research into carcinogens, tumorigenesis, diagnostic 

techniques, chemotherapeutics, radiation therapy, cancer classification, and surgical 

procedures all advanced by leaps and bounds. However, despite the advances in detection, 

diagnosis, and treatments of cancer, the overall mortality rate remained high, and relatively 

unchanged from previous generations [13,55].

Despite discovery of cancer as a deadly disease thousands of years ago, characterization of 

the disease progression, and accumulating knowledge on causes over the course of the last 

few hundred years, modern cancer treatment faces many of the same issues today as it has 

throughout history [1,3,4,12,13,55]. Treatment today generally follows the same scheme as 

it has since humans began attempting to treat this disease: Surgical intervention (if possible) 

to remove any primary and secondary tumors, and chemotherapeutic intervention to treat 

inoperable tumours and lesions to halt or prevent disease progression. Importantly, the issue 

of cancer metastasis still plagues clinicians and patients, without break-through advances 

toward truly effective therapies that can achieve a cure for patients with advanced cancer. 

The majority of deaths from cancer are caused not by the primary tumor, but by secondary 

growths that result from tumor invasion and metastasis, and advanced cancers still have a 

very poor prognosis [71].

Through advances in research, diagnostic, and surgical approaches, oncologists now have 

refined, clinically validated chemotherapeutics, combination treatments, and other cancer 

therapeutics making successful intervention much more common. Cancer survival has 

steadily increased in Western countries for the last 30 years [72,73]. This can be explained 

by a better understanding of cancer biology and disease progression, more advanced in vivo 
and in vitro cancer models, the sequencing of the human genome resulting in a clearer 

picture of the genetic contributions to cancer, an understanding of onco-genetics, the 

development of new and more accurate cancer screening techniques, and new, more targeted 

cancer therapeutics [74-84].

One of the newer classes of targeted cancer therapeutics is monoclonal antibodies. 

Monoclonal antibody (mAb) therapeutics are a successful and rapidly expanding drug class 

due to their high specificity, activity, favourable pharmacokinetics, and standardized 

manufacturing processes [85-94]. The success of monoclonal antibody therapeutics is built 

on the back of the aforementioned investigation into cancer immunology from the 1950s to 

the 1970s. Since the discovery of tumor specific antigens, researches attempted to use 

antibodies as therapeutic agents. Originally, researchers attempted to immunize an animal 

with cancer cells and then administer serum or polyclonal antibodies in attempt to confer 

passive immunization [55,62,95]. However, immunogenicity of the serum and/or antibodies, 

coupled with the irreproducibility of the animal immunizations made this therapy 

impractical and ineffective [55,62,95]. The development of hybridoma technology in 1975 

re-invigorated researches into antibody based cancer therapeutics [96,97]. For the first time, 
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monoclonal antibodies could be isolated and produced. Thus, individual antibody sequences 

could be cloned and screened for maximal efficacy instead of relying on the unpredictable 

and often irreproducible process of passive immunization with serum.

After initial issues with the immunogenicity of murine mAbs, and subsequent development 

of chimeric and humanized antibodies, mAbs have become some of the most successful and 

efficacious drugs of the last few decades [94,98,99]. There are currently 36 FDA approved 

monoclonal antibodies for the treatments of various diseases, with 17 for the treatment of 

cancer. While there are 5 classes of antibodies (immunoglobulin’s) in humans (IgG, IgA, 

IgE, IgD, and IgM), every currently clinically approved mAb therapeutic is an IgG (the 

immunoglobulin responsible for antibody-based immunity against pathogens) [100-103]. 

Assuming the availability of targetable and tumor specific antigen, antibody therapeutics are 

an ideal cancer drug.

Antibodies (IgGs in particular) are capable of recruiting the immune system to attack 

whatever they bind. The binding of 2 or more IgG1 molecules to the cancer cell surface 

results in binding of the C1q protein of the complement system which initiates activation of 

the complement cascade [104]. Activation of the complement system results in the formation 

of the membrane attack complex which causes membrane pore development and subsequent 

cell lysis. Complement activated cell lysis can additionally result in recruitment and 

activation of certain immune effector cells (macrophages, neutrophils, eosinophils etc.) 

[104,105]. This process is known as complement-dependent cytotoxicity (CDC). 

Furthermore, bound IgGs can recruit and activate immune cells directly via Fcγ receptor 

binding. Natural killer (NK) cells, macrophages, dendritic cells, neutrophils, eosinophils, 

and other immune cells all express various forms of the Fcγ receptor, enabling them to be 

recruited and activated to induce antibody dependent cellular cytotoxicity (ADCC) and 

antibody dependent cellular phagocytosis (ADCP) [106,107]. Moreover, in an ideal scenario 

the initial tumor cell destruction induced by administration of a therapeutic antibody can 

result in uptake of tumor associated antigens by antigen-presenting cells establishing a 

prolonged memory effect [96].

Importantly, many mAb therapeutics have intrinsic anti-cancer activity and exerts their 

effects without the need of immune activation. For example, several tumor associated 

antigens are growth factor receptors that are overexpressed at the tumor cell surface, and can 

be one of the driving forces of unregulated cellular growth as well as promote insensitivity 

and resistance to chemotherapeutic agents [108]. mAb therapeutics that bind such growth 

factor receptors are often capable of disrupting ligand binding or receptor signaling, which 

can potentially inhibit cell proliferation and re-sensitize tumor cells to chemotherapeutics 

[94,96,109].

Some of the first cell surface receptors to be targeted in this fashion are the EGFR family 

receptors [108]. Antibodies that target these receptors are among the most potent inhibitors 

of signal transduction. The specific mode of action of these antibodies can vary. 

Therapeutically used antibodies cetuximab and panitumumab physically block the 

interaction between the EGF receptor and its ligand via steric hindrance. This prevents the 

receptor from assuming the conformation required for dimerization and subsequent cell 
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signaling [110-112]. Others, such as pertuzumab and trastuzumab which target the EGFR 

family member Her2 do not inhibit ligand binding but disrupt the ability for their target 

receptors to heterodimerize, thereby preventing receptor signaling [113,114]. Essentially 

every clinically effective, unconjugated mAb disrupts cell signaling of an overexpressed, 

proliferation-driving cell surface receptor, as opposed to relying strictly on antibody effector 

function for activity [96]. However, the efficacy of these antibodies is fully explained by a 

combination of immune activation and the antibody’s intrinsic ability to inhibit growth 

factor signaling [112,115,116].

Generally, mechanisms of direct tumor cell killing by antibodies (Figure 1) may include 

antibody recognition of cell surface bound enzymes to neutralize enzyme activity and 

signaling. In other cases, antibodies can induce receptor agonist or antagonist activity. The 

result of both approaches is induction of cellular apoptosis. In another and very direct 

approach, antibodies are used to deliver drugs to target cells and cause cell death. Such 

antibody drug conjugates (ADCs) direct cytotoxic compounds to tumor cells after selective 

binding to cell surface antigens, internalization, and intracellular drug release. In this way, 

ADCs take advantage of the desirable specificity and pharmacokinetics of immunoglobulins 

as a means to deliver highly cytotoxic drug payloads [117,118]. This is done by conjugating 

cytotoxic drugs onto an antibody, so when the antibody binds its target cell and is 

subsequently internalized, the toxic drug is released and able to kill the cell [119]. ADCs 

offer significant promise as therapeutics because they are able to deliver highly toxic drugs 

very specifically to the tumor cells. Thus, untargeted toxicities associated with the use of 

free drugs are greatly reduced, and poor therapeutic indices associated with conventional 

chemotherapies can be significantly improved [120]. Many biotech and pharmaceutical 

companies are researching and pursuing ADCs as potential cancer therapeutics. There are 

currently over 30 ADC drugs in clinical trials for cancer therapy, in addition to two FDA 

approved ADCs (Kadcyla and Adcetris) being administered to patients [120-122]. Kadcyla 

is an ADC of trastuzumab and emtansine, the tubulin binding drug DM1 that potently blocks 

cell proliferation. This ADC is approved for breast cancer patients with Her2 positive 

tumours after prior treatment with trastuzumab alone and a taxane. Adcetris is an ADC of 

anti-CD30 and the highly toxic anti-mitotic agent auristatin E. Adcetris is being used for 

treatment of classical Hodgkin lymphoma and systemic anaplastic large cell lymphoma after 

other chemotherapies have failed.

There are distinct advantages to ADCs over unconjugated mAbs. Unconjugated mAbs, while 

they can induce an immune response and often disrupt cancer cell signaling, tend to require 

combination therapy with conventional chemotherapeutics to be efficacious [123,124]. 

Additionally, in pre-clinical research and in clinical trials the efficacy of ADCs was shown to 

be significantly better than unconjugated mAbs (or conventional chemotherapy) 

[119,125-127]. Importantly, the high specificity of the drug delivery mechanism allows for 

the application of drugs that would be otherwise too toxic to administer to a cancer patient 

[125,128-130]. Despite the use of extremely cytotoxic drugs, ADCs have proven to have 

toxicity profiles better than conventional chemotherapeutics [127,131,132].

The primary drawback to ADCs is their inherent complexity. Each ADC is comprised of at 

least 3 components: the antibody, a linker, and the drug. Each of these components can be 
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varied, and the efficacy and safety profile of the resulting therapeutic can change drastically 

[128,133]. An additional confounding factor with the production of ADCs is using the 

commonly utilized conjugation methods of lysine amidation, or maleimide coupling of 

cysteines from reduced interchain disulfide bonds, resulting in a heterogeneous mixture of 

both location and number of conjugates per antibody molecule (usually resulting in a 

mixture of products comprising between 0 and 8 distinct conjugates) [134-136]. This can 

negatively affect both the toxicity of the ADC as well as its binding affinity [137-139]. An 

example is gemtuzumab ozogamicin, a previously FDA approved ADC consisting of anti-

CD33 and a calicheamicin as a potent anti-tumor antibiotic. This ADC, tried against acute 

myelogenous leukemia, used random lysine conjugation and had to be pulled from the 

market because of toxicity and lack of efficacy [140].

A critical current area of research looking to improve upon some the issues plaguing ADC 

production and clinical use, is site-specific conjugation. Site-specific conjugation allows for 

control over the conjugate:antibody stoichiometry and the location of conjugation, which 

enables the generation of a homogenous product [140-142]. There are three primary 

methods to accomplish site specific conjugation: engineered cysteine residues, bio-

orthogonal reaction with unnatural amino acids, and through enzymatic conjugation with 

glycotransferases [139,141-143]. Importantly, it has been recently shown that the site 

location, and conjugate:antibody stoichiometry can have a profound impact on conjugate 

stability and therapeutic activity of ADCs [144,145]. Thus, use of site-specific conjugation 

methods allows for optimization of therapeutic activity and toxicity profile of an ADC that 

would have been otherwise impossible with conventional conjugation chemistries.

Therapeutic antibody-drug conjugates, however, are not the only clinically relevant 

application of immunoconjugation. Radio-immunconjugates have been used in the treatment 

and diagnosis of various cancers [146-148]. Oligonucleotide-antibody conjugates have been 

used in highly sensitive immuno-PCR for the detection of circulating tumor cells (CTCs) or 

other rare cells, in the generation of highly sensitive antibody arrays, and for the generation 

of multimeric antibody constructs [149-153]. Bi-specific antibody constructs have been 

produced via conjugation to either gain synergistic activity against multiple tumor associated 

antigens, or to recruit and activate cytotoxic T-cells for cancer therapy [154-161]. Antibody 

conjugation has also been used to circumvent the often procedurally intensive process of 

antibody selection, by using the conjugated molecule for the specificity, and rely on the 

antibody scaffold to provide the desired effector function and pharmacokinetics [162-169].

Due to antibody specificity and target selectivity, no single antibody or antibody conjugate 

will be broadly applicable to cancer treatment. Thus, in order to exploit the extremely high 

selectivity of therapeutic antibodies, tumor associated antigens must be identified and their 

exclusive expression on tumours has to be validated to avoid off-target toxicity [170-175]. 

This is particularly important for ADCs, as these can be extremely effective at eliminating 

target cells identified by the antibody moiety. Unless a ubiquitous tumor associated antigen 

is discovered, each different type of cancer requires the development of an antibody specific 

to cell surface antigens expressed on that cancer. This requirement applies to each individual 

disease type. For example, breast cancer is a highly heterogeneous disease, with no less than 

5 distinct molecular subtypes [176-180]. Only the HER2-enriched subtype currently has an 
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antibody therapeutic as an available treatment (though ER+ breast cancer relies on anti-

hormone therapy targeting estrogen as a disease-driving ligand) [181-186]. Breast tumours 

that do not express the estrogen receptor, the progesterone receptor, and are HER2-negative, 

are referred to as “triple-negative” which accounts for approximately 15%-20% of diagnosed 

breast cancers [178,187,188]. Triple negative breast cancer is generally the most aggressive 

subtype, has a particularly poor outcome, and there are no antibody therapeutics or targeted 

therapies available to treat this subtype of breast cancer [178,187,189-192]. Considering the 

need for targeted treatments of otherwise hard-to-manage and particularly aggressive types 

of cancer in general, identification of antigens specific for those tumor cells would 

revolutionize cancer therapy.

While there are many techniques for the discovery of antibodies against important disease-

associated antigens, finding antibodies that bind defined functional epitopes with high 

specificity and affinity is not trivial. This is particularly true if one attempts to identify 

antibodies against an unknown target protein on a target cell type or cell line. Classical 

hybridoma mAb development approaches require animal immunization, B-cell fusion, clonal 

screening, and antibody gene cloning and sequencing, before a hybridoma derived mAb can 

begin preclinical testing as a potential therapeutic [97,193,194]. Additionally, many 

hybridoma derived mAbs will have to be humanized before clinical application [195]. 

Antibody display based approaches circumvent many of the issues associated with animal 

immunization and hybridoma development. Antibody display allows for the direct selection 

of fully human antibodies from recombinant antibody libraries, and the display systems are 

designed such that much of the cell and molecular biology associated with hybridoma 

development is unnecessary [196]. This significant improvement over classical mAb 

development approaches can be enhanced by smartly designed selection strategies, multiple 

and diversified rounds of selection, and clonal antibody screening [196-198]. Identification 

of antibodies with function blocking properties, or selection of antibodies that merely 

recognize epitopes unique to the target tumor cell type with high selectivity, should enable 

specific development of targeted antibody therapies that can effectively interfere with cancer 

progression, eliminate cancer recurrence, or prevent spreading of particularly aggressive 

cancer cell types. Deep analysis of antibody-antigen relationships, antigen distribution, and 

identification of patient target groups will lead to the development of novel targeted 

therapies for many cancer types that urgently require effective treatment approaches.
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Figure 1. 
Mechanisms of direct tumor cell killing by antibodies. A: Antibody drug conjugates deliver 

cytotoxic drugs after selective binding to tumor cell surface antigens, internalization, and 

intracellular drug release; B: Antibodies against surface bound enzymes can neutralize 

enzyme activity and signaling, leading to apoptosis (symbolized by the mitochondrion); C: 

Antibodies can induce receptor agonist or antagonist activity and thereby cause apoptosis.
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