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The number of people over the age of 60 is expected to double by 2050 according to 
the WHO. This emphasizes the need to ensure optimized resilience to health stressors 
in late life. In older adults, influenza is one of the leading causes of catastrophic disability 
(defined as the loss of independence in daily living and self-care activities). Influenza 
vaccination is generally perceived to be less protective in older adults, with some studies 
suggesting that the humoral immune response to the vaccine is further impaired in 
cytomegalovirus (CMV)-seropositive older people. CMV is a β-herpes virus infection that 
is generally asymptomatic in healthy individuals. The majority of older adults possess 
serum antibodies against the virus indicating latent infection. Age-related changes in 
T-cell-mediated immunity are augmented by CMV infection and may be associated with 
more serious complications of influenza infection. This review focuses on the impact 
of aging and CMV on immune cell function, the response to influenza infection and 
vaccination, and how the current understanding of aging and CMV can be used to 
design a more effective influenza vaccine for older adults. It is anticipated that efforts in 
this field will address the public health need for improved protection against influenza 
in older adults, particularly with regard to the serious complications leading to loss of 
independence.
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iNTRODUCTiON

Cytomegalovirus (CMV) is a β-herpes virus that infects fibroblasts, epithelial, endothelial, stromal, 
smooth muscle cells, but most importantly, monocytes and dendritic cells (DCs) (1). Depending on 
the country and its state of development, 25–90% of the worldwide population is CMV seropositive (2, 
3) with prevalence higher in older adults (4). Once infected with CMV, the immune system is unable 

Abbreviations: AID, activation-induced cytidine deaminase; APC, antigen-presenting cell; BCR, B-cell receptor; CMV, cyto-
megalovirus; CTL, cytotoxic T-lymphocyte; DC, dendritic cell; EBV, Epstein–Barr virus; GrB, granzyme B; HA, hemagglutinin; 
M1, matrix 1; MHC, major histocompatibility complex; NA, neuraminidase; NP, nucleoprotein; pH1N1, pandemic H1N1; 
pTFH, peripheral T-follicular helper cell; TCR, T-cell receptor; Treg, regulatory T-cell.
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to eliminate the virus, resulting in persistent latent infection. 
While the contribution of CMV infection to features of immune 
senescence are well recognized (5, 6), the translation to predict-
ing outcomes in older adults has been much more challenging. 
Earlier reports of the association between CMV seropositivity 
and prevalent frailty in community-dwelling older women (7, 8) 
(frailty determined based on a five component measure: uninten-
tional weight loss, weak grip strength, exhaustion, slow walking 
speed, and low level of activity) have not always been replicated 
in more recent longitudinal studies of CMV seropositivity as a 
predictor of frailty as measured by grip strength (9). However, 
many other studies have reported an association between CMV 
seropositivity and frailty (5, 6, 8, 10, 11), and increased mortality 
(12–15), but these findings are not consistent across all age groups 
and under all conditions. For example, in the BELFRAIL study, 
CMV seropositivity was not associated with an increased risk for 
all-cause mortality in a cohort of very old people. This may have 
been the result of a survival effect, whereby CMV-seropositive 
subjects with high anti-CMV titers die at a younger age compared 
with other individuals. This may reflect CMV reactivation being 
more common in the end stages of life (15). In terms of the impact 
of CMV on immune function, CMV seropositivity has been linked 
to poor CD4+ T-cell responses to influenza internal proteins (16), 
while other studies have found no association between CMV 
pp65-reactive CD8+ T-cells and poor CD8+ T-cell responses to 
influenza internal proteins (17). Although CMV seropositivity in 
older adults has never been directly correlated with poor vaccine-
mediated protection in older adults, high levels of CMV-reactive 
CD4+ T-cells have been associated with an increased risk of viral 
respiratory illness in elderly nursing home residents (18) and 
predict increased morbidity and mortality.

Cytomegalovirus and aging of the immune system are associ-
ated with oligoclonal expansions of CD8+ T-cells, possibly due 
to an increase in the frequency and magnitude of reactivation of 
CMV in older compared to young adults (19). At the same time, 
CMV IgG titers and viral load increase markedly with age (20). 
These findings suggest that while older adults are able to contain 
CMV, they do so at the cost of investing ever-increasing resources 
to control this single pathogen, with the result that immune 
responses to other challenges may be reduced (21).

Influenza is a single-stranded negative-sense RNA virus that is 
transmitted through the air by coughing and sneezing and infects 
epithelial cells, usually in the nose, throat, and lungs. The virus 
has a major impact on the aging population; ≥90% of annual 
influenza-related deaths occur in individuals ≥65  years of age 
(22). Often, influenza itself is not the cause of death, but rather it 
predisposes older adults to develop secondary bacterial infections 
and exacerbations of preexisting medical conditions (23, 24). 
Furthermore, older adults represent the majority of individuals 
hospitalized with influenza illness (25), which raises concern as 
hospitalization itself is often followed by a decline in the ability 
to perform activities of daily living for individuals in this age 
group (26). Additionally, influenza-related hospitalizations have 
a significant economic and social impact (27). Although antiviral 
drugs against influenza are available, vaccination continues to be 
the most effective method to control infection (28). Prevention of 
influenza illness through vaccination aids in reducing the burden 

on the health-care system and maintaining the quality of life of 
older adults. Hospitalization rates for influenza remain high (25) 
in spite of evidence that vaccination campaigns can reduce such 
events (29). Furthermore, multiple impairments associated with 
CMV and aging appear to lessen the effectiveness of influenza 
vaccination and reduce the ability to respond to influenza infec-
tion to prevent serious complications (30, 31). Recently, it has 
been shown that influenza vaccination provides good protection 
against influenza-related hospitalization, but vaccine effective-
ness declines as frailty (using the Frailty Index) increases in older 
adults (32).

THe ROLe OF ANTiGeN-PReSeNTiNG 
CeLLS (APCs) iN iNFLUeNZA iNFeCTiON 
AND vACCiNATiON

Macrophages and DCs play an important role in directing the 
immune response to the site of infection. These cells act as 
APCs and modulate the innate and adaptive immune response. 
Macrophages initiate the inflammatory responses, while activa-
tion of DCs is required for the induction of adaptive immunity.

There are two major categories of macrophages: M1 mac-
rophages, which are induced by Th1 cytokines (IFN-γ and TNF-α); 
and M2 macrophages, induced by Th2 cytokines (including IL-4 
and IL-13). M1 macrophages are characterized by the production 
of IL-1, IL-12, and TNF-α. In addition, M1 macrophages drive 
Th1 responses. Aging is characterized by an elevation in baseline 
inflammatory factors in blood, contributing to a skewed M1/M2 
macrophage distribution (32, 33). Specifically, monocytes (mac-
rophage precursors) obtained from older adults prior to influenza 
vaccination exhibit impaired function with decreased TNF-α and 
IL-6 secretion, but intact IL-10 responses (34). The dysregulation 
of IL-10 production from monocytes suggests its potential role 
in impaired influenza vaccine responses in older adults (34). 
This dysregulation of TNF-α and IL-6 vs. IL-10 response to 
influenza vaccination has been linked to the downregulation of 
the expression of the costimulatory molecules CD80 and CD86 
by activated monocytes as a predictor of the antibody response 
to influenza vaccination (35). A link between CMV infection and 
dysregulation of DC function may be provided by the finding 
that CMV itself encodes an IL-10 ortholog, which is known to be 
expressed during latent infection of myeloid precursor cells (36). 
CMV-IL-10 inhibits DC function by hindering their maturation 
and functionality (37) and hence may also play a role in poorer 
responses to vaccination. Furthermore, plasmacytoid DCs from 
the elderly are also impaired and produce less TNF-α/IFN-γ in 
response to TLR7 and TLR9 stimulation (38), which has been 
associated with poor antibody response to influenza vaccination 
as well.

THe ROLe OF B-CeLLS iN iNFLUeNZA 
iNFeCTiON AND vACCiNATiON

As noted above, CMV may act as an environmental amplifier 
of immunosenescence resulting in the accumulation of large 
amounts of late-differentiated CMV-specific effector T-cells 
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(39, 40) and possibly contributing to inflammation. CMV sero-
positivity is also associated with intrinsically mediated increased 
levels of inflammatory cytokines in B-cells and diminished B-cell 
function that predicts poor antibody responses to influenza vac-
cination (41).

The B-cell response to vaccination decreases with age (42–44) 
and the compromised effector function of B-cells in the elderly 
results in lower antibody production and poor Ig class switching 
(45). While the intrinsic deficits found in B-cells as a result of 
aging are limited, they are mostly associated with lower levels 
of long-lived plasmablasts (46–48) and memory B-cells (46, 48, 
49). Studies have shown that the age-related decrease in antibody 
response to influenza vaccination is correlated with extrinsic fac-
tors, including impaired T-cell help (39, 40), poor DC function 
(38), and high IL-10 production by monocytes/macrophages (34) 
as discussed above.

Influenza vaccines function by generating a B-cell and follicular 
helper T-cell (TFH) response, which in turn results in the prolifera-
tion of vaccine antigen-specific B-cells (50, 51). It is believed that 
IgA and IgM specific for viral hemagglutinin (HA) protect against 
the establishment of initial infection though neutralization of the 
virus, while IgG antibodies against nucleoprotein (NP) neutralize 
the virus if infection becomes established (52, 53).

B-cell defects associated with aging include reduced activation-
induced cytidine deaminase (AID). AID is an enzyme required 
for class switch recombination as well as somatic hypermutation 
(54) and has been found to correlate with IgG production (55). 
Prior to vaccination, AID mRNA levels and switched memory 
B-cell frequencies in response to CpG stimulation correlate 
with the serum antibody response and are thus predictors of the 
response to both vaccination and infection. In this context, older 
adults who are seropositive for CMV show a reduction in both 
AID and switched memory B-cells relative to CMV seronegatives, 
and a correspondingly diminished antibody response to influenza  
A/H1N1 strains.

Another biomarker of B-cell functionality is intracellular TNF-
α, which correlates with serum TNF-α levels, which are elevated 
in the elderly, and more so in CMV seropositives. TNF-α places 
B-cells in a status of preactivation, which impairs functionality 
(41). Although the exact mechanism involved in reduced B-cell 
function by CMV is not known, it may involve a TNF-α feedback 
loop. Specifically, CMV induces increased production of TNF-α 
in B-cells via NF-κB induction (56). This results in a systemic 
elevation of TNF-α levels and contributes to CMV-associated 
B-cell activation, systemic inflammation, and reduced function 
in these older individuals (41). The important role of TNF-α is 
further illustrated in B-cell cultures in which TNF-α is neutral-
ized, resulting in improved antibody class switching in elderly 
individuals (57).

Ambiguity of the Role of CMv and Aging 
on the Antibody Response to influenza 
vaccination
Some reports indicate that CMV seropositivity may be associated 
with better antibody response to vaccination in younger adults 
(58). This is different in studies involving older adults, where 

CMV seropositivity has been variably found to be associated 
with beneficial (59), negative (41, 58–62), or negligible effects (58, 
63). The overall impact of CMV infection on influenza vaccine 
responsiveness remains controversial, as it is depends on many 
variables. Different studies performed with different seasonal 
vaccines, tested in different populations, at different times, are 
difficult to compare directly. As such, there have been no studies 
that have directly linked CMV seropositivity with increased risk 
of influenza illness in vaccinated older adults.

In addition to lack of consensus on the impact of aging and 
CMV seropositivity on antibody responses to influenza vaccina-
tion, investigating this issue is further complicated by differing 
responses to strains of the virus. Vaccine efficacy in the elderly 
against H3N2 is particularly poor compared to H1N1 or B strains 
(64, 65). One explanation for an apparent lack of responsive-
ness in the elderly may reside in the manner in which antibody 
responses are quantified, which is dependent on the immunologi-
cal history of the individual. Thus, older adults who already have a 
high-antibody titer prior to vaccination may be classified as non-
responders if they do not further increase an already-protective 
titer. More importantly, comparisons of the antibody response to 
influenza vaccination in young and older adults have been con-
founded by the effects of age and exposure history related to prior 
vaccination (66). In addition, these differing observations may be 
explained in the context of original antigenic sin, which supports 
the notion that vaccination re-stimulates immunological memory 
of past exposure to a similar strain, and may explain the relative 
protection of older adults against the pandemic H1N1 (pH1N1) 
strains (67). The theory of vaccine re-stimulation has not been 
explored in the context of CMV, but highlights the importance 
of identifying which subtype of influenza is being studied and 
a consensus as regards to the definition of vaccine “responder.”

Contradictory observations of influenza strain-specific titers 
post-vaccination between CMV-seropositive and -negative 
individuals have also been identified. Specifically, CMV+ subjects 
were found to have higher antibody titer to H1N1 (58, 59, 61), 
while others have observed the opposite (41). Similarly, in some 
studies, no association was observed between CMV status and 
H3N2-directed antibodies (63), while others have reported lower 
H3N2 antibody responses in such subjects (62). Those identify-
ing an improved response to vaccination have hypothesized that 
CMV infection is accompanied by a higher level of a low-grade 
chronic inflammation that in turn provides an ongoing stimula-
tion to the immune system in older (68) and younger adults (58).

It should be noted that studies in this area have used different 
measures of the antibody response to vaccination as a correlate 
of protection. Specifically, some have reported peak antibody 
response, while others measured antibody persistence. Although 
peak antibody titers after vaccination depend mainly on short-
lived plasma B-cells, antibody persistence depends on memory 
B-cells and long-lived plasma cells. As such, antibody persistence 
may be a more meaningful measure of clinical protection. Some 
apparent discrepancies in the literature could derive from such 
different measures.

Other possible reasons for the discrepancies reported in the lit-
erature may be related to confounding factors such as medications, 
as illustrated in a recent study by Reed et al. These investigators 
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identified a poorer antibody response (quantified based on 
antibody persistence) to vaccination in CMV-seropositive older 
adults, but only if they were taking β-adrenergic-blocking drugs 
(69). β-adrenergic blockers, a class of drug commonly used for 
blood pressure control, may also influence immune responses 
(70) and could therefore represent a confounding factor result-
ing in non-consensus of previous studies of antibody responses 
in older adults. However, it should also be noted that the use of 
β-blockers may simply reflect non-specifically generally poorer 
health or could represent an association with other health condi-
tions relating to immunosenescence. The potential impact of drug 
treatment on vaccine response is further illustrated in the case of 
statins and antibody responses to influenza vaccination in older 
adults (71) as well as vaccine efficacy (72). Statins are known to 
influence immune responses via multiple different mechanisms 
(73), indicating a need to investigate the relationship further, 
especially since this class of drug is used by a growing number of 
older adults (74, 75).

Molecular Genetics As a Tool to 
investigate B-Cell Function in the Context 
of Aging and CMv
Sequencing of the immunoglobulin heavy chain has been con-
ducted to study B-cell receptor (BCR) repertories. It was found 
that V (variable), D (diversity), and J (joining) usage is consistent 
between age groups, although mutations in V genes are associ-
ated with CMV seropositivity. Furthermore, mutations in IgM 
and IgG sequences are higher in the elderly, and more so in those 
who are CMV seropositive (76). This suggests that repeated anti-
gen exposure with aging and CMV reactivation induces B-cell 
proliferation and IgG gene mutations.

In a groundbreaking study, de Bourcy et al. used next-genera-
tion sequencing technology to study BCR diversity. They showed 
that while BCR repertoires become more specialized over the 
lifespan, they also demonstrate decreased capacity for plasticity 
or adaptability. Relative to the young, older adults have a smaller 
naïve repertoire and lower intra-lineage diversity, resulting in a 
reduced ability to mount a diverse response to novel antigens 
(77). This suggests that annual updates of the strains of influ-
enza contained in the vaccine are less likely to induce antibody 
responses to new viral variants in older adults.

The association of leukocyte telomere shortening with some 
aspects of aging has been well documented. In a seminal study of 
the correlation between telomere length of B-cells and humoral 
immune responses to influenza vaccination in adults over the 
age of 70, it was shown that those with longer telomeres (6.3 kb) 
had superior antibody responses (based on fold-increase of 
influenza-specific antibody titers) relative to those with shorter 
telomeres (5.6 kb) (17). While the mechanism involved is still not 
well understood, telomere length could be used as a marker for 
immune function and vaccine responsiveness.

THe ROLe OF T-CeLLS iN iNFLUeNZA 
iNFeCTiON AND vACCiNATiON

The antibody response to influenza virus plays a vital role in pro-
tection against influenza infection, but epitope-specific T-cells 

are also critical (78–80). Although assessment of antibody 
responses to influenza vaccines is mainly used as a measure of 
efficacy, studies continue to show that humoral immunity by 
itself does not provide sterilizing immunity against infection in 
older adults, and that T-cell responses are critically important 
when antibody-mediated protection fails (81). Furthermore, 
T-cell responses are cross-reactive within the strains of influenza 
A or influenza B, allowing for broad protection against drifted 
strains of influenza (82).

Decreased output of naïve T-cells resulting from thymic invo-
lution after puberty results in a reduced ability to respond to novel 
antigens (83) and has been linked to poor response to influenza 
vaccination in the elderly (84). Studies have shown that telomere 
length of T-cells specific for CMV are longer on average than 
those specific for influenza and may suggest that CMV continues 
to recruit cells from the naïve T-cell pool over time (85).

Aging is correlated with a loss of naïve CD8+ T-cells, more so 
than naïve CD4+ T-cells. This loss in naïve cells is not associated 
with CMV seropositivity (86). The loss of naïve CD4+ T-cells is 
associated with an increase in effector and effector memory CD4+ 
T-cells and is observed essentially only in CMV-seropositive 
individuals (86). These findings illustrate the distinct, and 
sometimes additive effect of aging and CMV in different T-cell 
populations.

Helper T-Cells
Influenza infection induces HA-specific CD4+ T-helper cells 
(87), resulting in a diverse antibody response (88). Th2 responses 
stimulate antibody production that is driven by the production 
of cytokines, including IL-4, IL-5, IL-10, IL-13, IL-31, and IL-33 
by mast cells and eosinophils, which are responsible for a Th2 
response, thereby leading to the activation of B-cell clones and 
production of influenza-specific IgG1 and IgE (89, 90). The regu-
latory T-cell (Treg) response results in the expression of IL-10 and 
TGF-β, which further hinders a Th1 response (91).

Aging is associated with an increasing acquisition of a Th2 
bias, specifically with an increase in CD4+CD294+ (Th2) cells 
(92). Furthermore, some studies have reported a decline in 
the total number of CD8+ T-cells and increases in T-helper 
cells reflected in a lower Th1:Th2 ratio (92). IL-10 and other 
cytokines produced by Th2 or Treg have been associated 
with reduced cytotoxic T-lymphocyte (CTL) activity in older 
adults (93) and against ex vivo influenza virus challenge (94). 
Although Th2-associated cytokines do not help in the recovery 
from influenza infection (95), these cytokines continue to be 
expressed at high levels at the site of influenza infection and 
may be a factor in inflammation and lung damage associated 
with infection (78).

Role of TFH Cells during Influenza Infection and 
Vaccination in the Elderly
IL-12 production by activated DCs induces naïve CD4+ T-cells 
to differentiate into IL-21-producing TFH cells (96, 97). Elevated 
IL-21 is positively correlated with CMV seropositivity (98) 
as it is believed to be required for the maintenance of latent 
infection (99–101) as well as clearance of acute viral infections 
(102, 103).
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TFH cells are a separate type of helper T-cells that are known to 
promote germinal center formation, B-cell survival, proliferation, 
class switching, plasma cell differentiation, and somatic hyper-
mutation (104–108) and are hence found in germinal centers 
(GC TFH) and in peripheral blood (pTFH). Studies have found a 
direct relationship between the frequency of activated pTFH cells 
following vaccination and influenza vaccine-induced antibody 
responses (109–111). It has also been shown that pTFH cells iso-
lated post-influenza vaccination are better able than other CD4+ 
T-cell subsets to support B-cell differentiation and to stimulate 
influenza-specific antibody secretion (110).

A study of older women found a high frequency of activated 
TFH cells (CD38+HLA-DR+Ki-67+). The presence of activated 
pTFH cells in older women prior to influenza vaccination was 
negatively correlated with antibody titers post-vaccination and 
suggests that activated pTFH cells are less capable of providing help 
to B-cells when faced with new antigens (112).

Cytotoxic T-Lymphocytes
Aging creates specific challenges to effective CTL activity against 
infection: (a) T-cell receptor (TCR) diversity reduction, (b) 
reduced effector function of cells, (c) cell type frequency changes, 
and (d) general inflammation.

Cytomegalovirus elicits CD4+ and CD8+ T-cell responses 
(113, 114), which play an important role in maintaining latency 
of CMV infection (115). The immune response necessary to 
maintain latency has two major consequences: driving T-cells to 
a late-differentiated state associated with immunosenescence (6, 
14, 116) and memory inflation (117). The latter develops from 
chronic antigen exposure as a result of CMV infection (118, 
119), but interestingly Epstein–Barr virus does not have the same 
impact on inflation (120). CMV-specific memory T-cells account 
for 0.1–40% of the total memory population in the periphery 
(113, 114). The high frequency of CMV-specific T-cells develop 
during the first year after infection and either gradually increases 
or remains constant long term (121–123). Over a lifetime, a 
large group of T-cells recognizing CMV epitopes emerges, the 
majority of which may be dysfunctional (124). This contributes 
to the concept of a restricted “immunological space,” whereby the 
T-cell populations consisting of dysfunctional clonally expanded 
and anergic cells are targeted toward a small number of epitopes 
(125). In addition, aging results in a decrease of the TCR rep-
ertoire, which is associated with a poor response to influenza 
vaccination (126–129). Furthermore, the repertoire may become 
oligoclonal due to extended lifespan and homeostatic turnover of 
naïve T-cells (130).

On infection, viral epitopes bind to the major histocompat-
ibility complex (MHC) molecules of APCs, and through the 
interaction with TCRs activate naïve or memory T-cells to 
become effector CTLs (131, 132). The majority of the CD8+ 
T-cell epitopes derived from influenza virus are contained 
within the NP and matrix 1 (M1) proteins. As a result of the 
homology of these internal proteins and highly conserved 
epitopes across the different subtypes (A/H1N1 and A/H3N2), 
the CD8+ T-cell response to influenza is cross-reactive among all 
of the strains of influenza A. Activation of T-cells leads to their 
migration to the infection site where they recognize influenza 

virus-infected cells and eliminate them via lytic activity. While 
CTL killing of influenza-infected cells can be mediated through 
Fas- (132), and TRAIL- (133) associated pathways, the domi-
nant mechanism appears to be perforin-mediated killing (134). 
Recent studies suggest that perforin-mediated killing through 
granzyme B (GrB) apoptotic pathways is the most critical for 
viral clearance (135).

Role of GrB in Protection against Influenza Infection
A correlation between low GrB prior to H3N2 infection, fever, 
and lack of seroconversion is indicative of the association of cell-
mediated immunity and illness severity (136). GrB levels increase in 
response to H3N2 infection independently of serological responses 
(136), with a deficiency in the production of GrB and IFN-γ in 
CD8+ T-cells observed in vaccinated older adults (137, 138).

Granzyme B has been associated with clinical protection 
from influenza (139) and is produced by both CD4+ and  
CD8+ T-cells (140). Late-differentiated T-cells (CD45RA+GrB+ 
Perforin−) particularly CD8+ subsets are abundant (with as many 
as 50% of these cells producing GrB in the resting state) and are 
associated with poor CD8+ T-cell cytolytic activity following 
influenza vaccination (137, 141). Of note, the cytolytic activity of 
CD8+ T-cells dramatically declines by 10 weeks post-vaccination, 
and while this occurs to a lesser degree in CD4+ T-cells, their 
cytolytic potential is relatively minor compared to CD8+ T-cells 
(137). However, this discordant change in CD4+ and CD8+ 
vaccine-specific T-cells suggests that CD4+ CTLs in older adults 
could be targeted to promote cell-mediated immune protection 
via vaccination.

CD4+ T-cells in the lung expressing GrB and perforin have 
cytolytic activity against influenza in mice (142, 143). Using 
influenza M1 peptide stimulation, it has been shown that the 
proportion of subjects mounting a CD4+ T-cell response was 
lower in CMV-seropositive than seronegative individuals (16).

Granzyme B and perforin-expressing CD4+ T-cells also 
produce IFN-γ, suggesting a Th1 lineage (143, 144). Many CD4+ 
T-cells responding to influenza in the lung produce IL-10, largely 
in cells also producing IFN-γ (78, 145). This IL-10 production by 
influenza-specific CD4+ T-cells results in reduced protection (146) 
by suppressing cytokine production in Th17 cells (78, 145), but 
also plays an important role in limiting immunopathology (78).

Cytomegalovirus-seropositive older adults have higher 
levels of GrB in resting T-cells, the majority of which have a late-
differentiated T-cell phenotype (CD45RA+) or are CD28− (147). 
The accumulation of GrB in putatively terminally differentiated 
CD8+ T-cells in the absence of perforin in  vivo (147) suggests 
that GrB may be released into and accumulate in the extracellular 
space, resulting in inflammation and tissue damage (148–150). 
It has also been shown that ex vivo live influenza virus challenge 
results in a lower GrB response in CMV-seropositive compared to 
-seronegative older adults (63), further suggesting an impairment 
of CTL response to influenza mediated by CMV.

Impact of Reduced CD28+ T-Cells in Elderly and CMV 
Seropositivity
CD28 has an important function as a costimulator in the activa-
tion of T-cells and influences their susceptibility to apoptosis 
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(151). It is required for optimal T-cell activation, but its level 
of expression by CD8+ T-cells decreases with age (152, 153). 
This cell phenotype has been associated with a poor response 
to influenza vaccination (39, 40, 154), and it has been sug-
gested that it has some similarities with replicative senescence 
(155). It has also been shown that CMV infection contributes 
to the accumulation of these cells (156, 157). In addition to 
CD8+CD28− cells impacting vaccine response, late-stage dif-
ferentiated CD4+ T-cells, lacking CCR7, CD27, and CD28 and 
re-expressing CD45RA are also found in CMV-seropositive 
subjects and correlated with poor vaccination response (158). 
A low frequency of CD45RA re-expressing late-differentiated 
CD4+ T-cells are found in CMV-seropositive individuals, inde-
pendent of age (159–161), with the majority of these cells being 
CMV specific (158, 160).

CD4:CD8 Ratio As a Biomarker of CTL Function
CD4:CD8 T-cell ratios contribute to immune risk profiles with 
a ratio of less than 1 being predictive of 2-year mortality in 
some studies (162, 163). CMV infection has been found to be 
associated with a CD4:CD8 of <1 (13, 164). These findings are 
consistent with the notion that the clonal expansions of CD8+ 
T-cells observed in the elderly (165–167) are to a large extent 
CMV-specific (124) and associated with mortality (168). Changes 
in the ratio were found to be the result of an increase in CD8+ 
T-cell populations, specifically, CD27−, CD28−, CD56+, and 
CD57+, CD45RA+, and CD45RA+/RO+ cells (13), markers that 
indicate reduced effector functionality and provides support for 
the finding of poor humoral response to influenza vaccination 
in those with a low CD4:CD8 ratio (169). Furthermore, the 
majority of the CMV-specific CD8+ T-cells in the elderly have 
reduced functionality, supported by the finding that the fraction 
of cells producing IFN-γ in response to peptide stimulation in the 
elderly was significantly lower than in the young (124). Elderly 
with a CD4:CD8 ratio <1 had about 10% of total CD8+ T-cells 
specific for a single CMV epitope (170), but in the group with a 
CD4:CD8 ratio >1, the frequency was similar to the middle-aged 
group (124).

ALTeRATiONS TO vACCiNe DeSiGN

In addition to the aging immune system and CMV seropositiv-
ity both potentially hindering the immune response to influ-
enza vaccination, other challenges to effective vaccine design 
are also in play. Challenges faced particularly in influenza 
vaccine development lie in the high level of strain divergence 
from season to season resulting from error-prone replication 
of the influenza virus via RNA-dependent RNA polymerase, 
recombination, and genetic drift (171). While the plasticity of 
the virus is sustained when variability accumulates in the HA 
and neuraminidase (NA) proteins, internal proteins are not as 
capable of maintaining functionality in the face of mutation 
accumulation, resulting in much less variation in the matrix and 
NP (172). The current vaccine strategy is designed to stimulate 
the development of antibodies against the HA and NA proteins, 
resulting in the ongoing need for annual vaccine modification 
to account for viral strain variation, which may be obviated to 

some extent through vaccines designed to also target internal 
proteins.

While antibody titers are the generally accepted standard 
for the testing of influenza vaccination protection, it has been 
suggested that it is a poor measure if used alone to assess pro-
tection in the elderly (173). The limitations of antibody titers 
are apparent when examining the strain-specific differences 
in the elderly. For example, vaccine efficacy against H3N2 in 
the elderly is particularly poor compared to H1N1 or B strains 
(64, 65), while concurrently, others have found higher antibody 
titers against the H3N2 strain post-vaccination in this group 
(174–176).

The focus on humoral immune protection against influenza 
has its limitations, as circulating strains may not match the vaccine 
(177). Current vaccines do not induce sufficient cross-reactive 
CD8+ T-cells to provide protection against non-homologous 
influenza A virus challenge (178), but this would be an advanta-
geous characteristic of future vaccine candidates.

Dosage
Studies comparing dosage of trivalent inactivated influenza virus 
vaccines in older adults have found that people who received 
high dose vaccinations had significantly higher antibody titers 
for all three strains (to varying degrees) than those who received 
standard dose vaccinations (179, 180). High dose vaccine recipi-
ents had a greater frequency of pTFH cells post-vaccination than 
those receiving a standard dose. Specifically, the expression of 
CD278 (also referred to as inducible T-cell costimulator: ICOS) 
on the pTFH cells was elevated (181), suggesting an increase in 
their ability to provide B-cell help. Furthermore, as mentioned 
previously, the frequency of pTFH cells was a predictor of 
seroconversion for all three vaccine strains (181). It has also 
been shown that the longevity of the antibody response is not 
influenced by vaccine dose (182). An assessment of the impact 
of vaccine dose on the cellular immune response has been lim-
ited to analysis of IFN-γ response, which found no significant 
difference (182, 183). However, this important issue requires 
further study.

While the high dose vaccine has been shown to deliver better 
clinical protection in older adults (184), further investigation as 
to the mechanism is required. Furthermore, the impact of vaccine 
dose in more vulnerable older adults, including those who are 
CMV seropositive also requires investigation.

Adjuvants
The elderly might benefit from the increased application of 
adjuvanted vaccines. For example, glucopyranosyl lipid adju-
vant (GLA) is a TLR4 agonist that has been found to be safe 
and well tolerated (185). GLA, when combined with Fluzone, 
a split virus vaccine, showed enhanced antibody response as 
well as a shift to a Th1 cytokine profile in mice (185). In vivo, 
GLA produces a shift toward a Th1 cell-mediated response to 
influenza challenge by reducing IL-10 expression along with an 
increase in GrB activity (186). It has also been shown in vitro 
that GLA can induce the maturation of human DCs with an 
associated release of Th1-inducing cytokine and chemokine 
constellation (187).
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Older adults seropositive for CMV have been found to have 
lower levels of activated DCs than young CMV+ adults, as it is 
believed that the older group has a greater control of infection due 
to higher CMV-specific antibodies. Due to a lower preactivated 
state, the DCs of older adults, regardless of CMV status, were also 
relatively more responsive to TLR4 antagonist (in this case LPS) 
and were able to produce TNF and IL-6 at the same level, and 
same cell frequency as younger adults who were CMV seronega-
tive (188). Thus, the use of a TLR4 agonist in influenza vaccines 
for the CMV-seropositive elderly may be a potential adjuvant to 
improve vaccine efficacy in this group.

vaccine Antigen
Conserved proteins, NP and M1, share high levels of homology 
among influenza strains (189, 190) and contain immunodomi-
nant MHC Class I and II epitopes (191). At the present time, 
influenza vaccines are designed to have specific quantities 
of HA protein, but the quantity of the internal proteins are 
believed to be low and are not quantified as part of vaccine 
formulation quality control (192). Evidence suggests that the 
inclusion of NP and M1 proteins in influenza vaccines would 
develop a Th1 memory and provide more effective protection 
in older adults.

Clinical studies of mRNA-based vaccines demonstrated 
their ability to elicit functional antibodies and T-cell responses 
(193, 194). Unlike previously considered DNA-based vaccines, 
there is no concern regarding genome integration, or the need 
to design nuclear transport mechanisms for mRNA vaccines. 
RNA-based vaccines allow for cell entry, viral protein transla-
tion, and broad immune responses, while also acting as an 
adjuvant (TLR7/8) (195). Two different forms of RNA-based 
vaccines are currently being developed against influenza: 
non-amplifying mRNA (196) and self-amplifying mRNA 
molecules (197, 198). A modified vaccinia virus Ankara-based 
vaccine against influenza has been developed which consists of  
non-replicating RNA encoding both NP and M1 proteins (199). 
This vaccine was found to be safe and able to stimulate T-cell 
responses in older adults similar in magnitude to young adults 
(200). Amplifying mRNA (SAM1 technology) is based on non-
viral delivery of antigen-encoding RNA by modified alphavirus 
single-stranded RNA, which allows for viral RNA replication 
and greater viral protein translation (193, 194, 197). In a com-
parison of replicating and non-replicating vaccines, it was found 
that self-replicating vaccines elicit significantly stronger cellular 
and humoral immune responses, which was suggested to be 
the result of greater antigen presentation (201). These findings 
suggest that self-replicating influenza RNA vaccines may be 
used to overcome the effects of immune senescence and CMV 
seropositivity.

vaccination Schedule
A study mapping the prevalence of influenza-specific antibodies 
in children found that by the age of 6, all children had serocon-
verted and thus had immunological memory for at least one 
influenza virus strain (202). Over time, this memory is boosted 

and diversified by subsequent infections with drifted influenza 
virus strains. In turn, this memory response (both humoral and 
cellular) can act to protect against infection with similar stain 
variants, referred to as cross-protection. Cross-protection was 
shown in the pH1N1 virus identified during the 2009–2010 and 
2013–2014 influenza outbreaks which resulted in high rates of 
morbidity and mortality. Analysis of the CD8+ T-cells specific 
for the 2009 pH1N1 virus identified epitopes shared with the 
1918 pH1N1 strain, as well as stains circulating prior to 1945 
(203). These findings corroborate the observation that the sever-
ity of the influenza illness in the over-65 age group infected with 
pH1N1 was considerably lower than other influenza seasons 
(204), suggesting cross-protection. Furthermore, it was found 
that the majority of severe cases of pH1N1 infection occurred 
in young adults (205). This has led to suggestions that vaccines 
may only be effective due to their ability to act as a booster 
to memory CD8+ T-cells remaining from previous infections, 
rather than creating a memory response to new targets (137). 
Furthermore, evidence suggests that T-cells generated in youth 
can remain protective over decades (206, 207), while those 
derived later in life are severely impaired (208, 209). Thus, it 
could be postulated that the most effective way to ensure protec-
tion via vaccination in older adults would be to design a vaccine 
strategy targeted at youth.

Vaccine effectiveness against influenza declines with time 
after vaccination over the winter season and is most evident 
in older adults, with efficacy lasting 140  days for H3N2 and 
200 days for influenza B (210). Interestingly, vaccine effective-
ness appeared to be maintained for over 200 days for subtype 
H1N1 (210). Influenza vaccines are only administered once a 
year but the impact of a double dose or booster vaccines is 
being studied to determine whether efficacy and level of pro-
tection can be improved. At present, a clinical trial of vaccines 
administered bi-yearly in older adults is underway (http://
ClinicalTrials.gov: NCT02655874). The benefit of two-dose 
influenza vaccines has been shown under somewhat different 
circumstances in studies of solid organ transplant recipients 
where a second influenza vaccine dose after 5 weeks resulted in 
higher rates of seroconversion and seroprotection (defined as 
titer ≥1:40) (211). Frail older adults who were non-responders 
to an initial dose of influenza vaccine showed a decline in 
antibody titers to the A/H3N2 strain following a booster 
dose of influenza vaccine and derived no clinical benefit from 
this booster strategy (212). These results are consistent with 
our earlier studies showing a significant IL-10 response to a 
booster dose vaccination and a decline in the antibody and 
GrB response to influenza challenge following vaccination, 
compared to those older adults who received a single dose of 
influenza vaccine (213). Studies of H5N1 have shown that a 
two-dose approach using heterosubtypic H5 antigen results in 
a greater magnitude of T-cell cytokine response with hetero-
subtypic protection, but this does not seem to be the case in 
older adults (214). As such, the impact of a two-dose influenza 
vaccine is not yet clear and requires further investigation to 
determine effectiveness.
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FiGURe 1 | Potential mechanisms by which age and cytomegalovirus (CMV) may cause changes in human immunity. (A) Age and CMV can act in unison to impair 
aspects of the immune system: lower numbers of naïve T-cells, decrease in T-cell receptor (TCR) repertoire, heightened CD4:CD8 ratio, clonal expansion, increased 
levels of basal granzyme B (GrB) in resting T-cells and decrease in CD8+CD28+ cells. (B) There are several potential mechanisms by which age and CMV may cause 
changes in human immunity. Influenza infection stimulates Th1/Th2 although impaired in older adults due to diminished antigen-presenting cell function in the elderly. 
Th1 response with IFN-γ activating memory cytotoxic T-lymphocyte (CTL) which clears virus from the lungs. Age-related changes drive a Th2/regulatory T-cell (Treg) 
response to infection, and IL-10 production suppresses the CTL response. CMV infection further impairs the response to influenza infection by contributing to 
age-related impairments and by other mechanisms.

Reducing the impact of 
immunosenescence through  
Anti-CMv Strategies
One possible method to improve influenza vaccine efficacy might 
be an anti-CMV strategy via vaccination or treatment. While the 
majority of CMV treatment strategies have been developed for 
the prevention of congenital CMV infection or for the immuno-
compromised, there is potential for its application in the wider 
population.

The challenge in CMV vaccine design lays in the extensive 
genetic diversity of CMV strains due to recombination (215, 
216). Several multi-component subunit (217), recombinant live-
attenuated (218), and DNA (219) vaccine candidates aimed at 
achieving broad cross-neutralizing humoral and cellular immune 
responses are currently under investigation. One clear caveat 
for the CMV vaccine strategy to be effective is the need for its 
administration at a young age, and the ability for the vaccine to 
impart long-lasting immunity. Drug treatments may be a more 
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TABLe 1 | Summary of the impact of cytomegalovirus (CMV) in the elderly and 
resulting influence on the response to influenza infection and vaccination.

impact of 
CMv

impact on immune 
system

impact on influenza 
infection/vaccination

Reference

CMV-
encoded 
IL-10 
ortholog

Inhibits dendritic cell 
function by hindering 
maturation and 
functionality

Potentially poor antigen-
presenting cell capacity 
during infection or response 
to vaccination

(37)

Elevated 
IL-21

Greater frequency of 
activated pTFH

Associated with improved 
antibody response to 
influenza vaccination

(109–112)

Reduction in 
activation-
induced 
cytidine 
deaminase

Impaired class 
switch recombination 
and somatic 
hypermutation

Diminished antibody 
response to influenza 
vaccination

(54, 55)

Increased 
TNF-α in 
B-cells

Causes B-cell 
activation, systemic 
inflammation, and 
reduced function

Poor antibody class 
switching

(41, 56, 57)

Lower GrB 
response

Potential impairment of 
cytotoxic T-lymphocyte 
response to influenza 
infection

(63)

Loss of naïve 
CD4+ and 
CD8+ T-cells

Associated with an 
increase in effector 
and effector memory 
CD4+ and CD8+ 
T-cells

Potentially reducing 
the ability to develop a 
response to new virus 
antigens

(86)

Elevated 
number of 
CD8+CD28− 
and 
CD4+CD28− 
cells

Reduced ability for 
cell activation

Associated with poor 
response to vaccination

(156–160)
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practical approach in the short-term including those with anti-
CMV activity in vitro currently being tested in clinical trials: a 
protein kinase inhibitor with specific activity against CMV (220); 
a CMV terminase inhibitor (221); and a broad spectrum antiviral 
agent (220).

CONCLUSiON

Aging, along with CMV seropositivity, impacts the immune 
response to influenza infection and vaccination as a result of 
many interacting mechanisms (Table  1; Figure  1). With the 
increased risk of influenza-associated morbidity and mortality in 
the over-65 population, it is critical to take these impairments into 
consideration when developing the next generation of influenza 
vaccines.
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