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Abstract

Animal mitochondrial DNA (mtDNA) is commonly described as a small, circular molecule that is conserved in size, gene content, and

organization. Data collected in the last decade have challenged this view by revealing considerable diversity in animal mitochondrial

genome organization. Much of this diversity has been found in nonbilaterian animals (phyla Cnidaria, Ctenophora, Placozoa, and

Porifera), which, from a phylogenetic perspective, form the main branches of the animal tree along with Bilateria. Within these

groups, mt-genomes are characterized by varying numbers of both linear and circular chromosomes, extra genes (e.g. atp9, polB,

tatC), large variation in the number of encoded mitochondrial transfer RNAs (tRNAs) (0–25), at least seven different genetic codes,

presence/absence of introns, tRNA and mRNA editing, fragmented ribosomal RNA genes, translational frameshifting, highly variable

substitution rates,anda largerangeofgenomesizes.Thisnewlydiscovereddiversityallowsabetterunderstandingof theevolutionary

plasticity and conservation of animal mtDNA and provides insights into the molecular and evolutionary mechanisms shaping mito-

chondrial genomes.
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Introduction

Mitochondria are double membrane-bound organelles found

in most eukaryotic cells. Commonly described as cellular

“power plants” for their role in the generation of ATP by

oxidative phosphorylation, mitochondria perform a variety of

additional cellular functions, such as biosynthesis of amino

acids and steroids, b-oxidation of fatty acids, FeS metabolism,

and initiation of apoptosis (Mcbride et al. 2006; Pagliarini and

Rutter 2013; Chandel 2014; Birsoy et al. 2015). However,

oxidative phosphorylation appears to be the only function

that requires the presence of a mitochondrial genome (mt-

genome) (Race et al. 1999), which always codes for some

protein subunits of the electron transport chain (Feagin

1992). In addition, nearly all mt-genomes encode ribosomal

RNA (rRNA) components of mitochondrial ribosomes, most

encode at least some mitochondrial transfer RNA (mt-tRNA),

while some encode the ribosomal subunit of RNaseP and pro-

teins involved in mitochondrial transcription, translation, pro-

tein import and maturation (Gray et al. 2004).

Extensive biochemical and phylogenetic studies have dem-

onstrated that all mitochondria originated from a single

a-proteobacterial ancestor (Gray et al. 1999) from within

the order Rickettsiales (Wang and Wu 2015). Given that the

modern representatives of Rickettsiales have small circular ge-

nomes (Schulz et al. 2015), such a genome was likely present

in the bacterial ancestor of mitochondria. During eukaryotic

evolution, this ancestral genome lost most of its genes [retain-

ing as few as 4 (Flegontov et al. 2015) or perhaps even 1

(Petersen et al. 2014) and at most 100 (Burger et al. 2013)

genes] and gave rise to a remarkable diversity of architectures,

including genomes with varying numbers of linear and circular

chromosomes ranging in size from only a few kilobases (kb) to

several megabases (Mb) (Gray et al. 2004; Gualberto et al.

2014; Smith and Keeling 2015). In a few lineages, mitochon-

drial DNA (mtDNA) has been lost altogether (Muller et al.

2012), and in one case mitochondria themselves have been

completely lost (Karnkowska et al. 2016). A sample of mtDNA

diversity can be seen among close unicellular relatives of an-

imals (defined here as protists that are more closely related to

animals than fungi), where both linear and multipartite ge-

nomes have evolved (Lavrov and Lang 2014). In contrast, pre-

vious reviews of animal mtDNA have emphasized its
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remarkable uniformity (Wolstenholme 1992a; Boore 1999;

Saccone et al. 2002) but have been focused primarily on bila-

terian animals.

Progress in molecular phylogenetics has brought renewed

attention to four major groups of nonbilaterian animals

(sponges, placozoans, cnidarians, and ctenophores), which

have been traditionally categorized as phyla, but which,

along with bilaterians, constitute the main branches of the

animal tree from a phylogenetic perspective (Ax 1996)

(fig. 1). Each of these lineages encompasses hundreds of mil-

lions of years of independent evolution (Dos Reis et al. 2015),

and their extant representatives demonstrate distinct possibil-

ities in animal mtDNA evolution. Although some aspects of

mtDNA diversity in nonbilaterian animals have been reviewed

recently by Breton et al. (2014), Bernt et al. (2013), and Osigus

et al. (2013), these studies were published before data from all

major nonbilaterian lineages became available. In this review,

we put conventional views of animal mtDNA in perspective by

providing a comprehensive summary of mt-genome organi-

zation in nonbilaterian animals.

Typical Animal Mitochondrial DNA:
The Birth of a Myth

The first determined animal mtDNA sequence came from

human (Anderson et al. 1981) and that from Drosophila fol-

lowed soon after (Clary and Wolstenholme 1984). Though the

gene order was different between mammalian and

Drosophila mtDNA, resulting in distinct patterns of transcrip-

tion (Berthier et al. 1986), most of the genetic and genomic

features were remarkably similar. Both mt-genomes were

small (~16 kb), circular-mapping molecules, containing the

same set of 37 genes (13 protein genes encoding subunits

of complexes I, III, IV, and V of the oxidative phosphorylation
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FIG. 1.—Mitochondrial genomes in Metazoa. Consensus view of animal relationships with mapped changes in mt-genome architecture and gene

content. Diagonally split boxes indicate changes that occur only in some representatives of the group. Black bars to the right indicate numbers of complete

mtDNA sequences in the NCBI RefSeq database as of April 9, 2016 (for data on nuclear genomes, see [Dunn and Ryan 2015]). Gray bars indicate estimated

numbers of described species and were obtained from the Global Invertebrate Genomics Alliance (GIGA Community of Scientists 2014). Only the taxa that

are mentioned in the text are included. See associated figures for a more detailed depiction of each of these changes. Branch lengths were chosen for

illustration purposes only.
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(OXPHOS) system, 2 rRNA genes, and 22 tRNA genes) with a

high degree of synteny. Both genomes encompassed a single

large noncoding region, but otherwise contained very few

intergenic nucleotides. A modified genetic code was inferred

in both species, with AUA and UGA codons specifying methi-

onine and tryptophan, respectively, and AGR codons specify-

ing either serine (in Drosophila) or termination (in human).

Other unusual genetic and genomic features of bilaterian

mtDNA included unorthodox start codons, incomplete stop

codons, diminished genes for tRNAs and rRNAs [including a

characteristic trnS(gcu) that codes for a tRNA with a DHU-arm

replacement loop], the absence of introns, and a high rate of

sequence evolution (Clary and Wolstenholme 1984;

Wolstenholme 1992a).

Given the more than one billion years of combined evolu-

tion that separates humans and Drosophila (Dos Reis et al.

2015) and their radically different external morphology, the

similarity in their mtDNA was astounding. In addition, earlier

electron microscopy studies had shown that the sizes of

mtDNA in a variety of animal species were similar (Borst and

Kroon 1969). Thus, the notion of “typical animal mtDNA”

was born, with the assertion that “all metazoa, from

Platyhelminthes to mammals possess a mt-genome that con-

sists of a single circular molecule ranging in size from 14.5 to

19.5 kb” and that both gene content and, to some extent,

gene order were conserved in all animal mt-genomes (Clary

and Wolstenholme 1985). The notion of a conserved, nearly

“frozen” (Saccone et al. 2002) genome was reinforced by the

observation that most of the mutations in the human mt-

genome are associated with disease (Linnane et al. 1989;

Wallace 1992).

To date, complete mt-genome sequences from over 6,000

animals have been made available, of which about 97% are

from bilaterian animals (http://www.ncbi.nlm.nih.gov/

genome/organelle/, last accessed April 9, 2016). Although

the majority of bilaterian mt-genomes do fit the description

presented above, several noticeable exceptions have been

found. First, unusual mtDNA organizations have been discov-

ered in several lineages, with multipartite mt-genomes found

in the mesozoan genus Dicyema (Watanabe et al. 1999) (>3

circles), the rotifer genus Brachionus (Suga et al. 2008; Hwang

et al. 2014) (2 circles), the nematode genus Globodera

(Armstrong et al. 2000; Gibson et al. 2007) (6 circles), the

booklice genus Liposcelis (2 circles) (Wei et al. 2012), the

thrips species complex Scirtothrips dorsalis (Dickey et al.

2015) (2 circles), and several independent cases in parasitic

lice (up to 20 minichromosomes) (Cameron et al. 2011;

Jiang et al. 2013; Dong et al. 2014) (fig. 2). In addition, a

transient linear genome has been reported in the isopod

Armadillidium vulgare (Marcadé et al. 2007). Second, the

size of bilaterian mtDNA was shown to be more variable

than originally thought, ranging from just over 11 kb in chae-

tognaths (Helfenbein et al. 2004; Papillon et al. 2004; Faure

and Casanova 2006; Miyamoto et al. 2010) to over 50 kb in
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FIG. 2.—Evolution of linear and multipartite mitochondrial DNA in

animals. Gray arrows indicate independent reorganization events in the

common ancestor of the indicated group. Blue segments indicate regions

of homology shared across chromosomes. Numbers in parentheses indi-

cate the range of chromosome numbers (greater than 1) found in the

group. Top: Multipartite mtDNA in Bilateria. Not shown: An unknown

number of mini-circle chromosomes in Dicyema (Watanabe et al. 1999).

Middle: Linear and multipartite mtDNA in Cnidaria. The red segment de-

notes the presence of a polB coding sequence in some Medusozoa.

Arrowheads at the ends of linear chromosomes signify inverted terminal

repeat sequences. Bottom: Multipartite linear mtDNA in Porifera. Faded

chromosomes and ellipses indicate the inferred presence of an uncertain

number of additional chromosomes. Blue and green segments in

Leucosolenia and Petrobiona show distinct end sequences shared across

chromosomes, but which are not homologous between the two genera.

Genomes are drawn to scale with respect to the 10kb scale bar in the

upper right part of each panel.
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the ark shell Scapharca broughtonii (Liu et al. 2013). Third,

several changes in gene content have been reported, includ-

ing losses of atp8 in most nematodes (Okimoto et al. 1992;

Sultana et al. 2013; but see Lavrov and Brown 2001) and

flatworms (Le et al. 2000; Von Nickisch-Rosenegk et al.

2001; Sola et al. 2015), the loss of atp6, atp8 and most

tRNA genes in Chaetognatha (Helfenbein et al. 2004;

Papillon et al. 2004; but see Barthelemy and Seligmann

2016), and the gain of a putative novel gene in bivalve mol-

luscs with doubly uniparental inheritance (Breton et al. 2011;

Zouros 2013). Furthermore, it has been proposed that addi-

tional proteins may be encoded in most if not all animal mt-

genomes as (alternative) open-reading frames (ORFs) within

standard mitochondrial genes (Guo et al. 2003; Faure et al.

2011; Capt et al. 2015). Fourth, additional genetic codes have

been inferred in several groups as shown in figure 3

(Watanabe and Yokobori 2011; Abascal et al. 2012). Fifth,

gene order has been found to be much more fluid in some

groups (e.g. most tunicates) (Singh et al. 2009; Gissi et al.

2010; Rubinstein et al. 2013) than others. Finally, a highly

unusual system was found in bivalve molluscs, which inherit

not one but two mt-genomes: one transmitted maternally to

all offspring and the second exclusively from father to sons

(Zouros et al. 1992; reviewed by Doucet-Beaupré et al. 2010).

With the notable exceptions of those in Chaetognatha and

Tunicata, most of the unusual examples of bilaterian mt-ge-

nomes have limited taxonomic distribution and have been

commonly interpreted as somewhat curious exceptions to

the otherwise valid description of “typical animal mtDNA”

that has been propagated widely throughout the literature.

However, the absence in Cnidaria of almost all of the genetic

novelties usually associated with animal mtDNA had already

been described by the early 1990s (Wolstenholme 1992b;

Beagley et al. 1995). Data from other nonbilaterian phyla

(Porifera, Ctenophora, and Placozoa) reinforce the notion

that bilaterian mtDNA is not representative of all animals.

Classification and Phylogeny of
Nonbilaterian Animals

Nonbilaterian animals display less morphological and species

diversity than bilaterian animals and have been traditionally

subdivided into four phyla: Porifera, Cnidaria, Ctenophora,

and Placozoa, with about 8,500, 11,000, 150, and 1 de-

scribed species, respectively (Zhang 2011; WoRMS Editorial

Board 2015). In addition, Myxozoa, a large (~1,300 species)

group of oligo-cellular parasites of fish and annelids with pre-

viously unknown phylogenetic affinity, is now placed inside

Cnidaria (Nesnidal et al. 2013; Feng et al. 2014; Foox and

Siddall 2015; Takeuchi et al. 2015). The relationships among

nonbilaterian phyla and bilaterian animals remain contentious

(Pisani et al. 2015; Whelan et al. 2015), but are largely irrele-

vant to the present study. Thus, for the purpose of this review

we depict them as a soft polytomy (fig. 1).

Cnidaria. Cnidarians are subdivided into two major line-

ages: Anthozoa (cnidarians with only a polypoid body form)

and Medusozoa (cnidarians with a medusa stage in their life

cycle) (Daly et al. 2007; Zapata et al. 2015), but should now

also include Myxozoa. Anthozoa is subdivided into

Hexacorallia (e.g. sea anemones, hard corals), Octocorallia

(soft corals), and Ceriantharia (tube anemones) (Stampar

et al. 2014). Within Medusozoa four major clades are recog-

nized: Scyphozoa (jellyfishes), Staurozoa (stalked jellyfishes),

Cubozoa (box jellyfishes), and Hydrozoa (hydroids, fire

corals, freshwater jellyfishes, siphonophores, etc.) (Collins

2002). Finally, Myxozoa are separated into two classes:

Malacosporea and Myxosporea, with the latter containing

the majority of species (Fiala et al. 2015).

Ctenophora. Traditionally, ctenophores have been subdi-

vided into two classes based on the presence/absence of

their feeding tentacles: Tentaculata (with tentacles) and

Nuda (without). Within these classes, 9 orders, 27 families,

and about 150 species are currently recognized (Mills 2014).

However, the monophyly of both classes and most cteno-

phore orders is not supported by molecular data and many

intraorder relationships remain unresolved (Podar et al. 2001;

Moroz et al. 2014; Simion et al. 2015).

Placozoa. Only one placozoan species has been technically

described (Schulze, 1883). Nevertheless, molecular studies in-

dicate substantial hidden diversity within this phylum (Eitel

et al. 2013). In particular, five substantially different mt-ge-

nomes have been published from this phylum (Signorovitch

et al. 2007; Miyazawa et al. 2012).

Porifera. Sponges are divided into four major groups (clas-

ses): Calcarea (calcareous sponges), Demospongiae (demos-

ponges), Hexactinellida (glass sponges), and

Homoscleromorpha (homoscleromorphs) (Gazave et al.

2011). The consensus view on their relationships places

demosponges and glass sponges in one group, and homo-

scleromorphs and calcareous sponges in another (reviewed in

Wörheide et al. 2012). Three main lineages are recognized in

demosponges: Verongimorpha, Keratosa, and

Heteroscleromorpha (Morrow and Cardenas 2015); while cal-

careous sponges are subdivided into Calcinea and Calcaronea

(Manuel 2006; Voigt et al. 2012); glass sponges into

Hexasterophora and Amphidiscophora (Dohrmann et al.

2012); and homoscleromorphs into Plakinidae and

Oscarellidae (Gazave et al. 2010).

Mitochondrial Genome Architecture in
Nonbilaterian Animals

The mt-genomes of most sponges (Wang and Lavrov 2008;

Gazave et al. 2010; Haen et al. 2014), anthozoan cnidarians

(Brockman and Mcfadden 2012; Figueroa and Baco 2015),

ctenophores (Pett et al. 2011; Kohn et al. 2012), and placozo-

ans (Signorovitch et al. 2007) are mapped as monomeric and

circular molecules. This organization is also found in
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choanoflagellates, the closest outgroup to animals, as well as

most bilaterian animals and is therefore inferred to be ances-

tral to Metazoa. However, multipartite and/or linear genomes

have evolved in several nonbilaterian lineages, which we will

review in more detail below.

Linear Mitochondrial Genomes

Linear mtDNA is found in two major lineages of nonbilaterian

animals: Medusozoan cnidarians and calcareous sponges

(fig. 2). The occurrence of linear mtDNA in Medusozoa was

first inferred based on gel electrophoresis studies (Warrior and

Gall 1985; Bridge et al. 1992; Ender and Schierwater 2003).

Subsequently, mt-genome sequences were determined for a

variety of medusozoan species revealing two specific features

associated with linear mtDNA organization in this group: The

presence of identical sequences in inverted orientation at the

ends of the chromosome(s) (terminal inverted repeats or TIR)

and the existence of two additional ORFs (Shao et al. 2006;

Kayal and Lavrov 2008; Voigt et al. 2008; Kayal et al. 2012,

2015; Smith et al. 2012) (fig. 2). One of the ORFs shows sig-

nificant sequence similarity to B-type DNA polymerase (polB),

the second is inferred to code for a DNA-binding protein (Shao

et al. 2006; Kayal et al. 2012). TIRs are present in all medu-

sozoan mt-genomes and usually include a partial copy of the

cytochrome oxidase I gene (cox1). The two ORFs are found in

cubozoan, schyphozoan, staurozoan, and some hydrozoan

mt-genomes but have been lost in hydroidolinan hydrozoans,

which instead have longer TIRs that include duplicated cox1 at

each end of their mitochondrial chromosome(s) (Kayal et al.

2012, 2015).

The presence of TIRs and a polB homologue in medu-

sozoan mtDNA suggests that their unusual architecture orig-

inated through incorporation of a linear plasmid into the

ancestral circular genome, while the finding that all medu-

sozoan polB sequences form a clade indicates a single ori-

gin of linear architecture in this group (Kayal et al. 2012).

Linear organellar plasmids with identical but inverted se-

quences at their termini (known as invertrons: Sakaguchi

1990) are common in organelles of plants and fungi

(Hausner 2012) and have been implicated in the evolution

of a linear genome organization in some fungi (e.g. Fricova

et al. 2010). Interestingly, replication of these plasmids is of-

ten initiated from a protein bound to the 50 end of DNA

(Klassen and Meinhardt 2007). It has been suggested that

the same mode of initiation of replication is retained in mt-

genomes that have incorporated such plasmids (Fricova et al.

2010).

All calcareous sponges sampled to date also have multipar-

tite linear mt-genomes (fig. 2), but appear to utilize a different

mechanism for the maintenance and repair of their mtDNA, as

they do not contain TIRs and do not appear to encode any

DNA polymerase-related proteins. The mtDNA of Clathrina

clathrus, a representative of the subclass Calcinea, consists

of six linear chromosomes with a peculiar organization,

where about a half of each chromosome is noncoding with

hairpin-forming repeat sequences at one end, and with a

noncoding region at the other end that is similar across chro-

mosomes (Lavrov et al. 2013). In Leucosolenia complicata and

Petrobiona massiliana, two representatives of the subclass

Calcaronea, most mitochondrial genes are located on individ-

ual chromosomes that have similar but not identical se-

quences at their ends (Lavrov et al. 2016). The mt-genome

organization of Sycon ciliatum, another representative of the

subclass Calcaronea, appears to be more complex and awaits

characterization (Lavrov et al. 2016).
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FIG. 3.—Changes in the animal mitochondrial genetic code. Inferred
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arrows. Consecutive changes are shown by a sequence of arrows. Amino-

acid identities are designated by the IUPAC three-letter code. A crossed

out circle indicates a codon that is no longer used.
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Multipartite Mitochondrial Genomes

As is the case with linear genomes, a multipartite organization

has evolved several times in animal mtDNA, with both circular

(Armstrong et al. 2000; Gibson et al. 2007; Suga et al. 2008;

Wei et al. 2012; Jiang et al. 2013) and linear (Voigt et al. 2008;

Kayal et al. 2012; Smith et al. 2012; Lavrov et al. 2013, 2016)

chromosome architectures (fig. 2). Among nonbilaterian ani-

mals, multipartite genomes have evolved at least three times:

Two times in Medusozoa (Voigt et al. 2008; Kayal et al. 2012;

Smith et al. 2012) and at least one other time in calcareous

sponges (Lavrov et al. 2013, 2016). The first report of a multi-

chromosomal mt-genome in animals came from the studies of

the hydrozoan cnidarians Hydra attenuata and H. littoralis, in

which mtDNA consists of two linear chromosomes, each

about 8 kb in size (Warrior and Gall 1985; see also Voigt

et al. 2008; Pan et al. 2013). mtDNA from the winged box

jellyfish Alatina moseri (Smith et al. 2012) and other represen-

tatives of class Cubozoa (Kayal et al. 2012) consists of eight

linear chromosomes, 2.9–4.6 kb in size (fig. 2).

A remarkable multipartite organization has evolved in cal-

caronean sponges (fig. 2). In both L. complicata and P. massi-

liana, all identified coding sequences are located on individual

chromosomes. Furthermore, 147 additional mitochondrial

chromosomes were identified in P. massiliana based on se-

quence conservation in terminal regions. Some of these chro-

mosomes appear to contain tRNA and rRNA genes, but it is

not yet clear whether these sequences are functional.

Similarly, at least 50 additional mitochondrial chromosomes

were identified in L. complicata (Lavrov et al. 2016).

Size Variation and Distribution of
Noncoding Nucleotides among
Intergenic Regions

The mtDNA of nonbilaterian animals displays at least a 7-fold

variation in size (fig. 4). The smallest mt-genomes are found

in ctenophores, with those of Mnemiopsis leidyi and

Pleurobrachia bachei measuring 10,326 and 11,016 bp, re-

spectively (Pett et al. 2011; Kohn et al. 2012). The small size

of these genomes is due to their reduced gene content, highly

abbreviated rRNA structures, and extreme scarcity of inter-

genic nucleotides. On the other end of the spectrum, the

mtDNA of Trichoplax adhaerens is 43,079 bp in size

(Dellaporta et al. 2006), with several large introns containing

intron-associated ORFs. However, the current record in

mt-genome size belongs to the multipartite genomes of cal-

careous sponges, with 6 mitochondrial chromosomes in

C. clathrus having a total size of about 51 kb (Lavrov et al.

2013), and 150+ mitochondrial chromosomes in P. massiliana

measuring above 77 kb (the exact sizes of these genomes are

unknown because of difficulties associated with sequencing

the ends of linear chromosomes and/or identifying all chro-

mosomes) (Lavrov et al. 2016).

Most of the size variation among animal mt-genomes is

due to differences in the number of noncoding nucleotides,

which are also distributed unevenly among intergenic regions.

Bilaterian mtDNA usually contains a single large noncoding

segment, also known as the “control” region, or as the

“D-loop” region in mammals (Sbisa et al. 1997). In a few

species, the control region was shown to contain signals for

initiation and termination of replication and transcription

(Goddard and Wolstenholme 1980; Clayton 1982). Among

nonbilaterian animals, a single large noncoding region is pre-

sent only in the mtDNA of glass sponges and perhaps cteno-

phores. In other nonbilaterian taxa, noncoding nucleotides are

distributed more evenly among the intergenic regions. The

absence of an identifiable control region in many nonbilater-

ians suggests that their mechanisms of replication and tran-

scription are different from those of bilaterian animals.

Furthermore, the “tRNA punctuation” model described in

some bilaterian animals for processing of polycistronic

mtDNA transcripts (Ojala et al. 1981) is not applicable

to many nonbilaterian animals because of the presence of

intergenic nucleotides and/or the scarcity or the absence of

tRNA genes (see “Loss and gain of mitochondrial tRNA

genes”).

More Variation in Protein-Coding Gene
Content of Nonbilaterian mtDNA

Mitochondrial protein-coding gene content shows more var-

iation in nonbilaterian compared with bilaterian animals

(fig. 5). First, several additional protein-coding genes have

been identified. These include atp9 for subunit 9 (subunit c)

of mitochondrial F0-ATP synthase in all four classes of sponges

(Lavrov et al. 2005, 2013; Wang and Lavrov 2008; Haen et al.

2014), tatC for the twin-arginine translocase subunit C in the

homoscleromorph sponge family Oscarellidae (Wang and

Lavrov 2007; Pett and Lavrov 2013), mutS for a putative mis-

match repair protein in Octocorallia (Pont-Kingdon et al. 1995;

Bilewitch and Degnan 2011), polB for the DNA dependent

DNA polymerase in Medusozoa (Shao et al. 2006; Kayal

et al. 2012) and one placozoan (Signorovitch et al. 2007),

and intron-associated homing endonucleases, reverse tran-

scriptases, and maturases in several lineages with mitochon-

drial introns. Among the genes listed above, both atp9 and

tatC are also present in the mt-genome of the choanoflagel-

late Monosiga brevicollis (Burger et al. 2003) suggesting that

these genes were inherited vertically in sponges, and lost in

other animals (Wang and Lavrov 2007; Pett and Lavrov 2013).

However, phylogenetic analysis does not rule out the possibil-

ity that tatC was acquired in Oscarellidae by horizontal transfer

from the mtDNA of another eukaryote (Pett and Lavrov 2013).

In contrast, cnidarian mutS and polB were likely acquired by

horizontal gene transfer from prokaryotes or viruses (Bilewitch

and Degnan 2011).
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Second, several protein-coding genes have been lost from

some nonbilaterian mt-genomes. In two ctenophores, atp6

has been transferred to the nucleus, while atp8 was not iden-

tified in either the mitochondrial or the nuclear genomes (Pett

et al. 2011; Kohn et al. 2012). Similarly, atp8 appears to be

lost from the mt-genomes of placozoans (Signorovitch et al.

2007; Burger et al. 2009) and calcareous sponges (Lavrov

et al. 2013, 2016), while atp9 has been transferred to the

nucleus in several demosponges (Erpenbeck et al. 2007;

Lavrov, unpublished data). It has been thought that atp8 is

also absent from mitochondrial genomes of glass sponges

(Haen et al. 2007; Rosengarten et al. 2008; Haen et al.

2014). However, a plausible candidate has been recently

found in Oopsacas minuta (Jourda et al. 2015) with homolo-

gous sequences identifiable in other species (unpublished

data).

The most unusual mitochondrial gene content has been

reported for the myxozoan genus Kudoa, where only eight

protein-coding genes and some unidentified ORFs were found

(Takeuchi et al. 2015). However, because of the extremely

high rate of sequence evolution in myxozoan mtDNA, it is

probable that some unidentified ORFs represent standard mi-

tochondrial genes that have evolved beyond recognition

(fig. 4, shaded red bar). This inference is supported by the

observation that only five out of the eight identified genes

have retained significant sequence similarity (E<0.001) with

their homologues outside of Myxozoa.

Loss and Gain of Mitochondrial tRNA
Genes

Besides variation in protein-coding gene content, animal

mt-genomes encode a variable number of transfer RNAs

(mt-tRNAs) (fig. 5). Most demosponge and placozoan mt-

genomes contain 24–25 tRNA genes, including trnI(CAU) and

trnR(UCU). The latter two genes were lost early in the evolution

of bilaterian animals in conjunction with modifications to the

mitochondrial genetic code, but their products are needed for

mitochondrial protein synthesis in many nonbilaterian animals,

which utilize a minimally modified genetic code (see “Changes

in the genetic code”). In addition, a second trnM(CAU) is pre-

sent in some sponge mt-genomes, apparently coding for a

separate elongator tRNAMet
CAU.

Representatives of three out of the four main lineages of

nonbilaterian animals have experienced significant losses of

tRNA genes. First, all mt-tRNA genes have been lost in

Ctenophora (Pett et al. 2011) [the two mt-tRNA genes re-

ported for the ctenophore Pleurobrachia bachei (Kohn et al.

2012) are annotation artifacts (Pett and Lavrov 2015)].

Second, the mt-genomes of nonmyxozoan cnidarians have

lost all but one or two tRNA genes (Kayal et al. 2013), while

no mt-tRNA genes have been found in two sampled species in

the myxozoan genus Kudoa (Takeuchi et al. 2015). Although

four mt-tRNAs have been reported from the third representa-

tive of this genus, they are also likely annotation artifacts.
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FIG. 4.—Size and coding content of animal mitochondrial DNA. Colored bars indicate the average number of nucleotides coding for ribosomal RNA

(blue), protein (red), transfer RNA (green), or noncoding (black) computed using all available complete mt-genome sequences published in the NCBI RefSeq

database as of April 9, 2016. Gray error bars indicate the upper and lower boundaries of the 95% interquantile range for genome sizes (2.5th and 97.5th

percentiles). The shaded portion of the red bar in Myxozoa indicates additional protein-coding genes likely present in these genomes, but not recognizable

due to an extreme rate of sequence evolution.
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Third, mt-tRNA loss has occurred repeatedly in sponges, in-

cluding several lineages of demosponges, the homosclero-

morph family Plakinidae, and possibly some calcaronean

sponges. Interestingly, one group of demosponges

(Keratosa) has a pattern of mt-tRNA gene loss identical to

that in most Cnidaria, encoding only genes for tryptophanyl

and methioninyl mt-tRNA (Wang and Lavrov 2008).

The loss of mt-tRNA genes is commonly associated with

other changes in the nuclear genome. In particular, the loss of

mt-tRNAs may render some components of the mitochondrial

translation system redundant, leading to the loss of their

genes in the nuclear genome. For example, the maturation

of tRNAIle
LAU(the product of the trnI(CAU) gene) involves a post-

transcriptional modification of the cytosine in the anticodon

(position 34) to lysidine (2-lysyl-cytidine) performed by

tRNAIle-lysidine synthetase (TilS) (Soma et al. 2003), an

enzyme that is not involved in maturation of cytosolic isoleu-

cine tRNAs (Marck and Grosjean 2002). Because of the dis-

pensable nature of this function for cytosolic protein synthesis,

the loss of mitochondrial trnI(CAU) that occurred in some

nonbilaterian groups and all bilaterians, was followed by the

loss of the nuclear-encoded TilS gene, rendering a reacquisi-

tion of trnI(CAU) practically impossible (Pett and Lavrov 2015).

Our previous research also uncovered a correlation between

the loss of mt-tRNAs and the loss of nuclear-encoded mito-

chondrial aminoacyl-tRNA synthetases (Haen et al. 2010; Pett

et al. 2011), as well as several other RNA-modifying and ami-

noacyl-tRNA modifying enzymes (Pett and Lavrov 2015).

Finally, some mt-tRNA genes can be gained via a process of

“remolding” or “recruitment”, in which a copy of a gene is

recruited from one isoaccepting group to another by a point

mutation that changes the tRNA’s amino acid identity and its

atp
6 98 cob
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FIG. 5.—Variation in RNA and protein-coding gene content in animal mitochondrial DNA. Left: taxonomic positions of groups with variable gene

content. Central: variation in tRNA gene content. Middle: the presence of rRNA genes. Right: the presence/absence of protein-coding genes. Colored boxes

highlight the identities of specific genes discussed in the text. Diagonally split boxes indicate genes that are absent in some lineages of the indicated group.

Question marks denote genes for which presence or absence has not been confidently determined. Abbreviations: atp6, atp8–9: subunits 6, 8, and 9 of F0

adenosine triphosphatase (ATP) synthase; cob: apocytochrome b; cox1–3: cytochrome c oxidase subunits 1–3; nad1–6 and nad4L: NADH dehydrogenase

subunits 1–6 and 4L; polB: DNA polymerase b; tatC: twin-arginine translocase component C; rns and rnl: SSU and LSU rRNAs. The tRNA genes are identified

by the one-letter code for their corresponding amino acid; subscripts denote different genes for isoacceptor tRNAs, where I1 = trnI(CAU), I2 = trnI(GAU),
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mRNA coupling capacity. This process has been extensively

documented in both bilaterian and nonbilaterian animal

mtDNA (Lavrov and Lang 2005; Wang and Lavrov 2011;

Sahyoun et al. 2015).

Changes in the Genetic Code

Close unicellular relatives of animals use a nonstandard “min-

imally modified” genetic code for mitochondrial protein syn-

thesis, where the only deviation from the standard genetic

code is the reassignment of the UGA codon from termination

to tryptophan (fig. 3). This mitochondrial genetic code was

likely the ancestral condition for Metazoa (Knight et al.

2001) and is still used by most nonbilaterian animals. Early

in the evolution of bilaterian animals, the meanings of two

mitochondrial codons were changed, with AUA reassigned

from isoleucine to methionine, and AGR from arginine to

serine (Knight et al. 2001), followed by further modifications

in some lineages (Watanabe and Yokobori 2011).

Several modifications to the mitochondrial genetic code

have also occurred among nonbilaterian animals, some of

them in parallel with those in bilaterian animals (fig. 3). Like

in bilaterian animals, the identity of AGR codons has been

changed from Arginine to Serine in glass sponges (Haen

et al. 2007, 2014) and to either Serine or Glycine in the cal-

caronean sponges Sycon ciliatum, S. coactum, and P. massili-

ana (Lavrov et al. 2016). Furthermore, in P. massiliana the AUA

codon has been reassigned from Isoleucine to Methionine.

More unusual changes have occurred in calcinean sponges

C. clathrus and C. aurea, where UAG has been reassigned

from termination to Tyrosine and CGN codons from

Arginine to Glycine (Lavrov et al. 2013), and in the calcaro-

nean sponge L. complicata, where AGR codons have been

reassigned to Methionine. In addition, at least some species

of octocorals no longer use UAG in their mitochondrial coding

sequences (effectively reverting to the standard genetic code),

while in some ctenophores this codon has been reassigned to

Serine (Pett and Lavrov 2015).

Mitochondrial Introns and Fragmented
Genes

Several cases of fragmented mitochondrial genes have been

reported in nonbilaterian animals, and the majority of these

cases involve mitochondrial introns. Introns in nonbilaterian

animal mtDNA were first found in anthozoan cnidarians

(Beagley et al. 1996) and subsequently in demosponges (Rot

et al. 2006), placozoans (Dellaporta et al. 2006), and homo-

scleromorph sponges (Wang and Lavrov 2008). It has been

suggested that the more common presence of mitochondrial

introns in nonbilaterian compared with bilaterian animals

[they have been found only in a few annelid species among

the latter (Valles et al. 2008; Richter et al. 2015)] may be due

either to the lack of early separation between germ and soma,

or to the low mitochondrial substitution rates observed in

many of nonbilaterian species (Hausner 2012).

As is the case with organellar introns in other eukaryotes,

animal mitochondrial introns are homologous to either group I

or group II self-splicing introns found in bacteria and viruses

(Martı́nez-Abarca and Toro 2000; Hausner et al. 2014) rather

than to either the spliceosomal introns or tRNA introns present

in nuclear genomes (Lang et al. 2007). All hexacoral mt-ge-

nomes contain a group I intron inside nad5 and often another

intron inside cox1 (Beagley et al. 1996; Goddard et al. 2006;

Medina et al. 2006; Fukami et al. 2007). The intron within

nad5 is highly unusual because it encompasses at least 2 and

as many as 15 standard mitochondrial genes, and sometimes

additional ORFs (Emblem et al. 2014). One or two group I

introns are also present in cox1 in some members of the

homoscleromorph sponge family Plakinidae (Gazave et al.

2010), and three different group I introns have been described

in cox1 from several groups of demosponges (Rot et al. 2006;

Szitenberg et al. 2010; Erpenbeck et al. 2015; Huchon et al.

2015). Finally, all placozoan mt-genomes contain six to seven

group I introns (Signorovitch et al. 2007). The structure of cox1

in these species is most unusual in that it consists of seven to

eight exons contained in three segments with different tran-

scriptional polarities, which are joined together by group I

intron trans-splicing, one of few reports of such a process in

vivo (Burger et al. 2009). Homing endonucleases of the

LAGLIDADG type can often be found encoded in cox1

group I introns, and the patchy phylogenetic distribution of

these proteins within these groups is consistent with the typ-

ical life cycle of homing endonucleases, which involves recur-

rent horizontal transfer among closely related species

(Goddard and Burt 1999).

Group II introns are less common in animal mitochondria,

but as many as four different forms have been identified in

placozoan mt-genomes (Signorovitch et al. 2007; Burger et al.

2009). In addition, two group II introns have recently been

found in demosponges (Huchon et al. 2015). Phylogenetic

analysis of the reverse transcriptase encoded by the latter in-

trons suggests that they may have originated by horizontal

transfer from a red algal donor (Huchon et al. 2015).

Surprisingly, group II mitochondrial introns have also been dis-

covered in several annelid species (Valles et al. 2008; Richter

et al. 2015), the only example of introns in bilaterian animals.

No introns have been found in glass sponges, calcareous

sponges, ctenophores, medusozoan cnidarians, and myxozo-

ans, or most bilaterian animals, groups in which accelerated

rates of mt-sequence evolution have been observed. This lack

of introns in fast-evolving mtDNA is consistent with observa-

tions from other groups of eukaryotes, and can potentially be

explained by the mutational hazard hypothesis (Lynch et al.

2006), which asserts that strong mutation pressure, resulting

from a high mutation rate, suppresses the proliferation of

noncoding elements, including introns. At the same time,

no mitochondrial introns have been found in either octocoral
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cnidarians or the homoscleromorph sponge family

Oscarellidae, two groups with exceptionally low rates of mi-

tochondrial sequence evolution (Gazave et al. 2010;

McFadden et al. 2011), indicating that other factors are also

at play.

In some cases, not only mitochondrial genes but also their

products can be fragmented. For example, in the calcareous

sponges C. clathrus and C. aurea, both rRNA genes are dis-

continuous and located on different chromosomes (Lavrov

et al. 2013, unpublished data), but encode conserved rRNA

structures when pieced together. Fragmented rRNA genes

have also been found in the oyster genus Crassostrea

(Milbury and Gaffney 2005; Milbury et al. 2010), and in

Placozoa, where large subunit rRNA is encoded in two

pieces (Signorovitch et al. 2007). Typically, rRNA fragments

assemble as separate molecules, but an example of trans-splic-

ing has been recently reported in the Euglenozoan flagellate

Diplonema (Valach et al. 2014). There is no evidence of rRNA

fragment trans-splicing in animal mitochondria.

RNA Editing and Translational
Frameshifting

Some animal mt-genomes encode aberrant tRNAs and/or

mRNAs that are corrected by RNA editing during or after tran-

scription (Gott and Emeson 2000). Mitochondrial RNA editing

in bilaterian animals involves primarily tRNAs (Börner et al.

1997). As an extreme example, nearly half of nucleotides in

the mt-tRNAs of onychophorans are added post-transcription-

ally (Segovia et al. 2011). A few putative cases of mRNA edit-

ing have also been reported in bilaterian animal mitochondria,

most of which manifest as variation in the length of polythy-

midine poly(T) tracts (Vanfleteren and Vierstraete 1999;

Riepsamen et al. 2008; Denoeud et al. 2010; but see

Riepsamen et al. 2011). A few RNA-DNA differences have

recently been reported in human mtDNA (Bar-Yaacov et al.

2013).

In nonbilaterian animals, both tRNA and mRNA editing has

been found. The mtDNA of C. clathrus encodes tRNA mole-

cules with multiple mismatches in the aminoacyl acceptor

stem, which undergo post-transcriptional RNA editing

(Lavrov et al. 2013). In Placozoa, a conserved uracil (U) position

in cox1 is required for proper splicing of a group I intron, but a

cytosine (C) is required at the same site for a functional COX

protein subunit. This apparent conflict is resolved by convert-

ing U to C by an RNA editing mechanism that takes place after

splicing is completed (Burger et al. 2009). Recently, wide-

spread and persistent mt-mRNA editing was discovered in

calcaronean sponges (Lavrov et al. 2016), consisting of

single or double U insertions in pre-existing poly(U) tracts. A

total of 225, 435, and 451 nucleotides were inserted in mt-

mRNAs identified in three analyzed species (Lavrov et al.

2016).

In glass sponges, several single nucleotide insertions in oth-

erwise conserved mitochondrial coding sequences are re-

tained in mRNA and have been interpreted as +1

translational frameshifting sites (Haen et al. 2007;

Rosengarten et al. 2008). Most of these insertions occur im-

mediately upstream of conserved glycine GGA codons and

result in the formation of in-frame TGG or CGG codons,

which are otherwise not used or very rarely used in glass

sponge mitochondrial coding sequences (Haen et al. 2014).

These unusual sequence features, along with some unusual

changes in the corresponding glycine tRNAs, suggest an “out-

of-frame pairing” model of translational frameshifting, in

which the extra nucleotide is excluded from pairing at the

A-site of the ribosome (Buchan and Stansfield 2007). Our

recent work revealed that frameshifting sites have evolved

repeatedly in glass sponge mtDNA, and can persist for hun-

dreds of millions of years (Haen et al. 2014). Among bilaterian

animals, translational frameshifting has been reported in birds

and turtles (Harlid et al. 1997; Mindell et al. 1998; Zardoya

and Meyer 1998; Parham et al. 2006), Polyrhachis ants

(Beckenbach et al. 2005) and the eastern oyster (Milbury

and Gaffney 2005). Interestingly, AGR codons in human

mtDNA, originally inferred to code for termination, have

been recently reinterpreted as mitochondrial frameshifting

sites (Temperley et al. 2010).

Variable Rates of Sequence Evolution

It was observed early in the study of animal mtDNA that the

rate of nucleotide substitutions was an order of magnitude

higher in mitochondrial compared with nuclear genes (Brown

et al. 1979). Subsequently, a wide range of mitochondrial

substitution rates have been estimated within vertebrate line-

ages, including mammals, where the rates can vary 100-fold

and birds, where the rates can vary 30-fold (Nabholz et al.

2008; Nabholz et al. 2009). Analysis of mtDNA sequences

from nonbilaterian animals adds another dimension to these

observations by showing persistent differences in rates among

major animal groups (fig. 6). In particular, demosponges,

homoscleromorphs, and most cnidarians have relatively low

rates of mitochondrial substitutions, glass sponges, and bila-

terian animals have intermediate rates, while ctenophores,

calcareous sponges, and myxozoans have high to extremely

high rates (fig. 6).

An increased substitution rate may be caused by an ele-

vated mutation rate (which determines the rate of neutral

evolution) and/or an increased probability of fixation of non-

neutral mutations (Kimura 1993; reviewed in Baer et al. 2007).

A high mutation rate in bilaterian mtDNA, first inferred from

phylogenetic comparisons, was later corroborated and revised

upward by pedigree analyses and mutation accumulation ex-

periments (Parsons et al. 1997; Denver et al. 2000; Haag-

Liautard et al. 2008; Xu et al. 2012). The high mutation rate

in animal mtDNA is often attributed to damage from reactive
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oxygen species (ROS) released as byproducts during oxidative

phosphorylation (Richter et al. 1988; Yakes and Van Houten

1997) and has been proposed to be a function of the meta-

bolic rate (Martin and Palumbi 1993; Gillooly et al. 2005).

However, no support for this “metabolic rate hypothesis”

has been found in subsequent studies (Lanfear et al. 2007).

Furthermore, recent studies that have utilized ultra-sensitive

sequencing of somatic mtDNA revealed that most mutagenic

events are not G -> T transversions expected as the result of

ROS damage but transitions, likely caused by errors made by

DNA polymerase and/or spontaneous deamination of cytidine

and adenosine during replication (reviewed in Larsson 2010;

Ameur et al. 2011; Kennedy et al. 2013; Itsara et al. 2014).

Thus, changes in mitochondrial mutation rates are more likely

the result of changes in nuclear-encoded proteins responsible

for the maintenance and replication of mtDNA rather than

different levels of ROS production. Because of the lower mu-

tation load expected for small genomes, natural selection for

mtDNA replication fidelity should be relaxed compared with

the nuclear genome, resulting in a higher mutation rate (Lynch

2010). It has also been suggested that the elevated mutation

rate in animal mtDNA may be driven by positive selection for a

greater supply of adaptive mutations (Wallace 2007), but we

view this proposition as highly unlikely. Although alleles caus-

ing a high mutation rate (mutator alleles) do exist in natural

populations and can become fixed by hitchhiking with linked

beneficial mutations (Taddei et al. 1997), this is not expected

in mtDNA, which is unlinked from its nuclear-encoded repli-

cation machinery (Lynch 2011). Even in asexual bacterial pop-

ulations, hitchhiker mutator alleles are generally short-lived

and/or exist at low frequencies due to the inevitable long-

term deleterious mutation load associated with a high

mutation rate (Giraud et al. 2001). Experimental increase of

mutation rate in mammalian mtDNA lead to aggravated

aging, impaired brain development, and reduced lifespan

(Ross et al. 2013, 2014).

While the rate of fixation for neutral mutations is equal to

the mutation rate, that of non-neutral mutations also depends

on their fitness effect (expressed as selection coefficient) and

effective population size (Kimura 1993). Both theoretical con-

siderations (Kimura 1968) and analyses of empirical data

(Weinreich and Rand 2000; Nielsen and Yang 2003;

Popadin et al. 2007; Lartillot and Poujol 2011) suggest that

the majority of mtDNA mutations are deleterious and thus

should be eliminated by selection. Although positive selection

has also been inferred in the mtDNA of some lineages, usually
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FIG. 6.—mtDNA-based animal phylogeny showing variable rates of mt-sequence evolution. Complete or nearly complete mt-genomes from all available

nonbilaterian animals and a few selected bilaterian animals were downloaded from the GenBank. In addition, mitochondrial genomes of Periphylla periphylla

and Polypodium hydriforme, were assembled from high throughput transcriptomic and genomic data (SRX956805 and SRX687102, respectively). Inferred

amino acid sequences from nine mitochondrial genes (cob, cox1-3, nad1-5) were aligned with MAFFT v7.215 (Katoh and Standley 2013). Conserved blocks

within the alignments were selected with Gblocks 0.91 b (Talavera and Castresana 2007) using relaxed parameters (parameters 1 and 2 = ½, parameter

3= 8, parameter 4= 5, all gap positions in parameter 5). Cleaned alignments were concatenated in a dataset 2,228 positions in length. Bilateria, Cnidaria,

Ctenophora, Placozoa, and Porifera were constrained as monophyletic and the best constrained topology was identified using RAxML with the

MTREV + GAMMA + F substitution model and 32 initial tree searches. Subsequently, branch lengths were re-estimated with the CAT +GTR+ �4 model

in PhyloBayes MPI 1.4e (Lartillot et al. 2013).
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in association with postulated higher demand for energy pro-

duction [e.g., in anthropoid primates with an expanded neo-

cortical brain (Grossman et al. 2004), bats (Shen et al. 2010),

and mammals at high altitudes (Hassanin et al. 2009)] dem-

onstrating the occurrence of adaptive substitutions in mtDNA

evolution can be difficult (Meiklejohn et al. 2007; Nei et al.

2010). Nevertheless, it has been estimated that up to a quarter

of nonsynonymous substitutions in various animal species may

be fixed by adaptive evolution (James et al. 2016).

The strength of genetic drift, which is inversely proportional

to the effective population size, will also influence the proba-

bility of fixation of non-neutral mutations, with higher rates of

deleterious substitutions in smaller populations, and higher

rates of beneficial substitutions in larger populations (Ohta

1973). The effect of genetic drift on mtDNA is amplified by

several features of mitochondrial biology, including its unipa-

rental (maternal) inheritance, effective haploidy, and lack (or

scarcity) of recombination (Ballard and Whitlock 2004; Aanen

et al. 2014). A commonly observed outcome of stronger ge-

netic drift in mtDNA is the more rapid fixation of mildly dele-

terious mutations (Lynch and Blanchard 1998) as reported for

large versus small mammals (Popadin et al. 2007). It has also

been inferred that selective sweeps occur predominantly in

invertebrate rather than vertebrate animals, due to their

larger population sizes (Bazin et al. 2006; Meiklejohn et al.

2007). Finally, genetic drift should influence the mitochondrial

mutation rate itself due to accumulation of mildly deleterious

mutations in nuclear-encoded mitochondrial replication pro-

teins (Lynch 2010; Sung et al. 2012).

Given the impact that reduced effective population size can

have on substitution rates by increasing both the mutation

rate and the probability of fixation of slightly deleterious mu-

tations, life history features may help explain the accelerated

rates of mitochondrial sequence evolution observed in some

nonbilaterian animals. For example, the fastest evolving

animal mtDNA belongs to Myxozoa, one of very few examples

of parasitic nonbilaterian animals [the others being a related

cnidarian endoparasite Polypodium hydriforme (Evans et al.

2008), and Eulampetia pancerina, a ctenophore with a para-

sitic larval stage]. As a result of their parasitic lifestyle, there are

recurrent bottlenecks in myxozoan populations as their hosts

are infected by a small number of spores (Kent et al. 2001). In

addition, sexual reproduction usually takes place between de-

scendants of a single founder actinospore, leading to inbreed-

ing and further reduction in the effective population size of

mtDNA. Ctenophores, another group with highly accelerated

mitochondrial substitution rates, also have an unusual biology,

characterized by frequent selfing, hermaphroditism, and large

fluctuations in population size (Baker and Reeve 1974; Pianka

1974).

The effect of smaller population size is often most visible in

changes (likely deleterious) that accumulate in tRNA and rRNA

structures (Lynch 1996). The mt-genome of the ctenophore

M. leidyi, a selfing hermaphrodite (Baker and Reeve 1974;

Pianka 1974), represents one of the most extreme examples,

where the sizes of the small and large subunit rRNAs have

been reduced to no more than 368 and 878 bp, respectively,

with only a few identifiable conserved secondary structures

(Pett et al. 2011). Interestingly, in the calcinean sponge

C. clathrus mt-rRNA structures are relatively well conserved

despite high substitution rates in mitochondrial coding

sequences.

General Trends in the Evolution of
Animal mtDNA

Thirty-five years after the first animal mtDNA sequence was

determined (Anderson et al. 1981), we are finally attaining a

comprehensive view of animal mt-genome diversity. The

emerging picture reveals more variation in animal mtDNA or-

ganization and evolution than previously appreciated, much

of which is found among nonbilaterian phyla. Conversely,

many of the genetic novelties thought to be associated with

animal mtDNA (Wolstenholme 1992b) appear to be restricted

to Bilateria. The richness of mitochondrial features in nonbila-

terian animals is particularly striking in the light of the relatively

small number nonbilaterian species with complete mt-ge-

nomes (around 200), which is an order of magnitude smaller

than the number for Bilateria (over 6000) (fig. 1).

In part, the greater mtDNA diversity in nonbilaterian ani-

mals can be explained by the deeper divergences among non-

bilaterian comparing to bilaterian phyla (Dos Reis et al. 2015).

However, mtDNA diversity does not appear to be simply a

function of time, as most major changes map to early

branches in animal evolution (fig. 1). This can be seen, for

example, in the remarkable uniformity of mtDNA in most

bilaterian animals, which suggests that characteristic features

of bilaterian mtDNA emerged after the split of Bilateria and

Cnidaria in the late Precambrian but prior to the diversification

of bilaterian animals in the early Cambrian. Similarly, a distinct

organization of glass sponge mtDNA was established prior to

the divergence of crown lineages in the Cambrian and has

been maintained thereafter (Haen et al. 2014). Comparable

patterns of mtDNA evolution are also found within cteno-

phores and placozoans (Signorovitch et al. 2007; Pett et al.

2011; Kohn et al. 2012), although it is less clear when these

patterns were established.

It is not immediately clear why these early patterns should

have been so widely conserved, but an intriguing possibility is

that early changes in the evolution of certain groups canalized

the future course of evolutionary events in mtDNA. For exam-

ple, early changes in the bilaterian mt-tRNA and/or mt-protein

import machinery may have prevented the replacement of mt-

tRNAs with their nuclear counterparts, a process that is quite

common outside of Bilateria (Schneider 2011; Pett and Lavrov

2015), but very rare among bilaterian animals [the exception

of chaetognaths (Faure and Casanova 2006) deserves further

investigation (e.g. see Barthelemy and Seligmann 2016)].
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As with other biological systems, the evolution of animal

mtDNA is also marked by convergence. One of the most strik-

ing examples is the parallel evolution of glass sponge and

bilaterian mtDNA. Both groups of animals share a similar

mtDNA organization with a single large noncoding region,

an identical change in the genetic code, a modification in

the structure of tRNA(Ser), as well as a particular bias in nu-

cleotide composition (Haen et al. 2007). Other examples of

convergent mitochondrial evolution in animals include transi-

tions to a multipartite, linear genome organization in calcare-

ous sponges and the cnidarian class Cubozoa and the loss of

the same set of tRNA genes in Cnidaria and the demosponge

lineage Keratosa. Interestingly, parallel evolution in mtDNA

can precipitate parallel changes in the nuclear genomes, as

has been shown by the loss of nuclear encoded mt-aminoacyl-

tRNA synthetases in association with the loss of mt-tRNAs. It

remains to be seen whether other changes in the content and

structure of mt-genomes can lead to convergent evolution in

other nuclear genes and molecular pathways.

Future Directions

Faced with the abundance of bilaterian mt-genome se-

quences, it has been argued that further sampling of animal

mt-genomes may be of limited use for studying mtDNA evo-

lution (Smith 2015). This may be true for some groups.

However, current mtDNA sampling for nonbilaterian animals

remains poor in comparison with their considerable phyloge-

netic diversity, and further studies in these groups have the

potential to significantly expand our understanding of mito-

chondrial evolution.

In particular, there are several nonbilaterian groups, such

as ctenophores, calcareous sponges, and myxozoan cnidar-

ians, where sampling is clearly inadequate. Probably not co-

incidentally, these are also the groups that have either

unusual mt-genome organization or extremely high rates

of mt-sequence evolution, or both. For all these groups,

mtDNA sequences became available only with the advent

of next generation DNA sequencing technologies, which

made it possible and cost-effective to sequence total cellular

DNA from targeted species and bioinformatically assemble

mtDNA. Interestingly, unusual mt-genomes may remain

undiscovered in otherwise well-sampled groups of animals

because traditional methods have failed to obtain positive

results. For example, preliminary data suggest that multipar-

tite mtDNA has evolved in some anthozoan cnidarians (order

Ceriantharia) (Brugler and France 2007; Kayal et al. 2013)

and demosponges (genus Mycale) (unpublished data) but

has not been fully described due to sequencing/assembly

difficulties. The discoveries of unusual mt-genomes open

new questions in the study of animal mtDNA, such as the

formation, maintenance, and expression of multipartite ge-

nomes, which in the absence of mitosis should represent a

formidable task. Studying such genomes could also provide

alternative explanations for unusual experimental results in

other supposedly more familiar taxa. Indeed, several recent

studies have forced us to rethink mtDNA biology in even the

most familiar “model” animal species (e.g. Guo et al. 2003;

Temperley et al. 2010; Lewis et al. 2015).

Finally, in many groups our knowledge of mitochondrial

biology is limited to the mtDNA sequence itself, while the

vast majority of proteins functioning in mitochondria are

encoded by nuclear genomes. Recent explosive growth in

the quantity of nuclear genomic and transcriptomic data

from nonmodel organisms, including many nonbilaterian an-

imals, will provide a fruitful avenue for understanding mito-

chondrial physiology and evolution in animals.
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