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ABSTRACT The bottleneck governing infectious disease transmission describes the
size of the pathogen population transferred from the donor to the recipient host.
Accurate quantification of the bottleneck size is particularly important for rapidly
evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount
of transferred viral genetic diversity and, thus, may decrease the rate of viral adapta-
tion. Previous studies have estimated bottleneck sizes governing viral transmission
by using statistical analyses of variants identified in pathogen sequencing data.
These analyses, however, did not account for variant calling thresholds and stochas-
tic viral replication dynamics within recipient hosts. Because these factors can skew
bottleneck size estimates, we introduce a new method for inferring bottleneck sizes
that accounts for these factors. Through the use of a simulated data set, we first
show that our method, based on beta-binomial sampling, accurately recovers trans-
mission bottleneck sizes, whereas other methods fail to do so. We then apply our
method to a data set of influenza A virus (IAV) infections for which viral deep-
sequencing data from transmission pairs are available. We find that the IAV trans-
mission bottleneck size estimates in this study are highly variable across transmis-
sion pairs, while the mean bottleneck size of 196 virions is consistent with a
previous estimate for this data set. Furthermore, regression analysis shows a positive
association between estimated bottleneck size and donor infection severity, as mea-
sured by temperature. These results support findings from experimental transmission
studies showing that bottleneck sizes across transmission events can be variable and
influenced in part by epidemiological factors.

IMPORTANCE The transmission bottleneck size describes the size of the pathogen
population transferred from the donor to the recipient host and may affect the rate
of pathogen adaptation within host populations. Recent advances in sequencing
technology have enabled bottleneck size estimation from pathogen genetic data, al-
though there is not yet a consistency in the statistical methods used. Here, we intro-
duce a new approach to infer the bottleneck size that accounts for variant identifi-
cation protocols and noise during pathogen replication. We show that failing to
account for these factors leads to an underestimation of bottleneck sizes. We apply
this method to an existing data set of human influenza virus infections, showing
that transmission is governed by a loose, but highly variable, transmission bottle-
neck whose size is positively associated with the severity of infection of the donor.
Beyond advancing our understanding of influenza virus transmission, we hope that
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this work will provide a standardized statistical approach for bottleneck size estima-
tion for viral pathogens.

KEYWORDS bottleneck, influenza A virus, next-generation sequencing

Infectious disease transmission relies on the transfer of a pathogenic organism from
one host to another. This transfer is characterized by a transmission bottleneck,

defined as the size of the founding pathogen population in the recipient host. Accurate
quantification of transmission bottleneck sizes for pathogenic organisms is critical for
several reasons. First, bottleneck sizes impact levels of genetic diversity in recipient
hosts and thereby impact the rate at which pathogens can adapt to host populations,
with smaller bottleneck sizes decreasing rates of adaptation (1, 2). Second, when
cooperative interactions occur within a pathogen population (e.g., see references 3 and
4) or when viral complementation and cellular coinfection are critical for producing viral
progeny (e.g., see reference 5), bottleneck sizes will necessarily impact initial pathogen
replication rates, with larger bottleneck sizes enabling the occurrence of these inter-
actions and thus facilitating within-host replication. Finally, transmission bottleneck
sizes impact the ability to accurately reconstruct who infected whom during an
ongoing epidemic (6), such that estimation of the transmission bottleneck size can
point to cases which may be problematic and for which a certain class of phylodynamic
inference methods (see reference 7) might be particularly useful.

The transmission bottleneck size has been estimated for a number of pathogenic
organisms, including pathogens of plants (8–13) and animals (14–22). While those
estimates relied on the distribution of pathogen types in infection recipients, as
determined by molecular and phenotypic markers or Sanger sequencing of the patho-
gen population in donor and recipient hosts, deep-sequencing data have recently
started to be used to gauge transmission bottleneck sizes (23–29). Some of those
studies characterized the general magnitude of transmission bottleneck sizes, with
results indicating that narrow, selective bottlenecks tend to govern the transmission
dynamics of viral pathogens that are ill adapted to their recipient hosts (24–26). Studies
that instead gauged transmission bottleneck sizes of well-adapted viral pathogens
using deep-sequencing data have, in contrast, generally found that they tend to be
loose, with many virions initiating infection (23, 28, 29). While many of those studies
focus on assessing how “loose” or “narrow” a transmission bottleneck is, other studies
have attempted to quantitatively estimate transmission bottleneck sizes. One approach
relied on the use of barcoded influenza virus during experimental transmission studies
in small mammals, with results indicating that the route of transmission greatly impacts
the size of the bottleneck (27).

In natural infections, it is not feasible to rely on barcoded or otherwise marked
pathogens. In these cases, statistical approaches have therefore instead been used to
quantify bottleneck sizes (28, 30). Two studies have used the Kullback-Leibler diver-
gence index (developed in reference 30) to estimate the viral effective population size
initiating infection from deep-sequencing data (28, 30). One of those studies quantified
the transmission effective population size for Ebola virus in human-to-human infections
(30). The other study quantified this transmission effective population size for human
influenza A viruses (IAVs) (28). A second statistical approach used previously (28) makes
use of a single-generation population genetic Wright-Fisher model to estimate the
effective viral population size initiating infection. While this approach similarly showed
that the effective population size following influenza virus transmission in natural
human-to-human infection is large, this model yielded quantitatively different results
from those of the Kullback-Leibler approach. Furthermore, in both of those studies, it
is not clear how the effective population size relates to the transmission bottleneck size.
It is worth noting, however, that the effective population size is generally considered to
be an underestimate of the true population size, as it represents the minimum
population size necessary to establish observed levels of genetic diversity.

Both of these approaches (28, 30) analyze only variants that are identified as being
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present in both the donor and the recipient. However, the absence of a donor variant
in a recipient host is also informative, and ignoring such missing variants can signifi-
cantly bias transmission bottleneck size estimates. Another limitation of both ap-
proaches is that they do not consider the effect that stochastic dynamics early in
infection may have on variant frequencies in the recipient. To address these concerns,
here, we introduce a new method for estimating the transmission bottleneck size of
pathogens. This method accounts for stochastic dynamics occurring during viral rep-
lication in the recipient and further accounts for variant calling thresholds that are used
in calling a variant present or absent in a sample. In addition, this method has the ability
to estimate a bottleneck size for individual transmission pairs. We refer to this method
as the beta-binomial sampling method, based upon this method’s derived likelihood
expression. Using a simulated data set, we compare the beta-binomial sampling
method to two methods of bottleneck size inference that are present (in some form) in
the literature: the presence/absence method and the binomial sampling method. This
comparison demonstrates that the beta-binomial sampling method is able to recover
the true bottleneck size of the simulated data set, whereas the 2 other methods infer
biased estimates by failing to account for variant calling thresholds or stochastic
dynamics in the recipient host. Finally, we apply the beta-binomial sampling method to
an existing next-generation sequencing (NGS) data set of influenza A virus infections to
estimate the transmission bottleneck size in natural human-to-human flu transmission.

Models. Figure 1 provides a schematic of the data that are used for inferring
transmission bottleneck sizes in the approaches that we consider in this study. Deep-
sequencing data consist of short reads at various sites in the genome, obtained from
both the infected donor and the recipient at, generally, a single time point for each
individual. The short-read data are used to identify viral variants in the donor and
recipient hosts. Comparison of these variants’ frequencies across donor-recipient trans-
mission pairs allows us to infer the transmission bottleneck size (Nb), the number of
virions comprising the founding viral population at the onset of infection in the
recipient host. We specifically define Nb as the number of virions that successfully
establish lineages that persist to the sampling time point. There may, however, be

FIG 1 Schematic showing virus transmission from donor to recipient host. The number of virions that
initiate infection in the recipient host is defined as the transmission bottleneck size or founding
population size, Nb. The viral sampling process is shown, with deep sequencing of the viral population
resulting in reads that carry polymorphisms at certain nucleotide sites. The nucleotide readouts at any
site can be used to estimate variant frequencies. Dashed horizontal lines in the variant frequency plots
denote the variant calling cutoff or threshold. The goal is to estimate Nb given data on variant
frequencies in the donor and in the recipient, the total number of reads, and the number of variant reads
at each of the variant sites identified in the donor.
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additional virions that transiently replicate in the recipient host but quickly die out and
are therefore not included in Nb.

Given the extent of sequencing error in deep-sequencing data, there can be a high
degree of noise in the short-read data and, thereby, in the extent of polymorphisms
present at nucleotide sites. To limit the spurious identification of variants arising from
sequencing noise, it is common practice to use criteria, such as a variant calling
threshold, to validate identified variants (31). The variant calling threshold is the
minimum frequency at which a variant can almost certainly be distinguished from
background sequencing error. This threshold frequency may be chosen according to
generally accepted error rates for a specific sequencing platform, error rates informed
by a control run, or error rates based on the concordance of variant calls from replicate
sequence runs. For the commonly used Illumina sequencing platforms, variant thresh-
olds tend to fall in the range of 0.5 to 3% (24–26, 28, 32–35). Conservative variant calling
cutoffs are often used, as they ensure that sequencing artifacts are excluded. However,
conservative frequency cutoffs may have effects on transmission bottleneck size anal-
yses due to variants that are not called in the recipient host despite being present. Such
“false negatives” in the recipient have the potential to skew the inferred transmission
bottleneck size toward inappropriately low values.

We present methods for inferring the transmission bottleneck size from deep-
sequencing data, paying special attention to the effects of false-negative variant calls.
We first introduce the beta-binomial sampling method that we have developed for
bottleneck size inference, which further incorporates the effects of stochastic pathogen
dynamics in recipient hosts. For comparison, we then summarize two existing methods
of bottleneck size inference in the literature: the presence/absence method and the
binomial sampling method. Of note, all three of these methods assume that the genetic
diversity of the pathogen is entirely neutral, such that selection does not impact variant
frequency dynamics. These methods further assume independence between variant
sites. We address the limitations of these assumptions in the Discussion.

Bottleneck size inference allowing for stochastic pathogen dynamics in the recip-
ient host. The beta-binomial sampling method for inferring the bottleneck size allows
variant allele frequencies in the recipient host to change between the time of founding
and the time of sampling (Fig. 1), as the result of stochastic pathogen replication
dynamics early in infection. We consider two implementations of the beta-binomial
sampling method: an approximate version that assumes an infinite read depth and an
exact version that incorporates sampling noise arising from a finite number of reads.
The derivation of the beta-binomial sampling method can be found in Materials and
Methods.

In the approximate version, the likelihood of a transmission bottleneck size, Nb,
given variant frequency data at site i, is given by

L(Nb)i � �
k � 0

Nb

p_beta(�R,i|k, Nb � k) p_bin(k|Nb, �D,i) (1)

where �R,i is the variant frequency at site i in the recipient and p_beta(�R,i|k, Nb � k) is
given by the beta probability density function parameterized with shape parameters k
and Nb � k and evaluated at �R,i. The term p_bin(k|Nb, �D,i) denotes the binomial
distribution evaluated at k and parameterized with Nb number of trials and a success
probability of �D,i, where �D,i is the variant frequency at site i in the donor. If the donor
variant at site i is not detected in the recipient, this may be because it is truly absent
from the recipient or because it falls below the variant calling threshold. To allow for
both of these possibilities, the likelihood that the transmission bottleneck size is Nb,
given that the variant at site i was not detected, is given by

L(Nb)i � �
k � 0

Nb

[p_beta_cdf(�R,i � T|k, Nb � k) p_bin(k|Nb, �D,i)] (2)

where T is the variant calling threshold and p_beta_cdf(�R,i � T|k, Nb � k) is given by
the beta cumulative distribution function evaluated at the variant calling threshold.
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In the exact version of the beta-binomial sampling method, we incorporate sam-
pling error by modifying equations 1 and 2 to consider the number of variant reads and
the number of total reads at variant site i in the recipient, Rvar,i and Rtot,i, respectively.
The likelihood expression for the bottleneck size at site i becomes

L(Nb)i � �
k � 0

Nb

p_betabin(Rvar,i|Rtot,i, k, Nb � k) p_bin(k|Nb, �D,i) (3)

where p_betabin(Rvar,i|Rtot,i, k, Nb�k) is given by the beta-binomial probability density
function evaluated at Rvar,i and parameterized with Rtot,i number of trials and param-
eters k and Nb�k. If the donor-identified variant at site i is not detected in the recipient,
we again construct the likelihood that allows for this variant to be either absent from
the recipient or below the variant calling threshold:

L(Nb)i � �
k � 0

Nb

p_betabin_cdf(Rvar,i � TRtot,i|Rtot,i, k, Nb � k) p_bin(k|Nb, �D,i) (4)

where, in this case, p_betabin_cdf(Rvar,i � TRtot,i|Rtot,i, k, Nb�k) is given by the beta-
binomial cumulative distribution function evaluated at the number of reads that would
qualify as falling at the variant calling threshold.

We expect that the maximum likelihood estimate (MLE) of Nb inferred with the
approximate method will converge to the MLE of Nb inferred with the exact method
when the read coverage is high. The benefit of using the approximate version, when
appropriate, is that the incorporation of sampling error is computationally intensive.

Once transmission bottleneck sizes have been estimated by using either the ap-
proximate or exact beta-binomial sampling method, the probability that a variant is
truly present/absent in the recipient and the probability that a variant is simply called
present/absent in the recipient (under the assumption of infinite coverage) can be
determined for any given donor variant frequency.

Existing methods for inferring transmission bottleneck sizes. (i) Presence/
absence method of bottleneck size inference. The simplest approach to estimating
transmission bottleneck sizes from pathogen deep-sequencing data is to calculate
variant frequencies in donor hosts and then use information on the presence/absence
of these variants in recipient hosts to quantify the bottleneck size. Studies that have
adopted this approach have been reported previously (9, 36). Given a variant, i, present
at frequency �D,i in the donor and a founding population size of Nb, the probability that
the variant was not transferred to the recipient is simply given by (1 � �D,i)Nb (9, 36).
Correspondingly, the probability that at least one virion in the founding population
carried the variant allele is given by 1 � (1 � �D,i)Nb. From these expressions, the
likelihood of the founding population size of Nb in a donor-recipient pair is simply
calculated by multiplying the probabilities of the observed outcomes across the variant
sites:

L(Nb) � �
j � 1

Vabsent

(1 � �D,j)
Nb �

k � 1

Vpresent

[1 � (1 � �D,k)
Nb] (5)

where j indexes the viral variants that are absent in the recipient, k indexes the viral
variants that are present in the recipient, Vabsent is the total number of variants that are
called absent in the recipient, and Vpresent is the total number of variants that are called
present in the recipient. The total number of variants identified in the donor is given by
Vabsent � Vpresent.

The presence/absence method considers only the detection of donor-identified
variants in the recipient host and, therefore, is especially prone to the effects of
false-negative variants. Moreover, accounting for the variant calling threshold to ame-
liorate these effects is not possible with this method. Due to the inability of this method
to account for false negatives, we expect that the transmission bottleneck estimates
inferred with the presence/absence method will be considerably lower than the
bottleneck size estimates inferred by the beta-binomial sampling method.
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(ii) Binomial sampling method of bottleneck size inference. The second ap-
proach, or class of approaches, from the literature for inferring transmission bottleneck
sizes is based on a binomial sampling process. Studies that have adopted this general
kind of approach have been reported previously (28, 30). We describe a version of this
approach that parallels the beta-binomial sampling method that we describe above.
The binomial sampling approach makes use of donor-identified variant frequencies in
the donor and both the number of variant reads and the number of total reads in the
recipient, at each donor-identified variant site. The likelihood expression for the bot-
tleneck size, given these data at site i, is given by

L(Nb)i � �
k � 0

Nb

p_bin�Rvar,i|Rtot,i,
k

Nb
� p_bin(k|Nb, �D,i) (6)

where p_bin(Rvar,i|Rtot,i, k/Nb) is given by the binomial probability density function
evaluated at Rvar,i. The term p_bin(k|Nb, �D,i) is again given by the binomial distribution.
For variants called as absent in the recipient host, the likelihood of the transmission
bottleneck size is given as

L(Nb)i � �
k � 0

Nb

p_bin_cdf �Rvar,i � TRtot,i |Rtot,i,
k

Nb
� p_bin(k|Nb, �D,i) (7)

where p_bin_cdf is the binomial cumulative distribution function. The derivation of the
binomial sampling method can be found in Materials and Methods.

The sole difference between the beta-binomial sampling method and the binomial
sampling method is that the binomial sampling method does not account for stochas-
tic dynamics of the pathogen early on in the recipient. These stochastic dynamics
enable the frequencies of variants in a recipient at the time of sampling to differ from
those at the time of founding (Fig. 1). Because the binomial sampling method does not
incorporate this source of frequency variation, we expect there to be smaller frequency
deviations between variants in donor-recipient pairs under the assumption of a single-
generation binomial sampling model than in a model that allows for these stochastic
dynamics, for a given bottleneck size. To explain a given pattern of donor-recipient
frequency pairs, Nb estimates are thus expected to be significantly lower for the
binomial sampling method than for the beta-binomial sampling method. Application of
the binomial sampling method will therefore yield a conservative (lower-bound) esti-
mate of Nb, as previously remarked upon (30).

RESULTS
Results on simulated data. To examine the abilities of the three methods described

above to accurately infer transmission bottleneck sizes, we used a simulated data set of
one donor-recipient pair (see Materials and Methods). The data set was generated
under the assumption of stochastic pathogen dynamics in the recipient host between
the time of infection and the time of sampling. While this assumption matches the
assumption for the beta-binomial sampling method, we feel that it is also biologically
the most realistic assumption. In this data set, 109 out of the 500 donor-identified
simulated variants were called absent in the recipient host (Fig. 2A). The majority of
these variants were present in the recipient host but below our variant calling threshold
of 3% and therefore were false negatives. The beta-binomial sampling method, as
expected, recovers the true bottleneck size of 50 virions (Fig. 2B). In contrast, both the
presence/absence method (Fig. 2C) and the binomial sampling method (Fig. 2D)
significantly underestimate the simulated bottleneck size. The underlying reasons for
these methods’ inability to recover the true bottleneck size differ. For the presence/
absence method, this underestimation can be attributed to false-negative variant calls.
For the binomial sampling method, we were able to statistically account for the variant
calling threshold effects; the underestimation of this method, therefore, is attributed
solely to this method not accounting for stochastic pathogen dynamics in the recipient.
The binomial sampling method instead assumes deterministic viral growth from the
time of founding to the time of sampling (see Materials and Methods). Because more
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sampling stochasticity is present at smaller bottleneck sizes, the binomial sampling
method underestimates the simulated bottleneck size in its attempt to reproduce the
observed variation in variant frequencies by inappropriately constricting Nb.

Given that the binomial sampling model and the beta-binomial model were fit to
the same data, the relative performances of these models can be assessed by using
model selection approaches. The maximum likelihood obtained by using the beta-
binomial sampling method was significantly higher than the maximum likelihood
obtained by using the binomial sampling method (Fig. 2B and D), indicating that the
beta-binomial sampling model is statistically preferred over the binomial sampling
model. We can further take into consideration the smoothness of the likelihood curves
in our choice of model, with multimodal/rugged likelihood curves being undesirable

FIG 2 Estimated transmission bottleneck sizes for a simulated NGS data set. (A) Scatterplot showing the
frequencies of donor-identified variants against the corresponding frequencies of these variants in the
recipient. Points in black are variants that are called present in the recipient host. Points in gray are
variants that are called absent in the recipient host. The black line shows where �donor equals �recipient.
Gray lines show the variant calling threshold of 3%. (B) Log-likelihood curve for the beta-binomial
sampling method over a range of Nb values. The MLE is 55 virions (95% CI � 47 to 64 virions). The
likelihood at MLE equals �1,972.7. (C) Log-likelihood curve for the presence/absence method over a
range of Nb values. The MLE equals 19 virions (95% CI � 16 to 22 virions). (D) Log-likelihood curve for
the binomial sampling method over a range of Nb values. The MLE equals 32 virions (95% CI � 28 to 36
virions). The likelihood at MLE equals �1,981.8. In panels B to D, vertical black lines show the true
transmission bottleneck size, Nb, of 50. Vertical colored lines show the MLEs, and shaded areas show the
95% confidence intervals, determined by using the likelihood ratio test. (E) Likelihood surfaces for a
single variant present in the recipient at a frequency of 16.9% under the beta-binomial sampling model
and the binomial sampling model.
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outcomes. In Fig. 2E, we plot the likelihood curves for one variant under the likelihood
expression of the beta-binomial sampling method and under the expression of the
binomial sampling method. The rugged likelihood surface of the binomial sampling
model arises because of this method’s stringent assumption that variant frequencies
remain fixed between the time of infection of the recipient and the time of sampling.
In contrast, the beta-binomial sampling method allows for stochastic changes in variant
frequencies during viral growth, relaxing the assumption that the viral population at
the time of sampling needs to perfectly reflect the founding viral population. As a
result, likelihood curves of the beta-binomial sampling model do not show large
differences in likelihood values for small differences in Nb, further indicating that the
beta-binomial sampling model is preferable.

Given an estimate of the transmission bottleneck size, the probability that a variant
is transferred to a recipient host can be calculated by using the expression 1 � (1 �

�D,i)Nb, where �D,i is the frequency of variant i present in the donor host and Nb is the
bottleneck size estimate. In Fig. 3A, we plot this probability of variant transfer over a
range of donor variant frequencies for the simulated data set. In this figure, we further
plot “observed” probabilities of variant transfer, using a variant calling threshold of 3%
for the simulated data set. Finally, in Fig. 3A, we plot the observed probabilities of
variant transfer as predicted under the beta-binomial sampling method, evaluated at
the transmission bottleneck size estimated. We see first that the true probabilities of
variant transfer greatly exceed those that are observed in the data set given the variant

FIG 3 Additional results from application of the beta-binomial sampling method to the simulated data
set. (A) Probability of a donor-identified variant being either transferred or observed as transferred
(“called”) in a recipient host, as a function of donor variant frequencies. The observed probabilities of
donor-identified variants being called in a recipient host are shown in black, calculated directly from the
simulated data set using 3% frequency bins. The 95% confidence intervals assume that the probability
of variant transfer follows a binomial distribution with the number of trials being the number of
donor-identified variants present in a frequency bin and the success probability given by the calculated
probability of transferred variants observed in the frequency bin. Probabilities of donor-identified
variants being truly present in a recipient host are shown in purple, given bottleneck size estimates from
the beta-binomial sampling method. Probabilities of donor-identified variants being called present in a
recipient host are shown in gray, given bottleneck size estimates from the beta-binomial sampling
method. (B) Nb estimates for simulated data sets that differ in coverage levels. At each coverage level, 5
data sets were generated under the same parameters and assumptions as those for the data set shown
in Fig. 2A. Both the exact beta-binomial sampling method and the approximate version of this method
were used to estimate Nb for each data set. Nb maximum likelihood estimates and 95% confidence
intervals are shown in purple for the exact beta-binomial sampling method and in pink for the
approximate method.
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calling threshold of 3%. However, this method’s calculated predictions of observed
variant transfer probabilities fall within the 95% confidence intervals (CIs) for the
probabilities of variant transfer observed in the data set.

As described in the introduction, the exact beta-binomial sampling method that we
developed accounts for sampling noise arising from finite read coverage. If we ignore
sampling noise, we can estimate bottleneck sizes more rapidly using the approximate
method, described by equations 1 and 2. In Fig. 3B, we show bottleneck size estimates
over a range of different coverage levels for both the exact and approximate beta-
binomial sampling methods. At high coverage levels (�200 reads), both implementa-
tions of the beta-binomial sampling method yield similar bottleneck size estimates
and are able to recover the simulated bottleneck size of 50 virions. For lower levels
of coverage, however, this approximation starts to fail and will lead to a consider-
able underestimation of Nb, indicating that the approximate beta-binomial sampling
method is inappropriate for low coverage levels. We also note that even at high
coverage levels, a slight overestimation of the bottleneck size is apparent for both the
beta-binomial and the approximate beta-binomial sampling methods. This overestima-
tion can be attributed to the rare false-positive identification of variants in the recipient
(instances of a variant that is absent in the recipient being called present) and, more
generally, a slight inflation of variant frequencies with sequencing error. Overestimation
no longer occurs when these methods are applied to data sets that are simulated in the
absence of sequence error (results not shown).

Transmission bottleneck size estimation for human influenza A virus. We first
applied the beta-binomial sampling method for inferring transmission bottleneck sizes
to the influenza A/H1N1p virus transmission pairs identified in an influenza virus NGS
data set described in detail previously (28). We point the reader to this previous report
for details on the data set, including coverage levels and how transmission pairs were
inferred, etc. Poon et al. (28) estimated the mean effective population size for all H1N1p
transmission pairs, Ne, to be equal to 192 virions (mean standard deviation range, 114
to 276 virions). This approach considered the combined set of variants that were
present at frequencies of �1% and that were shared by 8 identified household
donor-recipient pairs (a total of 26 variants). In contrast to that analysis, we estimated
transmission bottleneck sizes for each of the 9 transmission pairs separately, using a
minimum variant frequency cutoff of 3% to call variants. We used a 3% cutoff based on
concordance results from replicate sequencing runs, as described previously (28). The
less conservative 1% cutoff used by Poon et al. (28) to estimate the effective population
size was chosen to allow for more sites to be included in their analysis. Our analysis,
using a total of 289 variants, estimated MLE bottleneck sizes ranging from 49 to 276
virions across the H1N1p transmission pairs (Fig. 4A). The bottleneck sizes inferred by
the approximate beta-binomial sampling method did not differ significantly from those
inferred by the exact method for any of the transmission pairs. This was expected, given
high coverage levels across variant sites.

To summarize our results for the bottleneck size estimates for the H1N1p transmis-
sion pairs, we estimated parameters of a negative binomial distribution using all of the
variant frequencies across the transmission pairs (see Materials and Methods). This
negative binomial distribution was chosen because our results shown in Fig. 4A
indicated that the variance in transmission bottleneck sizes is likely to exceed the mean.
We further fit a Poisson distribution to the same data, and the negative binomial
distribution was statistically preferred over the Poisson distribution using the Akaike
information criterion (AIC) indicating that while a single infection may be initiated by
a Poisson-distributed number of virions, different infections are likely to be initiated by
founding population sizes that vary in their means. The MLE values for the negative
binomial distribution’s parameters were an r value of 5 and a p value of 0.966, resulting
in a mean H1N1p transmission bottleneck size, Nb, of 142 and a 95% range of 54 to 262
virions (Fig. 4A). While our overall bottleneck size estimates were consistent with the
estimates of Poon et al. using a much more limited number of variants, our analysis
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further shows that the transmission bottleneck sizes varied considerably between
transmission pairs.

We next used the beta-binomial sampling method to infer the transmission bottle-
neck sizes for each of the H3N2 transmission pairs of the influenza virus NGS data set.
Poon et al. estimated the mean effective population size, Ne, for H3N2 to be 248 virions
(mean standard deviation range of 45 to 457 virions), again using a combined set of
variants that were present at frequencies of �1% and that were shared by 6 identified
household donor-recipient pairs (a total of 81 variants). Our analysis, considering each
of the 7 identified H3N2 transmission pairs separately, inferred MLE bottleneck sizes
ranging from 107 to 370 virions across the transmission pairs, using a total of 621
variants (Fig. 4B). Again, as expected, the Nb sizes inferred by the approximate beta-
binomial sampling method did not differ significantly from those inferred by using the
exact beta-binomial sampling method. We again fit a negative binomial distribution to
all of the variants across the transmission pairs and estimated MLE parameters of an
r value of 9 and a p value of 0.966, resulting in a mean H3N2 transmission bottleneck
size, Nb, of 256 virions and a 95% range of 131 to 413 virions (Fig. 4B). We again
observed that the overall bottleneck size estimate for H3N2 was consistent with the
estimate by Poon et al., although the bottleneck size estimates varied considerably
between transmission pairs.

Overall influenza A virus transmission bottleneck sizes. We next sought to
determine whether influenza A/H1N1p and influenza A/H3N2 virus subtypes statisti-
cally differed from one another in bottleneck sizes. We found that the H1N1p and H3N2
distributions of transmission bottleneck size MLEs did not differ significantly from one
another (P � 0.15 using the Kolmogorov-Smirnov test). Given this finding, we fit a
negative binomial distribution to all of the variants across the data sets of both
subtypes, arriving at MLE parameters of an r value of 4 and a p value of 0.980 for the
parameters of the negative binomial distribution. These parameters correspond to a

FIG 4 Transmission bottleneck sizes estimated for influenza A virus H1N1p (A) and H3N2 (B) transmission
pairs. Nb estimates are shown for the exact beta-binomial sampling method (purple) and the approxi-
mate version of this method (pink). Bars show means and 95% CIs, calculated by using the likelihood ratio
test. Overall transmission bottleneck sizes estimated across H1N1p transmission pairs (“H1N1p”) (teal),
across H3N2 transmission pairs (“H3N2”) (teal), and across both subtypes (“Nb”) (orange), under the
assumption of a negative binomial distribution, are also shown. Previous estimates by Poon et al. (28) are
also shown (“Ne”) for H1N1p and H3N2 (black). Bars for the estimates by Poon et al. show mean estimated
effective population sizes and mean standard deviation ranges.
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mean bottleneck size, Nb, of 196 virions and a 95% range of 66 to 382 virions (Fig. 4A
and B). We show the probability density function for this negative binomial distribution
in Fig. 5A. We further plot the expected probability of variant transfer for this bottleneck
size estimate (Fig. 5B), similar to what we show for the simulated data set in Fig. 3A.
Finally, we plot the probability of observed variant transfer under this Nb estimate,
under the assumptions of the beta-binomial sampling model. The agreement between
the probability of observed variant transfer and the empirical data indicates that variant
calling thresholds again make it appear that variant transfer from donor to recipient is
much less likely than it is, given bottleneck size estimates based on variant frequencies.

Relationship between donor temperature and estimated bottleneck size. Given
the extent of variation in bottleneck size estimates across transmission pairs, we
next considered whether certain characteristics of the donor may account for some
of the observed variation. Available metadata for donor individuals included de-
mographic data (age and gender), 2009 vaccination status, oseltamivir treatment, tem-
perature measurements, and symptom scores (available at http://web.hku.hk/~bcowling/
influenza/HK_H1N1_study.htm). Symptom scores were calculated as the number of
symptoms present at the time of measurement, with considered symptoms being
headache, sore throat, cough, myalgia, runny nose, and phlegm. As possible explana-
tory variables, we limited our analysis to temperature measurements and symptom
scores. This is because, with the exception of antiviral treatment, a clear hypothesis
relating any of these metadata variables to inferred transmission bottleneck sizes was
lacking. We did not consider antiviral treatment as a possible explanatory variable
because the time at which the antiviral was administered relative to the time of
transmission was unknown.

We determined the relationship between inferred bottleneck sizes and both donor
temperature and symptoms using multiple-linear-regression analysis. Specifically, we
used the maximum donor temperature and the maximum symptom score as predictors
of the inferred bottleneck size. The results of this regression indicated that donor
symptoms were not a significant predictor of inferred transmission bottleneck sizes

FIG 5 Overall influenza A virus bottleneck size estimates and probabilities of variant transfer under these
estimates. (A) The negative binomial probability density function (pdf) describing overall transmission
bottleneck sizes across H1N1p and H3N2 viral subtypes, parameterized with MLE values of an r value of
4 and a p value of 0.980. Vertical black lines show the 95% range of this distribution. The MLE bottleneck
size estimates for the H3N2 (orange) and H1N1 (green) transmission pairs are shown above the pdf. (B)
Probability of a donor-identified variant being either transferred or identified (called) in the recipient host
as a function of donor variant frequency. Probabilities of a donor variant being present in a recipient host
are shown in purple, given bottleneck size estimates provided by the negative binomial distribution
shown in panel A. Probabilities of donor-identified variants being called present in a recipient host, given
these same bottleneck size estimates and the assumptions of the beta-binomial sampling models, are
shown in gray. The empirical probabilities of donor-identified variants being called in a recipient, as
calculated from the combined H1N1p and H3N2 data sets over 3% frequency bins, are shown in black.
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(P � 0.52) (Fig. 6A). However, donor temperature was found to be a significant
predictor of inferred bottleneck sizes (P � 0.035) (Fig. 6B) at a significance level of an
� value of 0.05, with higher donor temperatures being positively associated with larger
transmission bottleneck sizes. Using a highly conservative significance level of an �

value of 0.025, determined by applying the Bonferroni correction for multiple
comparisons, this P value falls slightly above the level of significance. We note,
however, that the Bonferroni correction applied to results of multiple-linear-
regression analyses has been shown to be overly conservative (37).

DISCUSSION

Here, we have introduced a new method for estimating the transmission bottleneck
size of pathogens from next-generation sequencing data from donor-recipient pairs.
We have further analyzed how well this beta-binomial sampling method performs in
comparison to two existing methods in the literature: the presence/absence method
and the binomial sampling method. Using a simulated data set, we have demonstrated
that both the presence/absence method and the binomial sampling method (for
different reasons) systematically underestimate the transmission bottleneck size and
that the latter can lead to undesirable rugged likelihood curves. In contrast, the
beta-binomial sampling method, as expected, is able to recover the simulated bottle-
neck size (Fig. 2B) and is able to accurately predict the probability that a donor variant
would be identified in a recipient host under a given variant calling threshold (Fig. 3A).

FIG 6 Relationships between transmission bottleneck size estimates and characteristics of the donor
host. (A) Relationship between inferred transmission bottleneck sizes and the donor’s maximum symp-
tom score. (B) Relationship between inferred transmission bottleneck sizes and the donor’s maximum
temperature. In panels A and B, points are labeled by transmission pair, with green points denoting
H1N1p transmission pairs and orange points denoting H3N2 transmission pairs. Dashed lines show
marginal linear regressions calculated from the multiple linear regression using both maximum donor
temperature and maximum donor symptom score as predictor variables. Maximum donor temperature
was found to be a significantly positive predictor of Nb (r � 0.79; P � 0.035), while maximum donor
symptoms were not predictive of Nb (r � 0.13; P � 0.52).
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Application of the beta-binomial sampling method to a previously reported H1N1p and
H3N2 NGS data set showed a high degree of heterogeneity between bottleneck size
estimates across transmission pairs (Fig. 4). A negative binomial distribution was fit to
all of the variants, yielding an overall mean Nb of 196 virions and a 95% range of 66 to
382 virions (Fig. 4A and B and 5A).

The bottleneck sizes that we estimated for the H1N1p and H3N2 transmission pairs
are close to previous estimates of the effective population size, Ne, arrived at by Poon
et al. for this data set (28), although we were able to further estimate transmission
bottleneck sizes by transmission pair, and our method was able to make use of a much
larger number of identified variants. Our bottleneck size estimates are consistent with
the more qualitative observations of loose transmission bottlenecks for influenza A
virus transmission in horses (20, 22, 23), pigs (20, 21), and dogs (19). Our Nb estimates,
however, are considerably larger than the previous bottleneck sizes estimated for this
virus by Varble et al. (27), Frise et al. (29), and McCaw et al. (17). The experimental study
by Varble et al. showed that the route of transmission affected the bottleneck size, with
contact transmission giving rise to larger bottlenecks. Those researchers found that, of
the 71 to 100 distinct viral tags, only 7 to 24 of these tagged viruses were detected in
the recipients following infection via direct contact (27). The number of distinct viral
tags, however, might reflect the lower limit of the bottleneck size because it is possible
that more than one virion passing through the bottleneck would have the same tag.
Frise et al. reported a mean bottleneck size of 28.2 infectious genomes for contact
transmission of an efficiently transmitted H1N1 strain in ferrets, although they were
unable to identify an upper limit to the bottleneck size confidence interval (29). Both
of those estimates are much larger than the earlier estimate of 3.8 virions by McCaw et
al. for contact transmission of H1N1 in ferrets (17). While there are other studies that
have estimated the transmission bottleneck size in the context of viral adaptation to a
new host species (24–26), comparisons with those studies are inappropriate because
these bottlenecks are subject to strong selective forces, which considerably narrow the
transmission bottleneck size (38).

The Nb estimates for influenza virus transmission in the data set described here, in
both our study and the original analysis by Poon et al., are considerably higher than
previous quantitative estimates of the bottleneck size for contact transmission of IAV
(17, 27, 29). Notably, those previous estimates of Nb were arrived at by using data from
experimental ferret infections. With a recent analysis showing that secondary attack
rates in ferret studies are considerably higher than human secondary attack rates,
controlling for infecting subtype (39), one possibility for these discrepancies is that
ferrets and other small mammals may require fewer influenza A virions to successfully
initiate infection.

In particular, the bottleneck size estimate by McCaw et al. was significantly lower
than our Nb estimates for contact transmission of influenza virus (17). One possible
explanation for the low Nb estimate is that the “competitive-mixture” method that
those authors used to calculate bottleneck size considers only two viral populations,
analogous to the estimates derived from a single variant in the methods that we
considered. The competitive-mixture method is thus highly susceptible to fluctuations
between donor and recipient variant frequencies arising from stochastic viral dynamics
in the recipient. Thus, for the same reason that the binomial sampling method that we
describe here underestimates bottleneck sizes, we would expect this competitive-
mixture method to considerably underestimate bottleneck sizes. However, this method
is free of one of the necessary assumptions made for each the three methods that we
considered, namely, that the variants considered are independent. The independence
assumption is clearly violated in this data set given the extensive genetic linkage within
influenza virus gene segments (40). We can, however, somewhat control for the effects
of linkage by selecting only one variant per gene segment. This data-thinning approach
still assumes independence across gene segments that, while not ideal, may be
supported by recent experimental evidence showing high levels of reassortment in
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vitro (41). If intrahost reassortment occurs at similar rates in vivo, then sampling of only
one variant per gene segment should remove much of the bias due to linkage.

The methods that we considered make other assumptions that may also have
impacted transmission bottleneck size estimates. These assumptions include that (i)
donor-identified variants did not originate de novo in any recipient hosts, (ii) variants
were biallelic, and (iii) variants were selectively neutral. Significant levels of de novo
evolution of variants in recipient hosts would artificially increase estimated bottleneck
sizes. Therefore, these methods may not be appropriate for pathogens causing chronic
infections, such as HIV, where sampling of the recipient host can occur years after the
initiation of infection. However, we do not expect substantial de novo evolution of
variants to occur over the course of an acute influenza virus infection based on recent
findings (38) and the observation that the vast majority of recipient-identified variants
were also present in the donor. Therefore, we do not expect this assumption to have
significantly influenced our bottleneck size estimates for influenza virus.

We also do not expect the second assumption—that loci are biallelic—to have
biased our bottleneck size estimates. This is because no sites used in our bottleneck size
calculations contained more than one variant allele above our variant calling threshold
of 3%. This assumption, however, could be removed in future uses of the beta-binomial
sampling method by appropriately modifying the likelihood expressions to account for
more than one variant per site.

The third assumption, of selective neutrality, is the one that could greatly affect the
accuracy of our bottleneck size estimates if not met. Selection, either for or against a
variant, would lead to larger differences in variant frequencies between a donor and a
recipient host than would be expected for neutral variants. Larger differences in variant
frequencies would bias the estimated transmission bottleneck sizes toward smaller
values. Thus, our bottleneck size estimates, which assume neutrality, are necessarily
conservative estimates.

In addition to confirming the large transmission bottleneck size for IAV in this data
set, we have shown that estimated bottleneck sizes vary considerably across transmis-
sion pairs. This observation is in agreement with data from previous influenza virus
transmission studies in ferrets. Those studies showed that the bottleneck stringency for
IAV is greatly influenced by the route of transmission, with contact transmission being
much looser than respiratory/airborne transmission (27, 29). Our method’s ability to
infer bottleneck sizes of individual transmission pairs means that such analyses could
potentially distinguish the route of transmission. Moreover, our analysis identified an
association between the severity of infection of the donor, as measured by tempera-
ture, and the size of the transmission bottleneck, where more severe infections were
associated with larger bottlenecks. This finding is intriguing, given that a previous study
showed a positive relationship between host temperature and viral load during early
infection (42), and another study showed a positive relationship between host tem-
perature and nasal shedding (43). Our finding suggests that donor viral load and/or
nasal shedding levels may impact transmission bottleneck sizes. Our finding that donor
symptom scores do not explain any variation in bottleneck size estimates across
transmission pairs is perhaps not surprising, given that some of the symptoms included
in the score (e.g., headache) are unlikely to contribute to donor infectiousness.

In this study, we have developed a new statistical approach that can be used to
accurately infer transmission bottleneck sizes for acute viral infections, such as influenza
virus, respiratory syncytial virus (RSV), and norovirus, using NGS data from identified
donor-recipient pairs. This beta-binomial sampling method accounts for the possibility
of false-negative variants that are not called as present due to necessary variant calling
thresholds. This method further accounts for changes in variant frequencies between
the time of infection of the recipient and the time of pathogen sampling from the
recipient that arise due to stochastic replication dynamics early in infection. Given the
importance of the transmission bottleneck size in regulating the rate of pathogen
evolution at the level of the host population, estimation of the transmission bottleneck
size is a necessary component in the analysis of pathogens important to public health.

Sobel Leonard et al. Journal of Virology

July 2017 Volume 91 Issue 14 e00171-17 jvi.asm.org 14

http://jvi.asm.org


Although methods such as viral tagging to estimate the bottleneck size for experimen-
tal infections exist, these techniques are not applicable to natural infections. Hence, this
work provides a strong foundation for future estimations of bottleneck sizes from viral
sequence data that, importantly, can be applied to clinical samples.

MATERIALS AND METHODS
Development of the beta-binomial sampling method. Here, we derive the beta-binomial sam-

pling method for inferring transmission bottleneck sizes from pathogen NGS data. The final likelihood
expressions for this method are provided in equations 3 and 4. As described above, this method allows
variant frequencies in the recipient host to change between infection and sampling (Fig. 1) due to
stochastic pathogen dynamics occurring during the process of replication. More concretely, early in
infection, when there are only a small number of replicating virions, stochasticity in viral growth is
expected to have a large effect. For a stochastic birth-death process with a constant birth rate, �, and a
constant death rate, 	, the probability mass function for the viral population size originating from a
single virion that successfully establishes infection (44) is given by

P (Nk (t) � k) � (1 � 
t) 
t
k � 1, k � 1 (8)

where t is the time of sampling and 
t �
� �e�� � 	�t �1�

�e���	�t
� 	

. For the bursty replication that characterizes

many viruses, equation 8 is still approximately true at long times with an adjusted value of 
t.
The population sizes stemming from each of the Nb founding virions, contingent on their successful

establishment, are thus geometrically distributed random variables. As these population sizes are likely
to be very large at the time of sampling, we can approximate them as being exponentially distributed
random variables. Under this approximation, the distribution of the fractions of the population that
descend from each of the founding virions is Dirichlet(1,1,. . .1), with Nb 1’s, one for each ancestor. A
subset, k, of these founder virions carries the variant allele; the remaining subset of these founder virions
(Nb � k) carries the reference allele. Collapsing the Dirichlet distribution yields that the fraction of the
population carrying the variant allele is distributed as Beta(k, Nb � k). Remarkably, this fraction does not
depend on the within-host viral birth rate, �; the death rate, 	; the time of sampling, t; or the burstiness
of replication. To obtain the overall likelihood of population bottleneck size, Nb, we simply have to
consider all possible scenarios of how many virions out of the total Nb virions transferred carried the
variant allele. Under the assumption that the founding pathogen population is randomly sampled
from the pathogen population of the donor host, the probability that the founding population of
Nb virions carries k variant alleles is given by the binomial distribution p_bin �k|Nb, vD,i� � Pr �X �

k|Nb, vD,i� � �Nb
k � �vD,i�k �1 � vD,i�Nb � k, where the number of trials is given by Nb and the success

probability is given by �D,i, the frequency of variant i in the donor. Thus, the overall likelihood of
population bottleneck size, Nb, for variant i is given by equation 1, where �R,i is the frequency of variant
i in the recipient and the term p_beta(�R,i|k, Nb � k) is given by the beta probability density function,
evaluated at �R,i.

Accommodating sampling noise arising from a finite number of reads is simple, leading to minor
modifications to the above-described equation (equation 1), resulting in equation 3, where Rvar,i is the
number of reads of the variant allele in the recipient sample at site i and Rtot is the total number of reads
at that site. The term p_betabin(Rvar,i|Rtot,i, k, Nb�k) is given by the beta-binomial distribution evaluated
at Rvar,i and parameterized with Rtot,i as the number of trials and parameters k and Nb. Equation 3 thus
incorporates noise both from the sampling process itself and from the process of stochastic pathogen
growth. The overall likelihood of bottleneck size Nb for a transmission pair is simply the product of the
site-specific likelihoods.

As mentioned above, we expect that variant calling thresholds will impact the likelihood calculations
used in the bottleneck size estimation. These thresholds will force some variant alleles in the recipient
viral population to be called absent when they are actually present at frequencies below the value of the
chosen threshold. Since a true absence of a variant allele is more likely at smaller bottleneck sizes,
conservative variant calling thresholds will bias Nb estimates toward lower values. Simply excluding
variants that are called absent from the analysis, however, will also bias bottleneck size estimates, this
time toward higher values. To get around this, we do not recommend simply lowering the variant calling
threshold because NGS sequencing errors can also give rise to false positives, thereby inappropriately
inflating bottleneck size estimates. Instead, we recommend accommodating below-threshold variants in
the following way. For a donor-identified variant, i, that is called absent in the recipient (whether truly
absent or just called absent), the likelihood of the transmission bottleneck size is given by equation 2,
where T is the variant calling threshold (e.g., of 3%) and p_beta_cdf(�R,i � T|k, Nb � k) is given by the beta
cumulative distribution function evaluated at the variant calling threshold. We can again incorporate the
effects of sampling noise by considering the number of reads at the variant site with equation 4, where,
in this case, p_betabin_cdf(Rvar,i � TRtot,i|Rtot,i, k, Nb�k) is given by the beta-binomial cumulative
distribution function evaluated at the number of reads that would qualify as falling at the variant calling
threshold.

Once the transmission bottleneck sizes have been estimated by using the beta-binomial
sampling method, the probability of the true presence/absence of a variant in the recipient host can
be determined for any given donor variant frequency. Similarly, the probability that a variant is
called present/absent can be determined for any given donor frequency, �D,i, given a sufficiently
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high read count in the recipient host. Given a high read count, the probability that a variant is called
present in the recipient is given by �k � 0

Nb 	1 � p_beta_cdf �vR,i � T|k, Nb � k�
 p_bin �k|Nb, vD,i�.
The binomial sampling method. In contrast to the beta-binomial sampling method, the binomial

sampling method implicitly assumes that the infecting virus population is subject to deterministic
dynamics between the time of infection and the time at which the recipient virus is sampled and, thus,
that the sampled pathogen population in the recipient perfectly reflects the founding pathogen
population under the common assumption of selective neutrality. The founding pathogen population is,
as in the beta-binomial sampling method, assumed to be randomly sampled from the pathogen
population of the donor host. The site-specific likelihood of the transmission bottleneck size, Nb, is

therefore given by equation 6, where p_bin �Rvar,i|Rtot,i, fk� � �Rvar,i

Rtot,i� � k

Nb
�Rvar,i �1 �

k

Nb
�Rtot,i � Rvar,i

. The

overall likelihood of the transmission bottleneck size, Nb, is calculated by multiplying across all site-
specific likelihoods.

The above-described expression incorporates sampling noise, which is important when only a small
number of reads are available. With an increasing number of reads, the sampling noise necessarily goes
down, making p_bin(Rvar,i|Rtot,i, k/Nb) � 0 in cases where Rvar,i/Rtot,i � k/Nb. This will result in dramatic
differences in likelihood values between small values of Nb and, more generally, multimodal likelihood
curves that are very sensitive to specific variant frequencies in the recipient host.

One basic issue with this approach is therefore the assumption of where differences in variant
frequencies across donor-recipient pairs stem from. Under this model, any observed differences are due
to the presence of a transmission bottleneck because it assumes that the sampled pathogen population
in the recipient perfectly reflects the founding pathogen population. This assumption is met under a
scenario of deterministic, and neutral, viral population dynamics between the time of the transmission
event and the time of pathogen sampling from the recipient host. For example, if we assume deter-
ministic exponential growth from the time of the transmission event to the time of sampling, the
dynamics of the viral population that carries the variant allele is given by N�(t) � N�(0)ert, and similarly,
the dynamics of the viral population that carries the reference allele is given by Nr(t) � Nr(0)ert. At the
time of the transmission event (t � 0), the fraction of the viral population that carries the variant allele
is given by k/Nb. At time t, the fraction of the viral population that carries the variant allele is given by
N�(t)/[N�(t) � Nr(t)], which simplifies to k/Nb.

The bottleneck size estimates inferred with the binomial sampling method are again subject to the
effects of false-negative variant calls. We can modify the binomial sampling method to incorporate the
variant call threshold in a way similar to how the threshold frequency was incorporated into the beta-
binomial sampling method. For a donor-identified variant, i, that is called absent in the recipient
(whether truly absent or just called absent), the likelihood of the transmission bottleneck size is explained
by equation 7. The probability that the number of variant reads falls below the level required for the
variant to be called present is given by the binomial cumulative distribution function p_bin_cdf

�Rvar,i � <TRtot,i=|Rtot,i,
k

Nb
� � �j � 0

<TRtot,i= �Rtot,i

j � � k

Nb
�j �1 �

k

Nb
�Rtot,i� j

, where <TRtot,i= is the largest integer

smaller than TRtot,i.
Once transmission bottleneck sizes have been estimated by using the binomial sampling method,

the probability of the true presence/absence of a variant in the recipient host can again be determined
for any given donor variant frequency. Similarly, the probability that a variant is called present/absent can
be determined for any given donor frequency, �D,i, provided information on the total read count in the
recipient. Specifically, in the case of a high number of reads, the probability that a variant is called
present (whether it is absent or present in the recipient host) is given by �k � 0

Nb B �k, Nb, T� p_bin
�k|Nb, vD,i�, where B (k, Nb, T) is a Boolean function that evaluates to 1 if k/Nb � T and 0 otherwise.

Simulated deep-sequencing data. To illustrate the use of the methods used to estimate Nb, we
generated a mock deep-sequencing data set via simulation. For this data set, we assumed a single
donor-recipient pair, with 500 independent donor-identified variants. Independently for both the donor
and the recipient, we drew the total number of reads at each of the 500 sites from a normal distribution
with a mean of 500 reads and a standard deviation of 100 reads. Draws from the normal distribution were
rounded to the nearest integer, and those that fell at 0 or below were discarded. For the donor, we then
first determined “true” variant frequencies at each of these sites by drawing from an exponential
distribution with a mean frequency of 0.08. Variants with observed frequencies below the variant calling
threshold of 0.03 or above 0.50 were discarded. To determine the number of variant reads at a given site
in the donor, we drew from a binomial distribution with the number of trials being the total read count
at that site in the donor and the probability of success being given by that site’s true variant frequency
in the donor. We then incorporated sequencing error by again using draws from binomial distributions.
Specifically, we determined the number of true reference reads in the donor that were misclassified as
variant reads and the number of true variant reads in the donor that were correctly classified as variant
reads, based on an assumed sequencing error rate of 1%. The total number of observed variant reads at
a given site in a donor was then calculated as the sum of the misclassified reference reads and the
correctly classified variant reads. Observed variant frequencies in the donor were then calculated by
dividing the number of observed variant reads by the total number of observed reads at each site. In this
manner, we simulated 500 variants, with observed frequencies in the range of 3 to 50%. The lower bound
value of 3% was our assumed variant calling threshold; the upper bound value of 50% coincided with
a variant allele always being the minority allele.

For the recipient, we simulated the total number of variant reads at each site by first simply
determining, at each site, the number of virions in the founding population that carried the variant allele,
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under the assumption of a transmission bottleneck size, Nb, of 50. This was done, at each site, by drawing
from a binomial distribution with the number of trials being Nb and the probability of success being the
true variant frequency at that site in the donor. For the simulated data set, we first determined the true
fraction of the viral population carrying the variant allele at the time of sampling by drawing from a beta
distribution with the shape parameter being the number of variant alleles in the founder population and
the scale parameter being the difference between the founding population size of Nb and the number
of variant alleles in the founder population. The true number of variant reads was then determined by
drawing from a binomial distribution with the number of trials being the total number of reads at that
site and the probability of success being the fraction of the population at the time of sampling that
carried the variant allele. We then obtained the total number of variant reads at a given site in a recipient
by introducing sequencing error to the true number of variant reads and the true number of reference
reads.

Application to influenza A virus deep-sequencing data. We applied the three methods for
bottleneck size inference described in the introduction to influenza A virus deep-sequencing data
examined previously (28). In that study, Poon and colleagues identified donor-recipient transmission
pairs based on household information and the genetic similarities between the viral populations in
infected hosts. We base our analyses on these previously identified transmission pairs. In some cases,
there were several members of a household who became infected. In this subset of cases, rather than
considering all feasible pairwise combinations of who infected whom, we assumed that the index case
transmitted the infection to the remaining household members. With this assumption, the 9 identified
transmission pairs for influenza A virus subtype H1N1p were 681_V1(0) ¡ 681_V3(2), 684_V1(0) ¡
684_V2(3), 712_V1(0) ¡ 712_V1(4), 742_V1(0) ¡ 742_V3(3), 751_V1(0) ¡ 751_V3(1), 751_V1(0) ¡
751_V2(3), 751_V1(0) ¡ 751_V2(4), 779_V1(0) ¡ 779_V2(1), and 779_V1(0) ¡ 779_V1(2), where X_VY(Z)
refers to household X, visit Y, and subject Z and the arrow demarcates transmission from the donor to
the recipient. The 7 identified transmission pairs for influenza A virus subtype H3N2 were 689_V1(0) ¡
689_V2(2), 720_V1(0) ¡ 720_V2(1), 734_V1(0) ¡ 734_V3(2), 739_V1(0) ¡ 739_V2(2), 739_V1(0) ¡
739_V2(3), 747_V1(0) ¡ 747_V2(2), and 763_V1(0) ¡ 763_V2(3). The deep-sequencing data are publically
available (28) (see https://www.synapse.org/#!Synapse:syn8033988). We called variants and determined
variant frequencies from these data using VarScan (45, 46), using a variant calling threshold of 3%, a
mean quality score of 20, and a P value of 0.05. We provide variants and their frequencies used in this
study in Data Set S1 in the supplemental material.

Calculation of overall transmission bottleneck sizes across transmission pairs. To calculate trans-
mission bottleneck sizes over multiple transmission pairs, we did not take simply the sum of log likelihoods
across transmission pairs. Taking simply the sum would inappropriately give greater weight to transmission
pairs with a larger number of donor-identified variants. To weight each of the transmission pairs equally, we
scaled the log likelihood of each transmission pair based on the number of variants identified in that

transmission pair, such that the overall log likelihood was given by �p � 1
N

nmax

np
logLp �Nb�, where N is the

number of transmission pairs, np is the number of donor-identified variants in transmission pair p, nmax equals
max(np), and logLp(Nb) are the log likelihoods across Nb values in transmission pair p.
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