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Klotho: a humeral mediator in CSF and plasma that
influences longevity and susceptibility to multiple
complex disorders, including depression
MG Pavlatou1, AT Remaley2 and PW Gold1

Klotho is a hormone secreted into human cerebrospinal fluid (CSF), plasma and urine that promotes longevity and influences
the onset of several premature senescent phenotypes in mice and humans, including atherosclerosis, cardiovascular disease, stroke
and osteoporosis. Preliminary studies also suggest that Klotho possesses tumor suppressor properties. Klotho’s roles in these
phenomena were first suggested by studies demonstrating that a defect in the Klotho gene in mice results in a significant decrease
in lifespan. The Klotho-deficient mouse dies prematurely at 8–9 weeks of age. At 4–5 weeks of age, a syndrome resembling human
ageing emerges consisting of atherosclerosis, osteoporosis, cognitive disturbances and alterations of hippocampal architecture.
Several deficits in Klotho-deficient mice are likely to contribute to these phenomena. These include an inability to defend against
oxidative stress in the central nervous system and periphery, decreased capacity to generate nitric oxide to sustain normal
endothelial reactivity, defective Klotho-related mediation of glycosylation and ion channel regulation, increased insulin/insulin-like
growth factor signaling and a disturbed calcium and phosphate homeostasis accompanied by altered vitamin D levels and ectopic
calcification. Identifying the mechanisms by which Klotho influences multiple important pathways is an emerging field in human
biology that will contribute significantly to understanding basic physiologic processes and targets for the treatment of complex
diseases. Because many of the phenomena seen in Klotho-deficient mice occur in depressive illness, major depression and bipolar
disorder represent illnesses potentially associated with Klotho dysregulation. Klotho’s presence in CSF, blood and urine should
facilitate its study in clinical populations.
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INTRODUCTION
Klotho is the name of the Greek goddess who spins the web of
time and regulates the span of life. In both humans and
experimental animals, Klotho promotes longevity, while distur-
bances in Klotho levels or functions are associated with multiple
senescent phenotypes.1–3 We will present an overview of the data
regarding Klotho secretion in humans and its relationship to
health and disease. The data in humans are highly concordant
with findings in mice, and the homology between the human
gene and the mouse gene exceeds 80%.4 Thus, the Klotho-
deficient mouse is likely to be a good model system for helping us
understand the mechanisms by which Klotho works, and serves as
a guide for further studies in humans.
The human Klotho gene was identified by Matsumura et al.

Sequence analysis of the isolated human Klotho complementary
DNA clones revealed that there were two transcripts that
apparently arise from alternative RNA splicing. One transcript
encodes a single-pass membrane protein, which has the same
structure as the mouse Klotho protein. The other transcript is
identical with the membrane form except for a 50 bp insertion
and encodes a putative secreted form of the Klotho protein. The
secreted form of the transcript predominated over the membrane
form in all the tissues examined. Thus, the major Klotho gene

product is not the membrane protein, but, rather, the secreted
protein.4

In mice, the Klotho protein is cleaved by the alpha secretases,
ADAM10 and ADAM 17, beta-secretase and b-amyloid precursor
protein cleaving enzyme-1.5 This cleavage will eventually result in
an ectodomain that is released into the systemic circulation,
cerebrospinal fluid (CSF) and urine6,7 to potentially mediate the
widespread humeral impacts of Klotho (Figure 1a). These include
protection from oxidative stress8 and cancer,9 inhibition of insulin-
like growth factor-1 (IGF-1)/insulin signaling10 and regulation of
multiple ion channel activity such as transient receptor potential
vaniloid 5 and 6 (TRPV5 and 6) calcium channels via its putative
sialidase activity,11 as well as, widespread involvement in Wnt
signaling12 and nitric oxide (NO) production.13

The full-length protein recruits Na+, K+-ATPase to the cell
surface in response to hypocalcemic stimuli regulating the
transepithelial Ca2+ transport in the brain choroid plexus and
the kidney, as well as the PTH secretion from the parathyroid
glands (Figure 1b).14 The full-length protein also functions as an
obligatory co-receptor for fibroblast growth factor 23 (FGF23)
converting canonical fibroblast growth factor receptor-1c into a
specific receptor for FGF23.15 FGF23 negatively regulates blood
phosphate, vitamin D16 and PTH17 levels. Eventually, Klotho is
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Figure 1. (a) Post-translation processing of Klotho protein. The transmembrane form of Klotho protein is thought to be processed by the α-
secretases ADAM10 and 17, as well as by the β-secretase by BACE1 (β-APP cleaving enzyme-1). The remaining membrane-bound fragment is a
substrate for regulated intramembrane proteolysis by γ-secretase. The cleaved ectodomain is released into the circulation from where it is
thought to exert its potential humoral effects. (b) Klotho-dependent recruitment of the Na+, K+-ATPase to the cell surface in response to
hypocalcemic stimuli. In alpha-Klotho (a-Klotho) expressing cells, hypocalcemia elicits a rapid response to securely restore normal calcium
levels. This is achieved by massive Na+, K+-ATPase recruitment to the cell surface through a combination of the ‘conventional pathway’ and the
‘a-Klotho-dependent pathway’. Alpha-Klotho is required for the rapid recruitment of Na+, K+-ATPase to the cell surface in response to low
calcium levels which occurs in conjunction with the a-Klotho cleavage and release. CSF, cerebrospinal fluid.
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involved in every step of fine-tuned time-dependent calcium
regulation through multiple feedback loops that rapidly adjust
extracellular calcium levels, maintaining its concentration within
strictly narrow ranges. Thus, Klotho seems to have a central role in
calcium homeostasis both in the CSF and in the periphery.18

STUDIES OF KLOTHO IN NORMALS
The normal levels of Klotho in humans, first reported by Yamazaki
et al.,19 range from 239 to 1266 pg ml− 1 (mean± s.d.;
562 ± 146 pg ml− 1) and correlates positively with phosphate and
negatively with age, calcium, FGF23, BUN and creatinine in blood.
Klotho levels in children (mean± s.d.; 952 ± 282 pg ml− 1) are
almost double (mean± s.d. 562 ± 146),19 whereas in the umbilical
vein blood they are almost five times those in normal adults.20

KLOTHO IN HUMAN LONGEVITY
To determine the role of altered Klotho gene in longevity, Arking
et al.1 conducted a search for functional variants of Klotho in three
distinct populations consisting of newborn and elderly Bohemian
Czechs, Baltimore Caucasians and Baltimore African Americans. In
all the three groups, they identified an allele of Klotho, KL-VS,
which was defined by six single-nucleotide polymorphisms (SNPs)
in complete linkage disequilibrium. Allele-specific oligonucleotide
hybridation revealed three mutations in exon 2, two of which
resulted in amino acid substitutions. The change in amino acid at
position 352 was a phenylalanine to valine, whereas the change in

amino acid position 370 was a cysteine to serine substitution.
Homozygosity for these mutations was significantly less frequent
in the elderly than in newborns in all the three populations. In
Bohemian Czechs, but not in Baltimore Caucasians or Baltimore
African Americans, heterozygosity was more prevalent in the
elderly suggesting a survival advantage. Kaplan–Meier survival
curves stratified by the genotype showed a positive effect for
lifespan in Bohemian Czechs older than 80 years who were
heterozygous for the KL-VS allele.1

Multiple examples of heterozygote advantage in conjunction
with homozygote disadvantage exist, including CFTR allele ΔF508
(ref. 21) and hemoglobin S.22 Thus, the advantage in heterozygous
status is highly dependent on the presence of specific environ-
mental burdens, in contrast to homozygosity, which is not. The
V352 substitution in Klotho gene is likely to be important because
phenylalanine at this position is remarkably conserved in
homologous proteins in eukaryotic organisms. Cysteine at the
370 position is only seen in the first family I glycosidase domain of
human Klotho. This may interfere with Klotho function in
glycosylation. Extracellular domain of Klotho increases cell surface
abundance of TRPV5 by removing terminal sialic acids from their
N-linked glycan chains. This removal in turn, permits binding of
galactose-N-acetyloglucosamine (LacNAc) to galectin-1 preventing
channel endocytosis (Figure 2).23 N-glycan-mediated binding to
galectins is important in regulating the residence time of cell
surface glycoproteins. Altered post-translational modification such
as glycosylation has been implicated in the development of
complex diseases such as type 2 diabetes, cancer metastasis and

Figure 2. Klotho-mediated retention of TRPV5 on the cell surface. The number of TRPV5 channels on the cell membrane through which
calcium influx is achieved is dependent on the final balance between two counterbalancing mechanisms: protein insertion via the Golgi
apparatus and protein removal via endocytosis in endosomes. LacNac (N-acetyllactosamine) is a ligand for galactin-1. Sialic acids prevent
binding of LacNac to galectin-1. Removal of the terminal sialic acids from N-glycan of TRPV5 channels by secreted Klotho permits binding of
LacNac to galecting-1 preventing channel endocytosis. That will eventually result in accumulation of TRPV5 on the cell surface and increased
calcium flow into the cell. TRPV, transient receptor potential vaniloid.
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aging.24–26 Many models of aging also indicate accelerated or
excessive post-translational modification of proteins, lipids and
nucleic acids. Under normal ambient sugar concentration, non-
enzymatic condensation reactions, between reducing sugars and
proteins or lipids and nucleic acids, (glycation) proceed slowly and
the final products (advanced glycation end products-AGE) are
efficiently eliminated from the circulation. During hyperglycemia,
however, AGE and other glycotoxin production exceeds the
detoxification ratio. Accumulation of these products becomes
toxic for tissues and organs.27–29 It is possible that the glycosidase
activity of Klotho contributing to the effective internalization and
subsequent elimination of AGEs, inhibits the excess formation of
AGEs and their deleterious effects on tissues.
Suppression of aging in Klotho transgenic mice has been

attributed to Klotho ability to decrease the insulin/IGF-1 signaling
by suppressing tyrosine phosphorylation of insulin and IGF-1
receptors thus, reducing signaling events downstream of receptor
activation, including tyrosine-phosphorylated insulin receptor
substrate 1 and 2 (IRS-1, IRS-2), and their association with the
subunit of phosphoinositide 3–kinase p85.10 These data are
compatible with the finding that IRS-1 knockout in mice
significantly prolongs life.30 Extended lifespan upon negative
regulation of insulin and IGF-1 signaling is an evolutionarily
conserved mechanism to suppress aging.31 An additional
potential mechanism is that a reduction in insulin-stimulated
intracellular glucose availability potentially prevents intracellular
lipid overload and lipotoxicity, a proposed mechanism in the life-
shortening metabolic syndrome.32 In this regard, it is thus possible
that the mutations observed in the resultant KL-VS variant may
alter Klotho levels or function contributing to the development
and premature appearance of various diseases associated with
increased morbidity and mortality.

THE ROLE OF KLOTHO IN CARDIOVASCULAR DISEASE
The premature death of Klotho-deficient mouse at 8–9 weeks of
age was linked to the development of a syndrome resembling
human ageing, at 4–5 weeks of age, consisting of premature
atherosclerosis, osteoporosis, infertility, cognitive disturbances
and alterations of hippocampal architecture.3,33,34

Lower plasma Klotho levels were independently associated with
increased risk of cardiovascular disease in community-dwelling
adults. The levels of Klotho in plasma were also positively
associated with high-density lipoprotein cholesterol levels and
negatively with age and C-reactive protein.35 To further determine
the influence of Klotho to atherosclerotic risk in humans two
independent samples that included individuals with documented
cardiovascular disease and their healthy siblings, were studied.
The KL-VS allele was an independent risk factor for occult coronary
artery disease, as assessed by an exercise thalium tomography
scan and/or an exercise electrocardiogram. Hypertension and
increasing high-density lipoprotein levels masked or reduced the
risk respectively and current smoking increased the risk.2

A heterozygosity advantage of the KL-VS allele with respect to
cardiovascular risk factors and stroke was reported to a homo-
geneous population of 525 Ashkenazi Jews, like in the Bohemian
Czechs. In this study, longevity was also positively affected. On the
other hand, homozygosity was associated with the worst
outcomes.36 A homozygosity disadvantage with higher stroke
incidence compared with heterozygotes in subjects younger than
40 years of age was also reported for the Kl-VS polymorphism.37

Several other polymorphisms of human Klotho gene have been
recently associated with alterations in cardiovascular function and
increase susceptibility to coronary artery disease. The Klotho SNP
rs650439, was significantly associated with mean carotid artery
intima-media thickness and carotid atherosclerosis in hypertensive
subjects suggesting that the Klotho SNP rs650439 may affect the
progression of atherosclerosis in hypertensive patients.38 Another

Klotho SNP, the G395 was also found to be associated with systolic
blood pressure in healthy Japanese women.39 The same SNP was
found to be an independent risk factor for atherosclerotic
coronary artery disease.40 Subjects older than 40 years with the
C1818T variant of Klotho gene were found to have lower plasma
NO levels, suggesting an age-specific effect of Klotho C1818T
variant, which becomes pronounced with age.41

Decreased bioavailability of NO contributes to vascular
endothelial dysfunction, the initial step in the development of
atherosclerosis.42 Endothelial dysfunction occurs when endo-
thelial cells lose their ability to defense against thrombosis and
inflammation in response to various metabolic and environmental
stressors.43 Increased production of reactive oxygen species,
impaired endothelium-dependent vasorelaxation, high intracellular
calcium levels, increased endothelial permeability and increased
expression of adhesion molecules, cytokines and chemokines that
augment leucocyte diapedesis and platelet aggregation, in
addition to decreased NO production, constitutes endothelial
dysfunction.44,45

Klotho seems to have a positive role in endothelium physiology
ameliorating endothelial dysfunction through multiple pathways.35

The Klotho-deficient mouse shows decreased NO biosynthesis
and impaired vasodilation. Endothelial function can be restored
by parabiosis with wild-type mice.13 In Otsuka Long–Evans
Tokushima Fatty Rat, an animal model of atherosclerotic disease,
which demonstrates multiple atherogenic risk factors including
hypertension, obesity, severe hyperglycemia and dyslipidemia,
adenovirus-mediated Klotho gene delivery ameliorated vascular
endothelial dysfunction, increased NO production, reduced
elevated blood pressure, and prevented medial hypertrophy and
perivascular fibrosis.46

In vitro, Klotho induces NO production in human umbilical vein
endothelial cells via activation of c-AMP-PKA pathway. The
activation of c-AMP pathway by Klotho also induces a two-fold
increase in manganese superoxide dismutase (Mn-SOD) expres-
sion, either directly or through increased NO production.47

Circulating Klotho confers increased resistance to oxidative
stress through its ability to inhibit insulin/IGF-1 signaling, down-
stream targets of which are FoxO forkhead transcription factors
(FOXOs). Binding of Klotho protein to cell surface receptors signals
inhibition of FOXO phosphorylation and promotes its nuclear
translocation. The nuclear FOXO then directly binds to the SOD2
promoter, and upregulates its expression, facilitating removal of
reactive oxygen species. Possibly Klotho also activates FOXO not
only by inhibiting Akt, but also through inhibiting SGK and/or
activating JNK or beta-catenin.8 Crossing the Klotho-deficient
mouse with a mouse heterozygous for deletion of IRS-1 rescues
the arteriosclerotic phenotype.10

Klotho in the systemic circulation maintain endothelial integrity
by regulating transient receptor potential canonical-1-mediated
calcium entry in endothelial cells. Klotho binds to both vascular
endothelial growth factor receptor-2 and TPRC1 complex mediat-
ing their internalization after vascular endothelial growth factor
stimulation thus regulating transient receptor potential canonical-
1 expression level on the plasma membrane. In Klotho-deficient
mice, calcium influx is aberrant resulting in vascular hyperperme-
ability with increased apoptosis owing to decreased expression of
endothelial cadherin and activation of calcium-dependent pro-
teases, calpain and caspase-3.48 Cellular apoptosis and vascular
cell senescence was attenuated in human umbilical vein
endothelial cells when treated with Klotho recombinant protein.
Klotho mediated this effect by inducing transient phosphorylation
of mitogen-activated kinases.49

Klotho may also buffer against endothelial inflammation. Thus,
Klotho inhibited downstream effects of tumor necrosis factor-a,
such as activation of the expression of intracellular and vascular
cell adhesion molecules ICAM-1 and VCAM-1 in human umbilical
vein endothelial cells and the rat aorta. Furthermore, Klotho
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inhibited NF-kB activation, IkB phosphorylation, tumor necrosis
factor-a induced inhibition of eNOS phosphorylation, and mono-
cyte adhesion to human umbilical vein endothelial cells.50

KLOTHO IN OSTEOPOROSIS
Two SNPs, G395 and C1818T associated with cardiovascular
disease were also found to be associated with bone mineral
density in women but contradictive results exist regarding the age
prevalence of this association.39 The contribution of a micro-
satellite polymorphism at the human Klotho locus to bone density
and spondylosis of the lumbar spine in healthy Japanese post-
menopausal women was also investigated by Ogata et al.51 Two
types of alleles were associated with bone density in the older
population, whereas another distant allele was associated with
spondylosis in the younger population, suggesting the relation-
ship of Klotho to etiology of osteoporosis and spondylosis in
independent ways.51

A complex repertoire of systemic and local factors contributes
to bone health, dysregulation of which results in increased bone
loss and the clinical manifestations of osteoporosis.52,53 Until the
discovery of Klotho, the only widely accepted mediators of
calcium metabolism consisted of PTH, the calcium receptor,
calcitonin and vitamin D.54,55 The discovery of Klotho, and the
closely related compound FGF23, added a pronounced new levels
of regulation that are as equally important to any of those that
have already been the object of extensive study.56 Klotho has
key roles in the tuning of calcium extracellular concentration
maintaining normal plasma calcium levels in the context of either
hypo- or hypercalcemia in an exceedingly tight range.18

In response to hypocalcemia, over the course of seconds to
minutes the full-length Klotho facilitates the transport of Na+, K+-
ATPase to the cell membrane of the parathyroid gland and distal
convoluted tubule (DCT) of the kidneys14,55 (Figure 2b). This
creates an electrochemical gradient that eventually triggers PTH
secretion and the rapid renal transepithelial transport of calcium,
respectively. In kidney, this effect occurs in cooperation with
TRPV5, a major renal calcium channel, calbindin-D28k and sodium-
calcium exchanger-1 (NCX-1), all of which are exclusively co-
expressed with Klotho at the DCT. Thus, in Klotho-deficient mice,
the PTH response to experimentally induced low calcium levels
was significantly reduced by approximately 75%, whereas both
the direct and the PTH-mediated active reabsorption of calcium is
impaired, resulting in the excess excretion of calcium in the urine
even though plasma calcium levels are increased.14,18,57 The PTH-
mediated increase in plasma calcium levels, such as calcium
reabsorption in kidney, and calcium resorption in the bones
continues over a somewhat longer period meaning from minutes
to hours.58 Parathyroid hormone also stimulates vitamin D
production that in turn mediates intestinal calcium uptake.59

The principal effect of vitamin D is the enhancement of intestinal
calcium absorption, an effect that is mediated over the course of
hours to days.60 In addition, vitamin D enhances TRPV5 expression
and function on the apical membrane of DCT cells, and thereby
upregulates calcium reabsorption in the kidney.11,61

In turn, increased calcium suppresses the rapid transepithelial
calcium transport and PTH secretion, as well as, increased vitamin
D levels suppresses 1α-hydroxylase gene expression both by self
negative feedback regulation and via Klotho/FGF23-dependent
pathway, limiting that way further increase in plasma calcium
concentration.62 Klotho converts bone-derived FGF23 to a
receptor specific for FGF receptor-1c at the DCT. This binding
allows FGF23 to decrease 1α-hydroxylase expression in the
kidney, which encodes the rate-limiting enzyme in vitamin D
synthesis.15,16,63 FGF23, produced by the bone, thus becomes the
pivotal component in a newly discovered bone–kidney–parathyroid
axis for the regulation of calcium metabolism (Figure 3).

FGF23-deficient mice show a phenotype virtually identical to that
of the Klotho-deficient mouse.64,65

In the Klotho-deficient mouse, the net effect of the absent
Klotho results in increased plasma calcium and phosphorus
concentrations. This largely reflects the absence of Klotho for
enabling FGF23 to inhibit vitamin D levels. Hence giving high
vitamin D levels seemed to outweigh the consequences of the
rapid effects of Klotho to mobilize calcium through mainly its
reabsorption in the kidney.66 The net effect of Klotho deficiency
on bone metabolism is to result in an osteoporotic picture similar
to that seen with aging.67–69

Local factors such as cytokines strongly regulate bone cell
function and have a major role in bone remodeling and structure.
Osteoporosis, as well as other age-related phenotypes, are all
considered as chronic inflammatory diseases.70,71 Indeed, many
tissues in Klotho-deficient mice express and secrete more
inflammatory factors and accumulate more interleukin-6 in serum
compared with wild type. It was recently shown that the
intracellular form of Klotho suppresses retinoic-acid-inducible
gene-I-induced expression of interleukin-6 and interleukin-8 both
in vivo and in vitro, uncovering a possible new mechanism of
Klotho-mediated inhibition of senescence-associated inflamma-
tion and development of chronic inflammatory diseases such as
osteoporosis.72

KLOTHO AND THE KIDNEY DISEASE
Klotho is abundantly expressed in the distal nephron where it
regulates mineral metabolism.14,73 It is also present in the
proximal tubule lumen where directly or more possibly from the
DCT, it inhibits phosphorous reabsorption by modulating Na-
coupled Pi transporters via enzymatic glycan modification of the
transporter proteins.74,75 Acute kidney injury and chronic kidney
disease (CKD) are states of systemic Klotho deficiency, suggesting
that Klotho is involved in the pathogenesis of renal disease. Klotho
deficiency exacerbates kidney injury and decreases markers of
renal function, whereas Klotho delivery or increased expression
acts as a renoprotective factor, in animal models of both acute
kidney injury and CKD.76,77 Renoprotective effects of Klotho has
been attributed to its antioxidant, anti-inflammatory and anti-
apoptotic properties.78–80

In humans, a recent study on CKD patients of various stages and
healthy people, showed that there is a progressive decrease in
secreted Klotho protein in urine occurring during progression of
the disease. The decrease of Klotho in urine becomes apparent
even in the early stage 1–2 in CKD patients with the lowest values
being detected in stage 5. Thus, Klotho measurement in urine
could potentially serve as an early biomarker of CKD.7

Klotho-deficient mice show hyperphosphatemia and hyper-
calcemia, decreased renal function, osteopenia and severe
calcification.3 Aberrant mineral metabolism is implicated in
hyperparathyroidism, osteodystrophy and vascular calcification
in CKD.81–84

Soft tissue calcification, and especially vascular calcification, is
one of the most prominent and severe complications of CKD,
associated with high mortality.85–87 For this reason, CKD is
included in the highest risk group for cardiovascular disease.88

As in Klotho-deficient mice, CKD patients show high levels of
phosphorus. Phosphorus overload aggravates calcification,
whereas lowering phosphorus levels reduces calcification in
these patients.89,90 Klotho seems to protect against soft tissue
calcification mainly through three mechanisms: phosphaturia,
preservation of renal function and a direct effect on vascular
smooth muscle cells by inhibiting phosphate uptake and
dedifferentiation.7,74–76,78,91 The osteopenia described in Klotho
mice is a state of low bone turnover.92 Consistently, a low turnover
bone condition has been reported in CKD suggesting that Klotho
deficiency may be also related to renal osteodystrophy.93,94 Koh
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et al.95 studied the possible involvement of Klotho in complica-
tions arising in patients with chronic renal failure. They examined
the kidneys of 10 clinically or histologically diagnosed chronic
renal failure cases. Both the expression of Klotho mRNA and the
levels of Klotho protein was greatly reduced in chronic renal
failure kidneys.95

KLOTHO IN HUMAN CANCER DEVELOPMENT
Accumulated evidence implicates Klotho in the development and
progression of several different human cancers, including breast,
cervical, colorectal, gastric and lung carcinomas.9,96–99 In 2008,
Wolf et al.,9 identified for the first time tumor suppressor activities
for Klotho in breast cancer. Breast cancer tissue expressed
significantly less Klotho than normal breast tissue. In cancer
samples, high Klotho expression was associated with smaller
tumor size. In addition, forced expression of Klotho or soluble
Klotho treatment slowed cancer cell growth, whereas Klotho
silencing enhanced proliferation. This was associated with
inhibition of IGF-1/insulin pathway, upregulation of the tumor
suppressor C/EBPbeta, p53 and FGF pathway by bFGF, in a cell-
specific manner.9 In Ashkenazi Jewish women carriers of BRCA1
mutation, heterozygosity for the Klotho functional variant KL-VS
was associated with increased risk for breast and ovarian cancers,

as well as with younger age at diagnosis of breast cancer. It is
possible that the KL-VS variant results in decreased shedding of
the Klotho that halts its proliferation inhibitory activities.100 These
data were later verified for other tumors such as lung and
pancreatic cancer.99,101 Furthermore, in pancreatic cancer, Klotho
and the Kl1 domain of Klotho administration in mice, were equally
antiproliferative though the KL1 domain had a more favorable
safety profile.101

Promoter DNA methylation is an epigenetic change that
induces inactivation of tumor suppressor genes facilitating the
aberrant cell growth.102 Consistently, Klotho gene promoter
methylation was frequently detected in gastric and colorectal
cancers where Klotho expression was also significantly reduced.
Promoter methylation of Klotho was significantly associated with a
poor outcome in gastric carcinoma patients and demethylation
with 5-aza-2′-deoxycytidine increased Klotho expression. Further-
more, ectopic expression of Klotho led to the cell proliferation
inhibition of colon cancer cell lines via the induction of cell
apoptosis and S phase cycle arrest.97,98 In cervical cancer, these
epigenetic aberrations of Klotho associated with promoter hyper-
methylation may occur at the late phase of cervical tumorigenesis
and result in loss of Klotho function as a Wnt antagonist.96

Uncontrolled activation of canonical Wnt signaling is thought to
have a crucial role during carcinigenesis.103

Figure 3. The bone–kidney–parathyroid axes. Negative feedback loops in the regulation of calcium metabolism. Increased levels of 1,25 (OH)
2D3—the active form of vitamin D—bind to the vitamin D receptor (VDR) in osteocytes, which, in turn, forms a heterodimer with the nuclear
receptor RXR. The complex afterwards directly binds to the promoter area of FGF23 gene and activates its expression. Secretion of FGF23
protein from bone suppresses further synthesis of vitamin D by either binding to the Klotho–FGFR complex in the parathyroids (bone–
parathyroid axis) or by binding to the same complex in kidneys (bone–kidney axis). In the parathyroid gland, FGF23 suppresses PTH
expression, which, in turn, suppresses the expression of Cyp27b1 gene that encodes 1a-hydroxylase, the rate-limiting enzyme in 1,25 (OH)2D3
synthesis. In the kidney–bone axis, FGF23 directly suppresses Cyp27b1 gene expression. Alpha-Klotho is required to convert the canonical FGF
receptor-1c (FgfR1c) to a receptor specific for FGF23. FGF, fibroblast growth factor.
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KLOTHO IN CENTRAL NERVOUS SYSTEM AND CENTRAL
NERVOUS SYSTEM-RELATED DISORDERS
To our knowledge, the role of Klotho in the human central nervous
system and ts association with disease has notion studied directly.
A single study of 804 subjects over 65 designed simply to
compare lower and upper tertiles of Klotho levels reported that
those in the lowest tertile had a significant increase in all-cause
mortality and significantly greater cognitive impairment, as assessed
by a MiniMental State examination score of less than 24.104

In mice, the choroid plexus is the sole site for Klotho localization
in brain (Figure 4).73 Confocal microscopy reveals that it is mainly
localized at the apical plasma membrane of ependymal cells,
which face the ventricles. In mouse choroid cells, the full-length
Klotho protein facilitates the transport of Na+, K+-ATPase creating
a sodium gradient that possibly, in concert with calcium-binding
proteins (NCX-1) and calcium channels (TRPV4) promotes calcium
export into the CSF.14,105 It should be noted that though the
Klotho-deficient mouse has a slightly increased plasma calcium
levels, CSF calcium levels are significantly reduced being 27.3%
lower than in WT mice.14

The Klotho-deficient mouse also shows an increase in mediators
of oxidative stress in hippocampus at 5 weeks of age followed by a
significant impairment of cognitive function at 7 weeks of age. The
cognitive impairment and the lipid peroxide accumulation were
prevented by α-tocopherol administration.33 At CA3 area of
hippocampus, a decrease in the number of nerve terminals and
the expression of synaptophysin, which is a marker for synaptic
vesicles was also evident.73 Furthermore, neuronal degeneration
was shown in hippocampal pyramidal cells and Purkinje cells,
whereas at the anterior horn cells in the spinal cord, a decreased
number of large neurons was also observed.34,106

Disturbed calcium homeostasis in neurons is associated with
neuronal degeneration and death, a process that can proceed
either rapidly (stroke) or slowly (Alzheimer’s disease).107,108

Recently, Klotho and transtherytin were shown to be activated
by soluble amyloid precursor protein (APP)-β products possibly
facilitating APPbeta sequestration.109 It is also possible that the
same mechanisms that increase oxidative defense in the
periphery, such as suppression of IGF-1/insulin axis, increased

NO production, inhibition of inflammatory mediators, are also
activated in the central nervous system. Recent data show that
brain specific knockout of IRS-2 mouse leads to a longer lifespan
through activation of FoXO transcription factors and SOD
production.110

Klotho lies at the intersection of multiple pathways that
influence longevity and susceptibility to complex disorders such
as atherosclerosis, osteoporosis, cancer, metabolic syndrome and
diseases of neurodegeneration. Clinical studies of Klotho have
merely scratched the surface of a whole new area of further
research into the mechanisms governing fundamental pathways
such as those involved in insulin and calcium metabolism,
mechanisms of oxidative stress and the pathogenesis of multiple
complex disorders. In addition to classic diseases of neurodegen-
eration, many of the consequences of Klotho deficiency occur in
depressive illness, including premature coronary disease, athero-
sclerosis and osteoporosis, decreased lifespan and similar changes
in hippocampal structure. Thus, alterations in Klotho function may
emerge as an important marker for predicting susceptibility to
subsequent illness and as a valuable tool in therapeutics. Even
basic properties such as the pattern of Klotho’s possible pulsatile
secretion and diurnal variation remain to be elucidated.
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