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Transient receptor potential ankyrin 1 (TRPA1) is a polymodal ion channel sensitive to temperature and chemical
stimuli. The importance of temperature and aversive chemical detection for survival has driven the evolutionary
diversity of TRPA1 sensitivity. This diversity can be observed in the various roles of TRPA1 in different species, where it is
proposed to act as a temperature-insensitive chemosensor, a heat transducer, a noxious cold transducer, or a detector
of low-intensity heat for prey localization. Exploring the variation of TRPA1 functions among species provides
evolutionary insight into molecular mechanisms that fine-tune thermal and chemical sensitivity, and offers an
opportunity to address basic principles of temperature gating in ion channels. A decade of research has yielded a
number of hypotheses describing physiological roles of TRPA1, modulators of its activity, and biophysical principles of
gating. This review surveys the diversity of TRPA1 adaptations across evolutionary taxa and explores possible
mechanisms of TRPA1 activation.

Introduction

The ability to sense and respond to external stimuli is vital for
the success of life in a fluctuating environment. Temperature is a
particularly salient variable that demands careful monitoring due
to its ubiquitous, penetrating presence and effects on the very
foundations of life—including the rates of chemical reactions
and the stability of proteins, lipids, and other molecules. Addi-
tionally, temperature cues can be used to a variety of ends,
including locating food or prey, synchronizing rhythms and
activities like mating, and alerting an organism to environmental
changes. It should not come as a surprise, therefore, that a num-
ber of temperature-sensing mechanisms have developed over the
course of evolution. For example, prokaryotes have developed
different thermosensors based on DNA, RNA, lipids, and/or pro-
teins.1 In eukaryotes, the identification of thermosensors has pre-
dominately been limited to multipass transmembrane proteins
such as the temperature sensitive Transient Receptor Potential
channels (“thermoTRPs”).

In this review, we will focus on the thermosensitive properties
of a particularly fascinating thermoTRP—transient receptor

potential ankyrin 1 (TRPA1). As a temperature sensor, TRPA1
is intriguing, because while this ancient polymodal ion channel is
found throughout vertebrates and invertebrates, it has acquired
divergent functions over the course of evolution, such as tempera-
ture or chemical sensitivity, depending on the group of species
under consideration. Additionally, TRPA1 took on more special-
ized roles in certain groups, including vipers, boas and pythons,
where the thermal sensitivity of the channel has been linked to
detection of infrared radiation emitted by warm-blooded prey.2

Therefore, due to the diversity of activation properties observed
across species, careful analyses of ortholog differences may yield
invaluable clues into the molecular mechanisms of temperature
sensitivity in TRPA1 and/or other temperature sensitive proteins
and ion channels. Before considering these questions, however,
we will briefly discuss what is known about the channel structure
and survey the broad cellular and organismal functions of
TRPA1 as a detector of external and internal hazards.

TRPA1 was originally identified as a transmembrane protein
in cultured human fibroblasts.3 The first study of TRPA1 func-
tion (then referred to as ankyrin-like with transmembrane
domains protein 1 (ANKTM1)) determined it to be a putative
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sensor for noxious cold in mice.4 Soon after the description of its
thermosensitivity, TRPA1 was found to be activated by a variety
of chemical compounds, including mustard oil and cannabinoids
(Fig. 1).5,6 Subsequent studies identified additional ligands and
revealed roles in pain, inflammation, itch, mechanical sensation,
oxygen regulation, and more.7-9

Similar to other TRPs, TRPA1 channels assemble as tet-
ramers, with each subunit composed of 6 transmembrane seg-
ments (S1-S6) with a pore loop located between S5 and S6
(Fig. 2). The intracellular N- and C-termini contain many of
the channel’s regulatory elements. TRPA1 is named for the
numerous (14–18) ankyrin repeats (ARs) on its notably long
N-terminus (»720 amino acids).3,4 ARs are 33-amino-acid-
long motifs that are generally involved in protein-protein
interactions and targeting to the plasma membrane.10 In
TRPA1, they have been proposed to be involved in traffick-
ing, mechanical gating and activation by thermal stimuli.10-16

Additionally, the ARs contain an EF hand-like motif that
may directly interact with intracellular Ca2C, an important

modulator of TRPA1 activity.17,18

However, other groups have reported
that mutations to this region do not
change the effects of Ca2C, suggesting
that the mechanism of regulation by
Ca2Crequires further clarification.19

Importantly, the N-terminus also
contains several conserved cysteine
and lysine residues in the linker
region between the ARs and the
transmembrane domains, which con-
fer TRPA1’s sensitivity to electro-
philic compounds.20,21 The C-
terminus is much shorter but contains
several sites that may contribute to
the channel’s activation as well.22,23

Both the N- and C-termini contain
putative binding sites for metals such
as zinc and cadmium, which can lead
to the pain and irritation associated
with heavy metal exposure.24-27 The
extracellular face may also contribute
to the regulation of TRPA1 and has
been suggested to interact with several
channel antagonists. Specifically, the
extracellular loops of S1-S4 have been
suggested to be involved in the bind-
ing of a tarantula toxin28 and the
pore domain is implicated in inhibi-
tion by 6-methyl-5-(2-(trifluoro-
methyl)phenyl)-1H-indazole.29

The tissue distribution of TRPA1 in
mammals facilitates its function as a
detector of chemical and thermal condi-
tions, both internally and externally. In
mammals, TRPA1 is expressed primar-
ily in the peripheral nervous system,

specifically in Ad- and C-fibers of dorsal root, trigeminal, and
nodose ganglia, and displays a high degree of overlap with tran-
sient receptor potential vanilloid 1 (TRPV1)-positive cells, in
line with its important role in somatic sensation and pain trans-
duction.4,5,30-32 In addition to the peripheral nervous system,
evidence for TRPA1 expression has been found in epithelial cells,
melanocytes, pancreatic b cells, hair cells, cancer cells, as well as
in neurons and astrocytes in the central nervous system.33-40

As a detector of potentially harmful conditions, TRPA1 is
activated by noxious chemicals, including a number of electro-
philic compounds. Electrophiles can react indiscriminately with
electron donors abundant in the intracellular environment. Since
these reactions can lead to toxic effects, such as enzyme inactiva-
tion and DNA mutations,41 it is essential to detect the presence
of these potentially damaging compounds. Notably, several natu-
rally occurring electrophiles that activate TRPA1 are produced
by pungent or spicy plants (Fig. 1). These include allyl isothiocy-
anate (AITC; found in wasabi, mustard, and horseradish),5,6

cinnamaldehyde (cinnamon),6 and allicin and diallyl disulfide

Figure 1. Activators of TRPA1 channel. TRPA1 depicted along with several activators of the channel.
TRPA1 is sensitive to temperature and, depending on the ortholog, activates in response to either
cold or heat. TRPA1 also responds to pungent plant compounds such as thiosulfinates (onion), D9-tet-
rahydrocannabinol (cannabis, marijuana), allyl isothiocyanate (AITC; wasabi, mustard), cinnamalde-
hyde (cinnamon), gingerol (ginger), allicin and diallyl disulfide (garlic), and oleocanthal (olive oil).
Additionally, the channel can be activated by electrophiles in the environment, including tear gas, tol-
uene, a, b-aldehydes such as acrolein and crotonaldehyde (smoke), and endogenous molecules like
4-hydroxynonenal (4-HNE), hydrogen peroxide (H2O2), and 15-deoxy-d(12,14)-prostaglandin J2 (15-
deoxyD12,14 PGJ2).
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(raw garlic).42,43 Pollutants like toluene diisocyanate, hypochlo-
rite, H2O2, and a, b-aldehydes such as acrolein and crotonalde-
hyde (from smoke) react with TRPA1 as well.44-48 Activation of
TRPA1 can cause extreme irritation, lacrimation, coughing,
bronchial contraction and depressed respiration.49 Therefore,
potent electrophilic compounds (for example, 1-chloroacetophe-
none, dibenz[b,f][1,4]-oxazepine, 2-chlorobenzylidene malono-
nitrile, and chloropicrin) are used as tear gases and riot control
agents.45,50

Despite possessing few structural similarities, the electrophilic
nature of these compounds allows them to form reversible cova-
lent bonds with thiol groups of specific cysteine residues in the
TRPA1 channel in a process confirmed by mass spectrome-
try.20,21,51 Detecting these compounds through their harmful
reactivity is very economical compared to canonical ligand bind-
ing, which would be limited by the structural diversity of electro-
philic compounds. Interestingly, TRPA1 can also be activated by
other plant compounds, including oleocanthal (olive oil),52 car-
vacrol (oregano, marjoram),53 and D9-tetrahydrocannabinol
(marijuana)5 independent of the reactive cysteines, suggesting the
presence of alternative activation mechanisms to those used by
the pungent electrophilic agonists (Fig. 1).52,54

In addition to detecting harmful substances from the
external surroundings, TRPA1 monitors the internal

environment and is involved in nociceptive signaling in
response to the consequences of internal injury. A clear role
for TRPA1 in pain transduction is established by the fact
that it mediates both the formalin-induced pain response55-57

and carrageenan-induced inflammatory pain response,58,59

which are routinely used in the laboratory for behavioral
studies of nociception. Furthermore, the role of TRPA1 in
pain signaling is underscored by its involvement in an autoso-
mal familial episodic pain syndrome, migraine headaches, and
other human pain disorders.7,60,61

Low pH, which may occur in cases of injury-induced local aci-
dosis or after application of weak acid, can activate the channel to
alert an organism to damage.62 Similarly, the stinging sensation
associated with carbonated beverages is believed to be the result
of activation of TRPA1 due to intracellular acidification by car-
bon dioxide.63 On the other hand, deviations in pH toward
more alkaline conditions also lead to activation of the TRPA1
channel and pain.64

Additionally, TRPA1 is suggested to contribute to pain and
mechanical hypersensitivity induced by inflammation.65,66 Sev-
eral inflammation-related factors including NO, H2O2, 4-
hydroxynonenal, 15-deoxy-d(12,14)-prostaglandin J2, and H2S
activate TRPA1 directly (Fig. 1),46,55,67-74 while other factors,
such as bradykinin, activate TRPA1 indirectly through down-
stream signaling from G-protein coupled receptors in a phospho-
lipase C dependent manner.6,75 Similarly, indirect activation of
TRPA1, this time through signaling from the Gbg subunit, is
linked to itch sensation (particularly histamine-independent
itch).76-79

Clearly, chemical activation of TRPA1 plays a broad role
as a detector and integrator of warning signals—both in
terms of damaging external stimuli as well as internal stimuli
indicative of tissue injury. For some species, such as humans
and non-human primates, expression of a temperature-insen-
sitive channel dictates that chemical sensitivity likely accounts
for a major physiological role of the protein. While chemical
sensitivity is indeed an ancient modality transduced by
TRPA1, it is only one facet of the activation properties asso-
ciated with this polymodal channel. In other species, chemical
sensitivity can be downgraded in order to enhance tempera-
ture related signaling mediated by TRPA1, either by direct
changes to protein sequence to render the channel less-sensi-
tive to agonists, or by tissue-specific isoform expression strate-
gies to dissociate signaling due to activation by temperature
and chemicals (see next section).

It remains unclear whether the ancestral TRPA1 protein was
particularly temperature sensitive, or at what point TRPA1 took
on the role of a thermosensor. Nevertheless, the fact that many
other TRPA family members are also temperature sensitive sug-
gests that this may be an even more ancient modality transduced
by the channel.80 The observation that thermosensitive TRPA1
channels are widespread with reported thresholds of activation
that vary considerably across species indicates that there is evolu-
tionary pressure on the temperature sensitivity of TRPA1, lead-
ing to multiple adjustments over time to suit specific ecological
niches (Fig. 3).

Figure 2. Topology diagram of functional domains of TRPA1. Topology
diagram of TRPA1, highlighting domains implicated in thermosensation
and electrophile-reactive cysteines (yellow circles). (A) Pre-AR N-terminal
domain (blue) is suspected to suppress heat activation of dTRPA(A).83 (B)
AR 3-8 (pink) contribute to heat activation of rattlesnake TRPA115; AR 6 is
specifically important for heat sensitivity in mouse and fly TRPA1.16 (C)
AR 10-15 (dark red) from both rattlesnake and fly TRPA1 is a portable
heat sensitive module.15 (D) Only fly TRPA1 isoforms with TRP ankyrin
cap (red) are activated in response to heat.91 (E) G878 in S5 (light orange)
is necessary for cold activation of rat TRPA1.119 (F) Point mutation of
R1073 or N1066 and I1067 in PH (orange) eliminate heat activation of fly
TRPA1.137 (G) Point mutation of L1105 and I1106 in S6 (orange red) abol-
ish heat sensitivity of fly TRPA1.137
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Species-Specific Temperature
Sensitivity of TRPA1

TRPA1 in Ectotherms: a heat and
chemical sensor

Insects
Soon after the original reports of cold

activation of mouse TRPA1, the Dro-
sophila melanogaster ortholog (dTRPA1)
was cloned.81 Like the mouse channel,
insect TRPA1 is sensitive to electrophilic
compounds, albeit with a higher EC50

than mammalian orthologs.82 Interest-
ingly, dTRPA1 expressed in Xenopus
oocytes was shown to be activated not
by cold, but by heat with a threshold of
activation around 27–29�C
(Fig. 4).81,83 Heat activation of TRPA1
was also reported for the mosquito
Anopheles gambiae83-86 and the silkworm
Bombyx mori.87

In vivo experiments provided support
for heat activation of dTRPA1 and dem-
onstrated the crucial role of the protein
in controlling thermotaxis and tempera-
ture preference in both larvae88 and
adult flies.84 The behavioral deficits
observed in mutant animals, combined
with the observation that the activation
threshold of dTRPA1 is conspicuously
elevated just above the fly’s preferred
temperature of 25�C, led to the sugges-
tion that the physiological functions of
the channel include both detection and
subsequent avoidance of heat and nox-
ious chemicals.82,84,88-90

Despite the fact that dTRPA1 is a
polymodal ion channel, it is important
to maintain the ability to discriminate
between activation by electrophilic
chemicals or heat. Flies are capable of
doing so through the expression of spa-
tially localized isoforms of dTRPA1.83,91

The TRPA1(A)/(B) isoforms differ by
alternative N-termini and, while both
exhibit similar sensitivities to electro-
philic agonists, the TRPA1(A) isoform
is dramatically less thermosensitive than
TRPA1(B), with temperature coefficient
(Q10; a measure of the fold change in
current per 10�C) values of »9 and
»116, respectively. TRPA1(A) is
expressed in the proboscis, where the
chemosensitive neurons are located. In
contrast, TRPA1(B) is predominately

Figure 3. Interspecies differences in temperature sensitivities of TRPA1 orthologues. Temperature
that evokes detectable channel activation (Tact) is listed. Common name refers to TRPA1 orthologues
cloned from the following species: Clawed frog-Xenopus tropicalis; Chicken-Gallus gallus domesticus;
Ratsnake-Elaphe obsoleta lindheimeri; Anole-Anolis carolinensis; Python-Python regius; Boa-Corallus hor-
tulanus; Rattlesnake-Crotalus atrox; Fruitfly-Drosophila melanogaster; Mosquito-Anopheles gambiae;
Nematode-Caenorhabditis elegans; Mouse-Mus musculus; Human-Homo sapiens. Images of ratsnake,
rattlesnake, boa, mosquito and human were adapted from Wikimedia Commons (boa image by Geoff
Gallice).

www.tandfonline.com 217Temperature



expressed within the head, where the
thermosensors are found. Unlike in
larger animals, the relatively small size of
the fly means that heat can readily pene-
trate the body and thermosensors can be
sequestered away to prevent activation by
external irritants. Similarly, expressing a
less thermosensitive isoform in the pro-
boscis prevents warm temperatures from
inappropriately initiating nocifensive
responses such as regurgitation that are
reserved for exposure to hazardous
chemicals.83

Some insects use thermal cues to
locate the warm-blooded animals on
which they feed. For these organisms, it
is crucial to be able to differentiate
between the presence of aversive reactive
electrophiles and the presence of attrac-
tive warm temperatures that may signal
the location of the next blood meal.
Therefore, hematophagous disease vec-
tors like the typhus louse Pediculus
humanus corporis and the mosquitos
Anopheles gambiae, Aedes aegypti, and
Culex quinquefasciatusmake use of a sim-
ilar isoform strategy.83

The ability of thermal signals to per-
meate through the body of small insects
is the basis for the developing field of
thermogenetics. Similar to optogenetics,
which uses light to control and dissect intact neural circuits
through the expression and activation of light-sensitive mem-
brane proteins, thermogenetics seeks to use temperature signals
to achieve similar control through the expression of thermosensi-
tive proteins including the thermoTRPs.92,93 This approach is
particularly relevant to model organisms like Drosophila, where
implementation of optogenetics has been challenging. There
have been a number of recent reports describing the successful
use of ectopic expression of dTRPA1 to drive such diverse behav-
iors as courtship,94,95 regurgitation,83 sleep,96 walking97 and
flight.98 On the other hand, a number of significant challenges
remain before such a system can be effectively scaled up for use
in larger mammalian model organisms like mice, including lim-
ited spatial resolution and temporal kinetics as well as a restricted
thermogenetic toolkit that can function in the narrow tempera-
ture range found in mammalian tissues (which, for instance, are
generally elevated above dTRPA1 activation temperatures).93

Nematodes/Hymenoptera: loss of ancestral TRPA1
In the nematode worm Caenorhabditis elegans, TRPA1

(ceTRPA1) is expressed in several tissue types, including neurons,
muscle, intestine, and epithelial cells. ceTRPA1 was originally
implicated in mechanosensation because mutant worms dis-
played deficits in foraging and other mechanosensory behaviors.
Additionally, heterologous expression of ceTRPA1 in Chinese

hamster ovary (CHO) cells leads to mechanically activated cur-
rent.99,100 In contrast to arthropod TRPA1 channels, several
studies have linked ceTRPA1 to activation by cold tempera-
tures.101,102 Ectopic expression confers cold-sensitivity to other-
wise non-responsive neurons as well as cultured cells.101 A recent
study proposed that ceTRPA1 may function to detect decreases
in environmental temperature and increase lifespan.102 It should
be noted, however, that a molecular phylogenetic analysis of
TRPA proteins suggested that ceTRPA1 does not derive from
the ancestral TRPA1 and, rather than representing a true ortho-
log of the mammalian protein, it is more closely related to the
basal TRPA proteins found in anemones and choanoflagellates.82

This may explain the differences observed between ceTRPA1 and
other invertebrate TRPA1 channels, both in terms of temperature
sensitivity and the fact that, unlike other TRPA1s, ceTRPA1
lacks conserved cysteine residues, therefore rendering it insensi-
tive to electrophiles.99

In addition to Nematoda, loss of the ancient TRPA1 gene
occurred in at least one order of Arthropoda as well. Hymenop-
terans, which includes bees, wasps, and ants, lack a true ortholog
and instead express a hymenoptera specific TRPA (hsTRPA) that
is believed to have evolved as a result of duplication of the Water
witch gene.103,104 Intriguingly, hsTRPA displays a number of
functional similarities to dTRPA1, including activation by warm
temperatures and sensitivity to noxious chemicals. It was

Figure 4. Electrophysiological analyses of TRPA1 function. (A) Exemplar 2-electrode voltage clamp
recordings from Xenopus oocytes expressing human (h), Drosophila (d), or rattlesnake (sn) TRPA1.
Currents were elicited by a 2s voltage ramp from ¡150 to C90 mV from a holding potential of
¡80 mV, in standard ND96 solution (final concentration, mM: 2 KCl, 96 NaCl, 20 MgCl2, 1.8 CaCl2, 5
HEPES pH 7.4) at 36�C (red), 4�C (blue), and/or in the presence of 1 mM AITC (green). (B) Exemplar
temperature responses of human (h, green), Drosophila (d, red), and rattlesnake (sn, blue) TRPA1
orthologues recorded at different temperatures and measured at C80 mV as described in (A). (C)
Exemplar responses of human TRPA1 (black) and uninjected oocytes (red) to cooling, heating and
AITC (1mM) measured at C80mV.
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hypothesized that the duplication and neofunctionalization that
gave rise to hsTRPA may have played a critical role in the devel-
opment of social behavior in honey bees (Apis mellifera). Bees are
known to monitor and control hive temperatures in order to pro-
vide a stable 32–36�C environment for the development of off-
spring.105,106 The hsTRPA activation threshold of 34�C (slightly
higher than that of dTRPA1) may then serve to detect increases
in temperature, thereby leading to hive cooling behavior.

Vertebrate ectotherms
The physiological function of TRPA1 as a heat and chemical

sensor appears to be largely conserved in vertebrate ectotherms.
The orthologous channels of frogs (western clawed frog (Xenopus
tropicalis)), lizards (green anole (Anolis carolinensis)),107,108 and
non-pit bearing snakes (Texas rat snake (Elaphe obsoleta lindhei-
meri))2 are sensitive to heat and exhibit detectable thermal activa-
tion at around 40�C, 34�C, and 37�C, respectively. However,
the zebrafish (Danio rerio) is a noticeable exception to this trend.
While the 2 TRPA1 paralogs from zebrafish are sensitive to elec-
trophiles, they do not display activation by heat, nor do they
seem to be involved in behavioral responses to noxious tempera-
tures.2,109 Interestingly, there is evidence that zebrafish do not
possess a true ortholog for the cold-sensitive ion channel transient
receptor potential melastatin 8 (TRPM8), suggesting that multi-
ple facets of thermosensation may be altered in these
organisms.109,110

Nevertheless, for the TRPA1 orthologs that do display ther-
mal sensitivity, activation temperatures are all above the preferred
temperature ranges of these animals. This fact, combined with
the channel’s sensitivity to noxious chemicals, suggests that
TRPA1 functions physiologically in reptiles and amphibians as a
sensor of uncomfortable heat. The varying thresholds of activa-
tion may reflect adaptations to different ecological habitats. For
instance, it was noted that X. tropicalis inhabits warm tropical
waters and can survive aquatic temperatures above 42�C.111

Therefore, the higher activation threshold of the frog channel
compared to that of the anole may reflect evolutionary pressures
to adapt to warmer environments.

The apparent flexibility of TRPA1 thermal properties took on
special physiological significance in at least one group of verte-
brates—pit-bearing snakes.2,15 Infrared sensation in snakes is
believed to have evolved independently at least 3 times in groups
of species separated by millions of years of evolution. Yet surpris-
ingly, each of these groups (boas, pythons, and pit vipers) may
have evolved the capacity through modifications to the same pro-
tein. These animals all display dramatic differential expression of
TRPA1 in the trigeminal neurons that innervate the pit com-
pared to those neurons that innervate the body. There is also an
expansion of the percentage of trigeminal neurons that express
TRPA1, from »20% of trigeminal ganglia neurons in rodents5

to over 70% in pythons.2

When heterologously expressed, rattlesnake TRPA1 exhib-
its thermal activation with a comparatively low detectable
threshold of around 27�C (Fig. 4).2 At the same time, the
chemical sensitivity of the rattlesnake channel is substantially
decreased, consistent with the notion that the physiological

function of TRPA1 appears to have changed from somatic
thermo-/chemo- sensation, to detection of infrared radiation.
The locally restricted expression pattern and reduction in che-
mosensitivity may focus the ability to localize prey and pre-
vent confusing or contradictory signals arising from
accidental channel activation by electrophiles. It is interesting
to note that this strategy is similar to the previously described
isoform strategy used by some insects, including fruit flies
and mosquitos, the latter of which may also rely on the same
channel to locate warm animals.83

TRPA1 in endotherms

Mammals
The initial description of TRPA1 as a thermosensor came

from a study using the mouse ortholog, which reported thermal
activation in the sub-TRPM8 range (<17�C).4 Because this tem-
perature range is registered as painful by humans,112 it was sug-
gested that mammalian TRPA1 may serve as a detector of
noxious cold. Since then, contradictory reports have emerged
which either support,4,6,24,81,113-117 or dispute direct cold-
induced activation of rodent TRPA1 channels in heterologous
expression systems.36 Similarly, there is mixed opinion as to the
temperature sensitivity of human TRPA1 to noxious cold.
Although human TRPA1 cold sensitivity has recently been dem-
onstrated in artificial liposomes118 this sensitivity is disputed for
heterologous systems where some studies have reported a robust
response,113 while others documented the absence of any cold-
induced activation (Fig. 4).5,15,18,42,119 Together, this strongly
suggests that—while the channel is intrinsically thermosensi-
tive—its activity is tightly controlled in the cell.

Far from settling the issue, the generation of independent lines
of TRPA1 knockout mice resulted in additional conflicting
reports as to the role, or lack thereof, for TRPA1 as a temperature
sensor in vivo.47,115,120-124 Due to the aforementioned overlap
between TRPA1 and TRPV1 expressing neurons, ablation of
TRPV1-positive cells in adult mice represents an alternative strat-
egy to dissect the potential contributions of TRPA1 to tempera-
ture sensation in vivo. When such TRPV1-specific ablation was
carried out, noxious cold sensitivity was unaffected, indicating
that TRPA1 may not be directly involved in this process under
normal physiological conditions.125

Obviously, temperature sensitivity of mammalian TRPA1
remains a controversial topic and, as such, has been summarized
on multiple occasions.7,8,126-129 Several theories have been put
forward in attempts to reconcile the divergent observations. Of
particular note, one model contends that TRPA1 plays an impor-
tant role in the development of cold hypersensitivity that may
occur after injury.115,130-133 Other groups hold that the cold acti-
vation ascribed to TRPA1—particularly human TRPA1 in heter-
ologous systems—is actually indirect, resulting from channel
activation by cold-induced calcium influx that can occur even in
cultured cells not expressing TRPA1.18 It should be noted,
however, that multiple groups have shown cold activation
of mammalian TRPA1 in the presence of calcium-free
conditions.114,115,119,124
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While inter-studies comparisons to resolve the conflicts are
complicated in most cases by the non-uniform experimental con-
ditions and channel orthologs used, a recent report emerged
describing the side-by-side analysis of TRPA1 channels from
humans, macaques, mice, and rats.119 Interestingly, the authors
reported that, under the same experimental conditions, the
rodent channels showed cold activation while the primate chan-
nels were insensitive to thermal stimuli.

One aspect of mammalian TRPA1 physiology that is more
agreed upon is the evidence suggesting that TRPA1 does not play
a clear role in thermoregulation. Unlike the case of other ther-
moTRPs like TRPM8,134 genetic or pharmacological manipula-
tion of TRPA1 channel function in mice and rats does not result
in changes to core body temperature or lead to any differences in
autonomic thermoregulatory responses to cold exposure.116,135

Birds
Interestingly, it was proposed that the shift from heat sensitiv-

ity to cold sensitivity (or insensitivity) did not necessarily occur
coincident with the evolution of endothermy.136 Chickens (Gal-
lus gallus domesticus) are endothermic animals that maintain a
body temperature of 41–42�C. TRPA1 cloned from birds
showed a higher similarity to green anole TRPA1 (82%) than to
other endotherms like mouse (65%) or human (64%). Perhaps
reflecting this, the channel displays detectable activation in
response to heat ramps at around 39�C. This apparent threshold
can be shifted several degrees to the right if the channel is sub-
jected to a slower ramp or preincubation at 40�C. Because this is
just above the temperature of the animal’s skin, the authors
hypothesize that the channel may activate in response to slight
elevations in temperature.

Molecular prerequisites for temperature sensitivity

The diversity of temperature responses in different orthologs
lends TRPA1 as a versatile model for studying the biophysical
principles of ion channel heat sensitivity. Cold activation of
human TRPA1 in artificial lipid bilayers demonstrates that ther-
mosensitivity is intrinsic to the channel.118 This finding, along
with data from cell-free patches demonstrating heat and cold acti-
vation of green anole and mouse TRPA1, respectively,108,119 sug-
gest that non-human TRPA1 orthologs are also intrinsically
thermosensitive and require only the lipid bilayer to be cold- or
heat-activated. Several groups used mutagenesis and chimeragen-
esis to identify structural modules that contribute to activation of
TRPA1 by temperature. Thermodynamic and allosteric model-
ing of TRP channel opening provided insight into the energetics
involved in temperature sensing.

Structure-function studies of TRPA1 from various species
have led to the identification of several regions important for
sensing temperature: the ankyrin repeats (AR) in the N-terminus,
the area around the pore, including S5, PH (pore helix), and S6,
and the C-terminus (Fig. 2). Identification of alternatively
spliced TRPA1 isoforms from Drosophila, revealed a role for the
N-terminus, both before and after ARs, in regulation of heat

responses.83,91 Replacement of human AR10-15 with that from
the Drosophila ortholog resulted in a thermally activated channel.
Similarly, replacement of human AR3-8 or AR10-15 with those
from heat-sensitive rattlesnake TRPA1 also conferred heat sensi-
tivity.15 More strikingly, even a single point mutation in AR6
(S250N) of mouse TRPA1 lead to generation of a heat-activated
channel, while a mutation at a homologous residue in the Dro-
sophila ortholog (G176N) abolished heat responses.16 Together,
these studies point toward a key role of the N-terminal ankyrin
repeats in TRPA1 temperature sensitivity.

Even though the data appears to indicate that the N-terminal
AR region contains a portable, heat-sensitive module across dif-
ferent species, the real picture is apparently far more complex. In
addition to the ARs, the transmembrane core of TRPA1 is also
implicated in temperature transduction. For instance, a TRPA1
human / Drosophila chimera with human N- and C- termini but
Drosophila transmembrane core region remains heat sensitive,
indicating that the various AR domains alone are not necessary
for TRPA1 activation by temperature, and highlighting the
importance of the pore-forming domain.137 Heat sensitivity of
this chimera was ablated by point mutations from fly to corre-
sponding human residues in the pore helix and S6 transmem-
brane domain. However, mutation of these same amino acids in
human TRPA1 to corresponding fly residues, or even generation
of human TRPA1 with fly pore helix and S6, did not confer heat
sensitivity.137 This channel element has also been implicated in
cold sensation of mammalian TRPA1. By generating a rat
TRPA1 channel containing human S5 and S5-6 linker, Chen
et al.119 ablated rat TRPA1 temperature sensitivity. In fact, a sin-
gle point mutation of the S5 domain in TRPA1 was sufficient to
eliminate rat TRPA1 cold responses.119 Finally, N-terminally
truncated human TRPA1 lacking ARs remains cold-activated in
artificial liposomes, further demonstrating that channel regions
outside the ARs are important for thermosensitivity of
TRPA1.118 Thus, a number of regions in the TRPA1 structure
have been proposed to play a role in thermosensitivity, but the
precise molecular mechanism for temperature activation remains
unclear.

Similar to the case of TRPA1, the search for a temperature
sensing mechanism in TRPV1 has also yielded a variety of results
without a clear consensus, highlighting multiple regions through-
out the molecule as key elements of temperature sensing and gat-
ing, including the N- and C-termini and the pore-forming
region.138-144 In light of the breadth of domains implicated in
thermal sensing, Clapham and Miller145 suggested that the
mechanism of thermoTRP gating is a special case of that worked
out for proteins in general, whereby temperature-driven confor-
mational rearrangements can be accompanied by large changes in
molar heat capacity of channel opening, Cp.

146,147 Incorporation
of a nonzero change in molar heat capacity (DCp) into calcula-
tion of the equilibrium constant (Keq) between closed and open
conformations of a thermoTRP yields a nonmonotonic Keq

dependence on temperature (Fig. 5). At DCp values around
2–5 kcal/mol*K, which is roughly equivalent to solvation of
10–20 buried hydrophobic side chains per channel subunit,148

Keqbecomes steeply dependent on temperature with Q10 around
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20, i.e. in the range determined experimentally for thermo-TRPs,
including different TRPA1 orthologs.2,16,83,91

Thus, if the closed to open transition is accompanied by
changes in the solvation status of only 10–20 hydrophobic
side chains, that alone could account for the steep tempera-
ture dependence. In this model, the side chains do not have
to be clustered in a single structural domain, but could
instead be distributed throughout the molecule. Even though
this hypothesis does not preclude the existence of structurally
defined temperature sensing domains in temperature-gated
channels in principle, it provides an explanation to the seem-
ingly frustrating search for a spatially defined temperature
sensor in the TRPA1 structure.

Incorporation of large DCp values into the Keq calculation
yields a U-shaped curve of temperature dependence, which pre-
dicts that temperature-gated channels are simultaneously sensi-
tive to both heat and cold.145 This, however, has not been
observed experimentally with TRPA1 or other thermo-TRPs,
possibly because only one of the arms of the curve falls in a physi-
ologically measurable range (Fig. 5). This hypothesis could
explain the source of heat vs. cold sensitivity in different TRPA1
orthologs119 without invoking changes in the temperature-sens-
ing factor DCp. According to the model, even if all the structural
elements that determine DCp (i.e., the steepness of the U-curve
arms) remain unaltered, modification in channel regions that
determine To (the point of minimum Keq on the curve) could
shift the curve on the horizontal axis and lead to an apparent

reversal of temperature sensitivity from heat to cold and vice versa
(Fig. 5).

The polymodal nature of many TRP channels has driven
efforts to understand the interplay between temperature and
other modalities like pH, voltage, and ligand binding. In study-
ing the relationship between voltage- and temperature- activation
of thermo-TRPs, some have adopted an allosteric gating model,
which yields good fits to experimental data.149-154 Further devel-
opment of this allosteric gating model demonstrated TRP tem-
perature activation dependence on coupling of temperature
module energy to the gate rather than an overall change in pro-
tein heat capacity.155,156 Since coupling strength is dependent on
temperature, the possibility for channels activated by both heat
and cold remains. Importantly, this model does not invoke large
changes in protein heat capacity, providing an alternative model
of TRP channel hot and cold activation.

Whether or not opening of TRPA1 or other thermo-gated ion
channels is indeed accompanied by large DCp remains to be
determined. Recently, the hypothesis of DCp-driven temperature
sensitivity was explored through mutagenesis of the voltage-gated
Shaker potassium channel, a member of the same superfamily as
the TRP channels.157 Opening of Shaker is well characterized
structurally, allowing for identification of the side chains that are
exposed to water upon channel opening. Selective mutation to
change the hydrophobicity of one or more of these amino acids
led to temperature activated channel opening. Some of the con-
structs engineered for heat activation have Q10 values of 18.3 and
15.5—values in the range of those for thermo-TRPs. Although
this study does not prove that this is the mechanism for thermo-
sensitivity in TRPs, it provides an important demonstration of
how small conformational changes that have the potential to alter
protein heat capacity can contribute to temperature sensitivity,
rendering the channel heat or cold sensitive.157 Interestingly, a
contemporaneous study of a Shaker mutant in which the voltage
sensor is decoupled from the gate revealed that the gate is intrin-
sically heat-sensitive.158 This finding suggests that the tempera-
ture sensor can, in principle, be confined within the gate itself
and does not require allosteric coupling with a dedicated sensing
domain (whether spatially confined or otherwise). To which
extent findings in Shaker are applicable to other thermo-gated
ion channels is unclear. For example, in contrast to Shaker, heat
activates the 2-pore (K2P) potassium channel K2P2.1 (TREK-1)
through the selectivity filter-based gate,159 but the gate itself lacks
robust intrinsic heat sensitivity. Instead, it controls ion flow in
response to allosteric commands from a sensor located elsewhere
in the channel, most likely in the intracellular C-terminal
domain.160 Thus it appears possible that while temperature-
driven rearrangements of protein structures undoubtedly follow
the same fundamental principles, the exact mechanism of tem-
perature gating could be different in different ion channel classes
or even orthologs of the same channel.

Much progress has been made in characterizing temperature
activation of TRPA1. Chimeragenesis and mutagenesis have
yielded multiple structural elements implicated in temperature
activation. Modeling of TRP channel opening also provides
insight on TRPA1 response to temperature. An allosteric

Figure 5. Two models predict ion channel activation by heat and cold.
Equilibrium constant is nonmonotonic with temperature given positive
DCp (here, 2kcal/mol-K) under the thermodynamics relationship:

ln Keq Tð Þ� �D DS
�
0 ¡DCp 1¡ T0

T
C ln

T0
Tð Þ½ �

R
.145 Given DS� at temperature of mini-

mal Keq of ¡9 cal/mol*K, setting minimal temperature of channel open-
ing (T0) at 32�C results in a cold-activated channel under physiological
conditions while setting T0 (blue) at 15�C results in a heat-activated
channel under physiological conditions (red). A shift in T0 could account
for interspecies temperature sensitivity differences of TRPA1. Allosteric
gating of heat sensitive modules to the channel gate, as proposed by
Jara-Oseguera and Islas,155 yields a similar nonmonotonicity without a
requirement for large change in channel heat capacity.
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coupling model integrates these modules, while the DCp-driven
thermodynamics portray thermal activation as an event depen-
dent on solvation or desolvation of multiple amino acid side
chains which are not necessarily clustered into a structurally
defined thermosensitive module. Continuing TRPA1 compari-
son across species and structure-function analyses will likely
deepen our understanding of the critical domains involved in
TRPA1 temperature activation, as well as elucidate key interspe-
cies differences. The recent demonstration of cold sensitivity of
human TRPA1 in artificial lipid bilayer has become a landmark
in understanding the requirements of temperature activation of
the channel, showing that this activity is intrinsic to the protein-
lipid system alone.118 Although intrinsic temperature sensitivity
should not be assumed for all TRPA1 orthologs, including those
that are heat-sensitive, it is tempting to speculate they too will
not require any component other than the bilayer to sense heat.
Future work in characterizing open TRPA1 channel structure
will aid not only in the process of defining the molecular basis of
thermal activation of TRPA1 but—perhaps—temperature activa-
tion of thermo TRPs in general. In this regard, the recent break-
through in solving the structure of TRPV1 by electron cryo-
microscopy161,162 provides hope that the solution to the confor-
mational changes during temperature gating in ion channels will
soon be revealed.
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