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Abstract

Homogeneous Charge Compression Ignition (HCCI) combustion is a potential candidate

for dealing with the stringent regulations on vehicle emissions while still providing very good

energy efficiency. Despite the promising results obtained in preliminary studies, the lack of

autoignition control has delayed its launch in the engine industry. In the development of the

HCCI concept, the availability of reliable computer models has proved extremely valuable,

due to their flexibility and lower cost compared with experiments using real engines. In order

to obtain the best formulation of a fuel surrogate formulated with n-heptane, toluene and

cyclohexane that efficiently estimate the autoignition behaviour, regression adjustments

are made to the Root-Mean-Square Errors (RMSE) of experimental Starts of Combustion

(SOC) from the modeled SOC. The canonical form of the Scheffé polynomials is widely

used to fit the data from mixture experiments, however the experimenter might have only

partial knowledge. In this paper we present the adaptation of the robust methodology for

possibly misspecified blending model and an algorithm to obtain tailor-made optimal designs

for mixture experiments, instead of using standard designs which are indiscriminately

employed, to make good estimations of the parameters blending model. We maximize the

determinant of the mean squared error matrix of the least square estimator over a realistic

neighbourhood of the fitted regression mixture model. The maximized determinant is then

minimized over the class of possible designs, yielding an optimal design. Thus, the com-

puted desings are robust to the exact form of the true blending model. Standard mixture

designs, as the simplex lattice, are around 25% efficient for estimation purposes compared

with the designs obtained in this work when deviances from the considered model occur dur-

ing the experiments. Once an optimal-robust design was selected (based on the level of cer-

tainty about model adequacy), we computed the optimal mixture that best reproduces the

combustion property to be imitated. Optimal mixtures obtained when the considered model

is inadequate agree with the results achieved in empirical studies, which validates the meth-

odology proposed in this work.
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Introduction

Governments and other institutional entities have shown their concern about the release of

hazardous substances from the use of Internal Combustion Engines in transportation, and the

resulting impact on human health. Consequently, they have made the regulations on pollutant

emissions stricter. On the other hand, there is also global awareness regarding the efficient use

of fossil fuels due to their proven impact on global warming. Thus, new methods of combus-

tion need to be explored to generate cleaner energies achieving the best performance. Whilst

other alternative methods, such as electric engines or the use of fuel cells, are being developed,

internal combustion engines are still the most widely used nowadays. Engine researchers and

designers look into improvements in traditional Spark Ignition (SI) and Compression Ignition

(CI) engines, to reduce their emissions while maintaining good fuel economy. Homogeneous

Charge Compression Ignition (HCCI) combustion is a potential candidate to meet these needs

and has gathered extensive support over the last decade.

HCCI combustion is defined as a process by which a homogeneous mixture of air and fuel

is compressed until autoignition occurs near the end of the compression stroke [1]. HCCI

engines have the advantage of providing good fuel economy, like diesel, while producing very

low particulate emissions, comparable to a gasoline engine. A comparative study of the differ-

ent combustion engines can be found in [1].

One of the main features of this type of engine is that combustion is a kinetically controlled

process rather than a physical phenomenon as in traditional engines [2]. Autoignition and

combustion rates are strongly influenced by the chemical kinetics of the fuel. These phenom-

ena are therefore extremely sensitive to charge composition as well as other factors involved in

the combustion such as pressure and temperature. Charge composition is the main scenario of

this work and different levels of pressure and temperature are considered through the parame-

ter combinations used in the experiments. On the other hand, ignition timing is the major

challenge to be addressed in these engines. This is the main drawback which has delayed its

launch on the automobile market. Different solutions have been considered, such as the vari-

able valve timing (VVT) method or the variable EGR method among others (see, for example,

[3–5]). However, all these strategies have been studied experimentally. Mathematical engine

models are valuable tools for predicting and analyzing these processes and allow many engine

design alternatives to be considered [6]. Due to the paramount importance of the combustion

kinetics of the fuel, any type of model (from zero dimensional to CFD models) will necessarily

require reliable methods for accurately describing the reaction kinetics of real fuels. Because

of the great complexity of commercial fuels (which include from hundred to thousands of dif-

ferent hydrocarbons) surrogate fuels are used instead, which are mixtures of a few hydrocar-

bons with well-known combustion kinetics. This paper poses the problem of fuel surrogate

selection to control HCCI autoignition from an Optimal Experimental Design (OED) perspec-

tive, and incorporates the theory of robust design into the problem, to consider a more realistic

scenario.

Surrogates must closely mimic market fuel properties and match engine combustion and

emissions behavior [7]. A variety of selection mechanisms have been used in the literature.

Hernández et al. [8] assumed that the error function matching the simulated and experimental

starts of combustion had an absolute minimum, and sought this optimum using a type of

bisection method. Others, however, defined an objective function representing some physical,

chemical and combustion properties and optimized this complex function using commercial

software optimizers [9–11] or parallel computing calculation [12]. Yu et al. [13], took a differ-

ent approach, constructing surrogate fuel mixtures by directly matching the molecular struc-

ture and the key functional groups, instead of using the targets for the combustion properties
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explicitly. There are as many fuel surrogates as engine properties to be imitated. In the particu-

lar case of HCCI modeling and the present research, the surrogate should adequately represent

both the autoignition properties and commercial fuel compositions. Classical mixture experi-

mental designs have been used to estimate the effects of fuel compositions to HCCI perfor-

mance [14]- [15]. Their applicability depends however on the experimental factor space and

on the choice of a model for the responses. The novelty of this work is that, in addition to con-

sider the optimal design theory, considers possible departures from the assumed model. It is

a common situation in this type of experimental setups due to the extreme conditions under

which experiments are carried out.

Computer simulation has become a dominant tool in making HCCI a reality and in the

quest for control strategies for HCCI, and has higher flexibility and lower cost than real engine

experiments [6].There has been increasing interest in Optimal Experimental Design (OED) in

recent year, not only for reasons of resource optimization but also due to its flexibility in han-

dling more complex and realistic problems. Applications of this theory to engines include, for

example, the modeling of the ignition angle in HCCI engines [16] or the quantification of the

effects of fuel compositions on emissions [17]. On the other hand, in this type of problem, the

response of the model may be easily perturbed by the extreme conditions under which experi-

ments are carried out. Practitioners have little information about model suitability prior to

running the experiments and the large number of factors involved in the combustion as well

as the difficulty of considering all possible operating conditions implies that small deviations

from the considered model may occur during the experiments. The robust design theory

allows practitioners to establish the level of certainty about model suitability. Thus, this

approach would reflect a more realistic modeling of the problem. Taking these considerations

into account, the aims of this research are:

• to formulate the problem of selecting a fuel surrogate to model HCCI autoignition using

optimal mixture design.

• to incorporate robustness into the formulation.

• to provide a new method to obtain an efficient D−optimal robust design for several levels of

certainty about model suitability.

• from the selected D−optimal robust design, to compute the surrogate formulation that best

reproduces the mechanism to be replaced as well as the combustion property to be imitated.

These objectives are aimed at selecting a fuel surrogate to estimate the autoignition time

under real HCCI conditions.

Materials and methods

The strong dependency of HCCI autoignition on the chemical kinetics of the fuel implies that

it is extremely sensitive to charge composition. Commercial diesel consists of hundreds of

medium-high molecular weight hydrocarbons, and thus it is not feasible to consider the oxida-

tion chemistry of all the compounds when modeling targets [8]. A strategy commonly adopted

in simulation studies is to consider a reduced number of species, and then to prove that the

reduced mechanism properly matches the desired combustion property through experimenta-

tion. Following Hernández et al. [8], our interest is in modeling the Root-Mean-Square Error

(RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ

i¼1
ðSOCiðexpÞ � SOCiðmodÞÞ2

J

s

; ð1Þ
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where SOCi(exp) and SOCi(mod) correspond to the experimental and modeled Starts Of

Combustion (SOC) obtained in J engine tests. In particular, SOC reports the crank angle cor-

responding to 10% of the cumulative heat released during the high temperature combustion

process. Eq (1) defines the response variable in the model. For notational reasons, this will be

represented by RMSE �
Not

Y . Experimental SOCs were obtained using a single-cylinder diesel

engine operating under HCCI conditions while the modeled values came from the zero-

dimensional single-zone kinetic model implemented in the CHEMKIN 4.0 software [18].

Single-cylinder engine tests provide a means for excellent control and reproducibility of the

operating conditions [19]. The engine used for the experimental work was a four-stroke single

cylinder engine, with 0.287l swept volume and four valves, second generation common rail

(fuel injection system), 14:1 compression ration, 0.068m x 0.079m (bore x stroke), and 12 x 86

μm number and diameter of injector holes respectively. Different engine operating conditions

were considered in the J engine tests run in (1) modifying the most important parameters

affecting the two-stage oxidation kinetics of any fuel. The charge composition was quantified

by the exhaust gas recirculation percentage (EGR). The engine load was quantified in terms of

the indicated mean effective pressure (IMEP) by fixing the intake pressure and varying the

EGR rate. The engine speed was measured in revolutions per minute (rpm), and the start of

injection (SOI) was defined with respect to the top dead center (TDC) where a negative value

indicates that injection starts before TDC. Operating rate data are shown in Table 1. As it can

be observed, experimental HCCI conditions were achieved with a very early fuel injection.

Consequently, the fuel/air mixture may assume to be homogeneous (or almost homogeneous)

from the end of the injection process, since the physical delay can be considered negligible

compared to the chemical one [8]. In addition, the injection pressure was kept constant for all

the tests at 900 bar.

Simulations were performed using CHEMKIN code, which assumes uniform temperature,

pressure and species concentration in the combustion chamber, and ignores the temperature

differences near boundary zones due to heat transfer. A single zone model was used. In spite of

the limitations of these models due to the assumption that the composition and temperature

in the cylinder are homogeneous, they have been used to provide an estimation of the ignition

Table 1. Engine operating conditions used in the engine test.

Engine speed (rpm) EGR rate (%) SOI (with respect to TDC) IMEP (bar)

1500 40 -80 5.2

2.8

-60 6.3

4.1

60 -80 4.9

2.8

-60 6.2

4.1

2000 40 -80 5.9

3.1

-60 5.8

4.4

60 -80 5.6

3.2

-60 7.1

4.6

https://doi.org/10.1371/journal.pone.0234963.t001
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timing [20–22]. As previously mentioned, another fundamental characteristic of the selected

surrogate is that it must appropriately reproduce the kinetic-chemical mechanism of the origi-

nal fuel. The affinity criterion means that the main hydrocarbon families must be represented

in the mixture. Since original diesel consists of around 37% paraffins, 34% naphthenes and

29% aromatics by mass [8], n−heptane, cyclohexane and toluene were the selected components

to represent each hydrocarbon family. n−heptane has a cetane number equal to diesel fuel and

its oxidation has been widely validated under engine conditions [23–25]. Kinetic models of

longer paraffins show similar autoignition results to n−heptane and, for this reason, some

authors recommend the use of n−heptane for its lower computational cost [26]. The cyclohex-

ane and toluene were selected since their oxidation chemistry is validated in the literature

under similar conditions to HCCI engines [27–32]. The surrogate mechanism was built up in

a step-wise fashion, using as a starting point the n−heptane detailed mechanism proposed by

Curran et al. [33] which contains 550 species and 2450 reactions. Then, the reactions that

describe the oxidation of toluene proposed by the Lawrence Livermore National Laboratory

[27] were added (285 species and 1427 reactions). In addition, the 12 co-oxidation reactions

between n−heptane and toluene proposed by Andrae et al. [34] were incorporated into the

mechanism. Finally, the mechanism of cyclohexane oxidation, containing 1081 species and

4269 reactions, given by Silke et al. [32] were added. The resulting mechanism contains 1140

species and 4578 reactions.

A suitable fit of the response requires an appropriate choice of both design and model.

Since the RMSE strongly depends on the considered proportions of n−heptane, toluene and

cyclohexane and these are ingredients of a mixture, models for mixture experiments may be

appropriate for explaining this behavior. Controlled variables in a standard mixture problem

are non-negative, belonging to [0, 1] and dependent through the relationship 10qp ¼ 1 where

1q ¼ ð1; . . . ; 1Þ
0
2 Rq

and p = (p1, . . ., pq)0 is the vector of relative proportions in a q−compo-

nent mixture. These constraints define the design region as a (q−1)−dimensional simplex

S ¼ fp 2 ½0; 1�q : 10qp ¼ 1g. A mixture design ξ is thus an allocation rule of experimental

units over S,

x ¼
p

mðpÞ

( )

p2S

;

where m(p) is a probability mass function. If m(p) is finite-supported, it is said that ξ is a dis-

crete design. Otherwise, it is a continuous design. As stated above, a suitable model must be

selected a priori to describe the composition-response relationship. Scheffé polynomials are

widely applied to fit the response surface. With regard to polynomial order, quadratic models

have been used in HCCI modeling as they provide a reasonable balance between the necessary

number of experiments and modeling capacity [16]. The general form of a second-degree mix-

ture model is:

E½YðpÞ� ¼ y0 þ
Xq

j¼1

yjpj þ
Xq� 1

i¼1

Xq

j¼1

yijpipj;

where the term
Pq

j¼1
yjpj is the linear blending portion of the model, while the term

Pq� 1

i¼1

Pq
j¼1
yijpipj represents the nonlinear blending (curvature) between component pairs.

However, ordinary polynomials do not allow the parameters to be uniquely identified, due

to co-linearity between proportions. Instead, canonical polynomials introduced by Scheffé

[35], [36] are the most commonly used in mixture experiments for a large number of
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practical situations, including HCCI combustion properties ([14]- [15], [37]). Thus, a canon-

ical second-order Scheffé polynomial in the intercept form (2) was considered for modeling

the RMSE

YðpÞ ¼ f 0ðpÞθ þ ε ¼ y0 þ y1p1 þ y2p2 þ y11p1
2 þ y22p2

2 þ y12p1p2 þ ε; ð2Þ

where p1, p2 represent the proportion of n−heptane and toluene by mass respectively and the

proportion of cyclohexane in mass, p3, is implicitly determined by the relationship p3 = 1

−p1−p2. The vector θ = (θ0, θ1, θ2, θ11, θ22, θ12) corresponds to the vector of the unknown

model parameters. Additive uncorrelated random errors ε with common variance will be

assumed.

Classical optimal design theory establishes that the model form is completely determined,

and then, the so-called optimal designs are obtained from the optimality criteria based on the

inverse of the Fisher information matrix (M−1(ξ)). J. Sanz [37] stated that there are significant

discrepancies between experimental and modeled results despite the existence of validated

mechanisms in the literature to reproduce HCCI engine conditions. The large number of fac-

tors involved in this process, as well as the difficulty of considering all possible operating con-

ditions, implies that small deviations from the model may occur during the experiments. Thus

the standard models could not accomodate other effects of the mixture components. Robust

design theory introduced by Huber [38] and later developed by Wiens [39–41] will be suitably

applied to address this situation. A more realistic framework of the problem is to consider a

class of plausible responses

EðYjpÞ ¼ f 0ðpÞθ þ cðpÞ; p 2 S; ð3Þ

where ψ is a contamination function which belongs to a certain class of functionsC. The choice

of C determines the neighborhood of possible responses. This study will consider a neighbor-

hood orthogonal to the experimenter’s assumed response, since it covers a wide range of gen-

eral alternative responses (for further details see [41]). When the assumed response is (2) but

the true one is (3), bias is introduced in the least square estimator (lse) ŷ of the model parame-

ters. Let n be the number of mixtures to perform. Then, unlike in classical optimal design

theory, the mean-square-error matrix of the estimators, rather than the variance, is a good

measure of design quality

mseðθ̂Þ ¼ mseðc; xÞ ¼
s2
ε

n
M� 1 xð Þ þM� 1 xð Þb c; xð Þb0 c; xð ÞM� 1 xð Þ ð4Þ

where

MðxÞ ¼
Z

S
f ðpÞf 0ðpÞmðpÞdp and bðc; xÞ ¼

Z

S
f ðpÞcðpÞmðpÞdp:

The first term in (4) corresponds to the variance-covariance matrix of ŷ assuming homo-

scedastic errors and common variance s2
ε, while the second is the squared bias. Suitable

functionals of (4) are defined to optimize some aspect of the model. Classical alphabetical opti-

mality criteria [42] define the most common optimal robust criteria in terms of (4). In this

context, they are known as loss functions Lðc; xÞ. The D−optimality criterion minimizes the

volume of the confidence ellipsoid of the model parameter estimators. Since it has a direct

interpretation and considers all model parameters, this criterion has became the most popular

among practitioners and will be used in this research. Thus, our objective is to obtain the
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minimax design

x
�
¼ arg min

x2X
max
c2C

LDðc; xÞ;

where X is the set of probability measures. In other words, the D−optimal robust design will

be the design that minimizes the loss in the worst scenario. The maximization problem over C

may be equivalently formulated as a problem of computing the maximum eigenvalue chmax of

a certain matrix [39]. Therefore, the D−loss is defined as

LDðxÞ ¼ ð1 � nÞ
1þ n

1� n
chmax M� 1ðxÞGðxÞ
detMðxÞ

� �1=k

; ð5Þ

where

GðxÞ ¼ KðxÞ � HðxÞ; KðxÞ ¼
Z

S
f ðpÞf 0ðpÞm2ðpÞdp; HðxÞ ¼ MðxÞA� 1MðxÞ;

k is the number of model parameters, A ¼
R

Sf ðpÞf
0ðpÞdp and the parameter ν has been defined

from the neighborhood ratio τ and the variance as

n ¼
t2

sε þ t
2
:

This new parameter represents the relative importance, to the experimenter, of the errors

due to bias rather than to variance. The 0 value means that the model parameters are unbiased,

while 1 represents the opposite case.

To clarify the importance of the designs created by this approach, we define the efficiency

of a design ξ with respect to the design �x

EffðxÞ ¼
LDðxÞ

LDð
�xÞ

� �1
k

� 100:

If a design ξ has, for instance, 70% efficiency with respect to �x, then �x will produce the same

precision as ξ with 30% fewer observations, thus reducing the experimental and resource cost.

Since a finite number of trials must be proposed to carry out the simulations, n−point dis-

crete designs will be considered. This implies that prior definitions must be properly discre-

tized. Then, for each fixed ν, the optimization problem to solve is

x
�
¼ argmin

x2X
ð1 � nÞ

1þ n

1� n
chmax M� 1ðxÞGðxÞ
detMðxÞ

� �1=p

:

In most cases, this problem is analytically intractable. A genetic algorithm (GA) with spe-

cialized operators has been developed in this study for this purpose. The algorithm starts by

generating a population of M random initial designs. A generation corresponds to a complete

renovation of the population. This update is carried out through the genetic operators. They

are classified into three groups: selection, crossover and mutation operators. Two parent designs

are suitably selected and an offspring design is created from them by the action of the opera-

tors. A measure of probability (fitness) is assigned to each design. This assignment is made

according to design goodness measured in terms of criterion function values. Selection opera-

tors always act until they have completed a generation while reproduction and mutation oper-

ators only act if a probability test is passed. A random U(0, 1) is generated in each possible

intervention and if this value is lower than a certain predetermined probability, the operator
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will act. Otherwise, the design will remain unchanged. The reproduction probability chosen in

this study was PC = 0.9 while the mutation probability PMut was automatically updated to gen-

erate more opportunities for new solutions when the algorithm is further from the optimum,

and to reduce the “biodiversity” otherwise. It is noteworthy that the appropriate selection of

the operators considered in this paper, as well as the creation of new ones because of the special

nature of mixture experiments, converged for all study cases. Pseudo-code for the proposed

GA is given in the S1 Appendix. It was implemented in MATLAB R2018b and the code is

available from the authors.

Results

Several numerical examples were run covering different levels of certainty about model

suitability (ν). n = 12−point designs were considered for illustration. The D−optimal robust

designs obtained are shown in Fig 1. They were graphically depicted using the mixexp R pack-

age. In these graphs, simplex vertices represent pure components, edges correspond to binary

blends and simplex interior points contain all three-component systems.

As one might expect, quasi-zero ν value design was supported on the extremes and mid-

edges of the design region according to classical D−optimal design. The class of so-called stan-
dard mixture designs was obtained in this study case. If m� 1 is an integer, the {q, m}−simplex

lattice on S is defined as the set of points whose coordinates are integer multiples of 1/m, that

is p 2 S; pi ¼
j
m ; 0 � j � m; 1 � i � q

� �
. Thus, a {q, m}−simplex lattice design is a design

with support points in the {q, m}−lattice. Another class of standard mixture designs are the

{q, m}−simplex centroid designs (1�m� q), which are defined as a collection of points in S
with q−j coordinates equal to zero and j coordinates equal to 1

j, j = 1, . . ., m. According to the

previous definitions, a {3, 2}−simplex lattice design was obtained for ν = 0.01 and quite similar

for 0.3, that is support points are pure components or binary blends; whereas a quasi {3, 3}-

simplex centroid design was obtained in the case of ν = 0.5. No pattern is deduced from the

spatial distribution of design points when the bias is emphasized (ν> 0.5). As we can see from

Fig 1. D−optimal robust designs. Designs obtained with the proposed GA for HCCI autoignition modeling through model (2).

https://doi.org/10.1371/journal.pone.0234963.g001
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Fig 1, the optimal design points are spread out over the experimental region. It is a logical

result since, in order to seek protection against deviations from the model, no design region

should be favored over any other. This shows the importance of considering robust designs

when we cannot guarantee the model choice. The number of iterations needed to reach the

optimum, as well as the loss values of the designs calculated are shown in Table 2. Note that

the more the bias is ignored, the higher the loss and the computational cost.

Since standard mixture designs such as simplex lattice or simplex centroid are the most

widely used by practitioners to estimate the unknown parameters, we compute their efficien-

cies with respect to the designs obtained through the proposed methodology when deviations

from the assumed model occur. The efficiency is a number between 0 and 100 which measures

the goodness of a design ξ for estimating purposes. Thus, a {3, 2}−simplex lattice is 40% effi-

cient regarding the design shown in Fig 1 when ν = 0.7, whereas a {3, 3}−simplex centroid is

25% efficient in this case. A more extreme study case is when ν = 0.91. In this context, the effi-

ciencies are 28% and 20% according to a {3, 2}−simplex lattice and a {3, 3}−simplex centroid

respectively with respect to the design shown in Fig 1 for ν = 0.91.

Once a D−optimal robust design is selected, the next step consists of appropriately fitting

the model 2. The response in this model explains the error between the start of combustion

obtained experimentally and simulated via the surrogate (1). The optimal choice of the fuel

surrogate will be one that minimizes the response in a complex feasible region.

Taking into account the designs depicted in Fig (1), the least-squares method was used to

fit the (2) with the data obtained after displaying the experimental setup described in the Mate-
rial and Method Section. Data used to perform the adjustment are displayed in S1 Table. Thus,

for different levels of certainty about model suitability, we obtain

Ŷ ðpÞ ¼ ŷ0 þ ŷ1p1 þ ŷ2p2 þ ŷ11p1
2 þ ŷ22p2

2 þ ŷ12p1p2;

where the third-component proportion is implicitly determined through the relationship

p3 = 1−p1−p2. According to the similarity criterion, the optimal choice of the surrogate for this

experimental setup will be the solution of the optimization problem

ðp�
1
; p�

2
Þ ¼ arg min

ŶðpÞ � 0

0 � p1; p2 � 1

p1 þ p2 � 1

ŷ0 þ ŷ1p1 þ ŷ2p2 þ ŷ11p1
2 þ ŷ22p2

2 þ ŷ12p1p2; ð6Þ

where p�
3
¼ 1 � p�

1
� p�

2
. Using a nonlinear optimizer in MATLAB with linear constraints, we

obtained the optimal mixture compositions of the fuel surrogate that best reproduce HCCI

autoignition depending on the degree of model suitability. Optimal mixtures (given in % in

mass) as well as fitted models are shown in Table 3.

Table 2. Computational costs and loss values of the D−optimal robust designs obtained from Fig 1.

ν no. it minloss

0.01 2567 25.42

0.3 2300 17.49

0.5 1771 11.3

0.7 1803 1.99

0.91 1161 0.6782

https://doi.org/10.1371/journal.pone.0234963.t002

PLOS ONE Optimal-robust selection of a fuel surrogate for homogeneous charge compression ignition modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0234963 June 25, 2020 9 / 13

https://doi.org/10.1371/journal.pone.0234963.t002
https://doi.org/10.1371/journal.pone.0234963


Discussion

HCCI combustion is a potential candidate for dealing with the more stringent regulations on

pollutant emissions from motor vehicles, as well as the increasing concern about the emission

of carbon dioxide from fossil fuels and its impact on global warming. Despite the promising

results obtained in preliminary studies [1], the lack of autoignition control has delayed its

launch in the engine industry. Further research is required to address this challenge. Computer

simulation, however, has become a dominant tool in making HCCI a reality and in the quest

for control strategies for HCCI. In addition, it has higher flexibility and lower cost compared

with real engine experiments [6]. The main objective of this paper is to select a fuel surrogate

capable of reproducing the autoignition characteristics of commercial fuels as well as fuel

properties. To achieve this, we first provide a methodology to optimally and robustly select the

simulations to obtain the best inferences of the parameters when a class of plausible responses

(3) may be used to model the RMSE (2). Once the model is fitted, the optimal choice of the sur-

rogate is obtained from solving the optimization problem (6).

Most experiments are performed in order to develop and optimize the most adequate

engine control strategies do not use the tools of optimal experimental design. Consequently,

data analysis will be informative only if data are themselves. Even if this methodology is

applied, departures of the considered model may occur during the experimental stage invali-

dating, thus, the collected information in the observations. It may be due to extreme condi-

tions under which the experiments are carried out or due to the lack of knowledge about

model suitability. Practitioners have little information about model prior to running the exper-

iments and the large number of factors involved in the combustion, as well as the difficulty of

considering all possible operating conditions, implies that small deviations from the consid-

ered model may occur in a real situation. Therefore, there is a need to use a methodology

which obtains robust results against possible departures from the considered model. Using

this novel idea, engine researchers and designers may optimally design their experiments

depending on their level of certainty about the assumed model. The main challenge faced by

this research was the complex optimization design problem to be solved. A genetic algorithm

was developed especially for this purpose, which is original to the authors. We should under-

line that this algorithm may be used regardless of the number of components or the model

considered. This methodology is, therefore, general and may be applied in other engine pro-

cesses where an optimal formulation is required.

Conclusions

To conclude, the experiments obtained with the proposed methodology enhance the efficiency

for purposes of estimation. Thus, depending on the level of certainty, the quality of similar

designs may be different by up to 80%. In particular, considering the optimal-robust designs

shown in Fig (1) and the experimental setup of [8], the optimal formulations that best match

Table 3. Fitted models for optimal-robust designs shown in Fig 1 and optimal mixtures obtained from solving the optimization problem (3).

ν θ̂0 θ̂1 θ̂2 θ̂11 θ̂22 θ̂12
% n−heptane % toluene % cyclohexane

0.01 38.04 -80.97 -66.64 46.51 54.55 53.73 72 25 3

0.3 37.74 -83.64 -42.43 49.55 30.98 34.42 75 25 0

0.5 37.26 -71.34 -56.9 36.86 44.8 43.98 80 20 0

0.7 36.58 -74.58 -37.46 40.91 24.85 33.91 83 17 0

0.91 41.18 -80.92 -5.47 42.07 -24.82 -4.44 70 30 0

https://doi.org/10.1371/journal.pone.0234963.t003
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the original fuel to simulate HCCI autoignition are shown in Table 3. According to these

results, optimal mixtures obtained when bias is emphasized (ν� 0.3) agree with the results

obtained in recent empirical studies [43]. In these cases, optimal robust designs incorporate

interior points of the simplex. Therefore, this idea supports the need to consider optimal-

robust designs when the model form is not completely known.
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Data curation: Josep Sanz Argent.

Formal analysis: Irene Garcı́a-Camacha Gutiérrez, Raúl Martı́n Martı́n.
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Resources: Raúl Martı́n Martı́n, Josep Sanz Argent.

Software: Irene Garcı́a-Camacha Gutiérrez, Josep Sanz Argent.
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35. Scheffé H. Experiments with mixtures. Journal of the Royal Statistical Society. 1958; B(20):344–369.
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