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Abstract: We consider nonequilibrium (NEQ) states such as supercooled liquids and glasses that are
described with the use of internal variables. We classify the latter by the state-dependent hierarchy of
relaxation times to assess their relevance for irreversible contributions. Given an observation time τobs,
we determine the window of relaxation times that divide the internal variables into active and inactive
groups, the former playing a central role in the NEQ thermodynamics. Using this thermodynamics,
we determine (i) a bound on the NEQ entropy and on the residual entropy and (ii) the nature of the
isothermal relaxation of the entropy and the enthalpy in accordance with the second law. A theory
that violates the second law such as the entropy loss view is shown to be internally inconsistent if we
require it to be consistent with experiments. The inactive internal variables still play an indirect role
in determining the temperature T(t) and the pressure P(t) of the system, which deviate from their
external values.

Keywords: relaxation hierarchy; residual entropy; nonequilibrium thermodynamics; internal
variables; hierarchy of state spaces; tool-narayanaswamy equation; entropy bound

1. Introduction

Glass, such as naturally-occurring obsidian, pumice, etc., or man-made Venetian glass, window
glass, etc., is a well-known class of materials that has captured our fascination forever. We can now
make a defect-free glass in the laboratory for a variety of scientific and technological applications.
Crudely speaking, it is an almost solid-like amorphous material that possesses no long-range atomic
order and, upon heating, gradually softens as it turns into its molten state (also known as the
supercooled liquid) as it passes through the glass transition region normally denoted by a suitable
chosen single temperature Tg in this region [1–4]. For the purpose of this article, a glass is treated
merely as a nonequilibrium (NEQ) state of matter, which can be made quite homogeneous so to
a good approximation, it can be treated as a thermodynamic system that is in internal equilibrium
(IEQ), but not in equilibrium (EQ), as explained later (at present, it suffices to say that the entropy
in an IEQ state is a state function of its state variables that now include some NEQ state variables
(commonly known as internal variables) [1–4] besides those needed to specify EQ states; see also [5–7]).
This means that a glass will exhibit relaxation as it strives to come to equilibrium. The relaxation time
is known to be large enough close to Tg that at much lower temperatures, one can usually treat a glass
as in an almost frozen state over experimental time scale τobs, the time period over which successive
observations are made. We refer the reader to an excellent monograph by Debenedetti [3] on these
issues. We will primarily focus on the thermodynamics of glasses and supercooled liquid in this work
and treat them as NEQ states. Therefore, our discussion will mostly consider a NEQ system, which we
denote by Σ in an extensively large medium Σ̃ as shown in Figure 1.
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Figure 1. An isolated system Σ0 consisting of the system Σ in a surrounding medium Σ̃. The medium
and the system are characterized by their fields T0, P0, ... and T(t), P(t), ..., respectively, which are
different when the two are out of equilibrium.

Definition 1. As we will not consider a system in isolation in this work, we will always use EQ or “equilibrium”
to mean “equilibrium with respect to the medium Σ̃.” We will not reserve EQ for the entire system only. We will
also use it for a part of the system, part of the state variables or part of the degrees of freedom such as vibrational
degrees of the system, if they are in equilibrium with Σ̃. On the other hand, we will reserve the use of IEQ for the
entire system; see also [5].

It is a well-known fact that in glasses, the vibrational modes come to equilibrium very fast, even
though the glass is out of equilibrium. Similarly, in a sinusoidal variation of T, some degrees of
freedom would equilibrate after a cycle; others would not and would control the temporal behavior of
the system. It seems natural that the sinusoidal variation would give rise to a distribution of relaxation
times. Thus, in general, one of the most important consequences of the rate of variation of the external
stimuli such as the temperature or pressure is the possibility that the state of the system may be so far
away from equilibrium that the dynamics becomes too complex, involving multiple relaxation time
scales τ0, τ1, τ2, · · · , in supercooled liquids [1,3,8,9]. The relaxation time is defined as the time required
for the corresponding dynamical variable to come to equilibrium with the medium; see Equation (7)
for the proper definition of the relaxation time. It should be emphasized that this interpretation of
the relaxation time is dictated by the experimental setup, but does not depend on any particular
mathematical form of the relaxation. An interplay between τobs and relaxation times τk’s becomes
crucial in determining the thermodynamics of the system and plays a major role in our discussion here.
In fact, one of the following cases for a given τk will be usually encountered in experiments:

Relax 1 τk << τobs: In this situation, the k-th relaxing dynamical variable has equilibrated and does
not have to be accounted for in the NEQ thermodynamics.

Relax 2 τk ' τobs: In this situation, the k-th dynamical variable will continue to relax towards
equilibrium during τobs and must be accounted for as the system approaches equilibrium.

Relax 3 τk >> τobs: In this situation, the k-th dynamical variable will not fully relax and will
strongly affect the behavior of the system. The corresponding dynamical variable is said to
be “frozen-in” over τobs.

When there are several relaxation times, it is possible that different τk’s will correspond to
different cases above. Thus, care must be exercised in dealing with different relaxation times. The need
for such care has been recognized in vitrification for a long time [10]. Relaxation is a universal
phenomenon when a system drives itself towards a more stable state such as an EQ state. In liquids
or glasses, relaxations involving changes of the atomic or molecular positions are generally known
as structural relaxations [11]. Recent experimentation advances have made it possible to directly
measure these relaxation processes at the molecular level simultaneously [12]. At sufficiently low
temperatures, the characteristic time for structural relaxations becomes comparable to the time scale of
a macroscopic observation τobs ∼ 100 s. For shorter time scales, the supercooled liquid (SCL) exhibits
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solid-like properties, while for longer times, it shows liquid-like properties. Even the dynamics
in these cases is not so trivial, but has been investigated for a long time [1,3,8,9] with tremendous
success. The glass transition being an “NEQ transition,” its description will require extensive internal
variables, collectively denoted by a vector ξ that are independent of the set X of extensive observables
(E, V, N, · · · ) [13] whenever the system is out of equilibrium [2,4,14–25]. We denote their collection
by Z in this work. The investigations of the glass transition invariably assume that the entropy S is a
state function S(Z) of the state variables in the extended state space SZ ⊃ SX spanned by Z; here, SX
is the state space of the observables. There is a memory of the initial state, and it requires the entire
history of how the state is prepared to uniquely describe the preparation. Such a memory in some
cases can be described by ξ. One example is residual stresses [26]: if particle configurations in a glass
cannot fully relax to equilibrium, some of the stresses that build up during flow in the melt persist
in the glass; these stresses cannot be captured by X. We will say that such a state is an incompletely
described state in terms of X. but a completely described state in terms of Z. In contrast, the EQ state
Meq(X) is a completely (i.e., uniquely) described state by X and has no memory of the initial state. This
means that in equilibrium, ξ is no longer independent of X.

The consideration of dynamics resulting from the simple connectivity of the sample (also known as
the microstate or phase) space has played a pivotal role in developing the kinetic theory of gases [27–29],
where the interest is at high temperatures [7,30–32]. As the dynamics is very fast here, it is well known
that the ensemble averages agree with temporal averages. However, at low temperatures, where
dynamics becomes sluggish as in a glass [3,33–35], the system can be confined into disjoint components.
The confinement occurs under NEQ conditions, when the observational time scale τobs becomes shorter
than the equilibration time τeq, such as in glasses, whose behavior and properties have been extensively
studied. These components are commonly known as basins in the energy landscape picture [36,37].
The entropy of confinement at absolute zero is known as the residual entropy and can be observed in
glasses or disordered crystals; see below.

The existence of a nonzero residual entropy does not violate Nernst’s postulate, as the latter is
applicable only to EQ states [7] (Section 64). The observation of residual entropy is very common
in Nature. Indeed, Tolman [38] (Section 137) devotes an entire section on this issue for crystals in
his seminal work, while Sethna provides an illuminating discussion for glasses [39] (Section 5.2.2).
In addition, the existence of the residual entropy has been demonstrated rigorously for glasses by
Pauli and Tolman [40] and for a very general spin model by Chow and Wu [41]; see the references in
these works for other cases where the residual entropy is shown to exist rigorously. The numerical
simulation carried out by Bowles and Speedy for glassy dimers [42] also supports the existence of a
residual entropy. We refer the reader to consult various publications [38,43,44]. Experiment evidence
for a nonzero residual entropy is abundant as discussed by several authors [30,35,42,45–51]; various
textbooks [2,4] also discuss this issue.

We introduce useful notation and concepts in the next section. In the following section, we
introduce the concept of internal equilibrium (IEQ) states for which the entropy is a state function in
the extended state space SZ.

Definition 2. As we are not interested in ordering phenomena (such as crystallization), we define an NEQ state
with respect to an EQ state that is also disordered, i.e., with respect to SCL. This is formally done by considering
only disordered configurations and discarding all ordered configurations in our discussion. We warn the reader
that this is different from the conventional approach in which the equilibrium state is always taken to be the
perfectly crystalline state. This point should not be forgotten. We then discuss the nature of the nonequilibrium
state variables in SZ in Proposition 1. The affinity A corresponding to ξ is defined so that it vanishes in SCL,
the equilibrium state in our approach.

The concept of a hierarchy of relaxation times is introduced in Section 4, which forms a central
part of the paper. A given τobs determines a particular time window, which provides a justification for
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Proposition 1. We find that internal variable ξE that has equilibrated plays no role thermodynamically
since the affinity vanishes during τobs. In Section 5, we discuss the first law in terms of the new notation,
identify the irreversible work and the IEQ thermodynamics to be used in the next two sections on
the entropy bound in vitrification and the residual entropy (Section 6) and on the properties of the
isothermal relaxation (7). In Section 8, we find that ξE still indirectly affects the thermodynamics as
it is required to have a thermodynamic temperature, pressure, etc., for the system. The final section
contains a brief discussion of the results.

2. Notation

Below is a brief introduction to the notation and the significance of various modern
terminology [19,21] for readers who are unfamiliar with them. As usual, Σ and Σ̃ form an isolated
system Σ0. Extensive quantities associated with Σ̃ and Σ0 carry a tilde �̃ and a suffix 0, respectively.
As Σ̃ is very large compared to Σ and is in equilibrium, all its conjugate fields T0, P0, etc., carry a
suffix 0 as they are the same as for Σ0, and there is no irreversibility in Σ̃. Any irreversibility is
ascribed to the system Σ [19,21] and is caused by processes such as dissipation due to viscosity,
internal inhomogeneities, etc., that are internal to the system. Quantities without any suffix refer to
the system. Throughout this work, we will assume that Σ and Σ̃ are spatially disjoint and statistically
quasi-independent [25,52,53] so that their volumes, masses and entropies are additive at each instant.
In particular, dṼ = −dV, since V0 = V + Ṽ remains constant for Σ0. We define a quantity to be a
system-intrinsic (SI) quantity if it depends only on the property of the system alone and nothing else.
For example, if P is the pressure of Σ and P0 that of Σ̃, then PdV is the SI work done by the system,
but P0dV is not as the latter also depends on Σ̃ through P0. However, P0dṼ = −P0dV is the work done
by the medium, and this work can be identified as a medium-intrinsic (MI) quantity. Any extensive SI
quantity q(t) of Σ can undergo two distinct kinds of changes in time: one due to the exchange with the
medium and another one due to internal processes. Following modern notation [19,21], exchanges of
q(t) with the medium and changes within the system carry the suffixes e and i, respectively:

dq(t) .
= q(t + dt)− q(t) ≡ deq(t) + diq(t). (1)

For Σ̃ and Σ0, we must replace q(t) by q̃(t) and q0(t), respectively, so that dq̃(t) = q̃(t + dt)− q̃(t)
and dq0(t)

.
= q0(t + dt)− q0(t). We will assume additivity so that:

q0(t) = q(t) + q̃(t).

For this to hold, we need to assume that Σ and Σ̃ interact so weakly that their interactions can be
neglected. As there is no irreversibility within Σ̃, we must have diq̃(t) = 0 for any medium quantity
q̃(t) and:

deq(t) .
= −dq̃(t) = −deq̃(t). (2)

It follows from additivity that:

dq0(t) ≡ dq(t) + dq̃(t) = diq(t). (3)

This means that any irreversibility in Σ0 is ascribed to Σ, and not to Σ̃. In a reversible change,
diq(t) ≡ 0. For example, the entropy change:

dS ≡ deS + diS

for Σ; here,

deS = −deS̃
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is the entropy exchange with the medium and diS is the irreversible entropy generation due to internal
processes within Σ; the latter is also the entropy change dS0 of Σ0; see Equation (3). Similarly, if dW
and dQ represent the work done by and the heat change of the system, then:

dW ≡ deW + diW, dQ ≡ deQ + diQ. (4)

Here, deW and deQ are the work exchange and heat exchange with the medium, respectively,
and diW and diQ are irreversible work done and heat generation due to internal processes in Σ.
For an isolated system such as Σ0, the exchange quantity vanishes so that:

dW0(t) = diW0(t); dQ0(t) = diQ0(t). (5)

We have introduced the pressure-volume work. We identify deW = P0dV = −deW̃, dW = PdV
and diW = (P− P0)dV. In the absence of any chemical reaction, dNk = deNk, diNk = 0 for the k-th
species of the particles; otherwise, diNk is its change due to the chemical reaction within Σ. As the
energy of Σ can only change due to exchange with Σ̃,

dE = deE, diE = 0. (6)

We now explain the concept of the relaxation time used in this work, which is a simple
generalization of its common usage, but which proves useful here. Consider some dynamical variable
Φ(t) as a function of time. Its dependence on Z(t) is suppressed. Let Φ(∞) denote its limiting value
as t → ∞; thus, it also represents its EQ value. In reality, we do not have to wait an infinite amount
of time as we cannot distinguish between a nonzero difference |Φ(t)−Φ(∞)|, which is smaller than
some small cutoff value so that for all purposes it is no different than zero, or a zero difference. Let us
introduce a normalized ratio:

ϕ(t) = |[Φ(t)−Φ(∞)]/[Φ(0)−Φ(∞)]|

to account for this cutoff value, which we denote by e−λ > 0; the cutoff is primarily determined by the
experimental setup. We say that the dynamical variable Φ(t) has equilibrated when ϕ(t) equals the
cutoff e−λ. The relaxation time τrel is defined by:

ϕ(τrel) = e−λ. (7)

It is clear that for a given choice λ, the relaxation time τrel can be used to describe how rapidly a
quantity effectively reaches its equilibrium value. Usually, one assumes for ϕ(t) an exponential form:

ϕ(t) = exp(−t/τ)

or a stretched exponential form:

ϕ(t) = exp(− (t/τ)β), 0 < β ≤ 1,

also known as the Kohlrausch–Williams–Watts form, which reduces to the simple exponential for
β = 1. The relaxation time is:

τrel = λ1/βτ, (8)

and reduces to τrel = λτ for β = 1, the exponential form. In this work, we do not make any particular
choice for the decay behavior of ϕ(t); thus, we do not make any distinction between the two forms of
relaxation given above or any other form. We use a similar cutoff to identify the equilibration time
τeq. In reality, the stretched exponential is very common in glassy dynamics, but its origin is far from
clear at present, even though attempts have been made to express it as a superposition of simple



Entropy 2018, 20, 149 6 of 28

exponentials with different τ’s [54,55]. It is, therefore, treated as empirical in nature. The origin for
the exponential relaxation, on the other hand, is well known as the Debye dynamics. For us, what is
important is the existence of τrel through Equation (7) and not the actual form of ϕ(t).

We find it very useful in this work to divide all internal variables in ξ into non-overlapping
groups ξn indexed by n = 1, 2, · · · , such that all internal variables in ξn have the same relaxation time
τn so that they equilibrate and are no longer independent of X for ∆t & τn, and that all groups have
distinct relaxation times (τi 6= τj for i 6= j). We supplement ξ by introducing a new group ξ0 = X with
relaxation time τ0 = τeq in order to compactify our notation so that Z = {ξk}k≥0. We also introduce
the concept of hierarchy of relaxation times τ0 > τ1 > τ2 > · · · associated with ξ0, ξ1, ξ2, · · · , and state
spaces S0 ⊂ S1 ⊂ S2 ⊂ · · · , where Sn, n = 0, 1, 2, · · · , is spanned by all ξk, k ≤ n, with relaxation
times τk > τn+1. Physically, the hierarchy of relaxation times means that the longest relaxation time
in Sn is τ0 corresponding to ξ0 = X, and the shortest relaxation time is τn corresponding to ξn. Thus,
if τn > τobs, any ξk, k > n, with relaxation time shorter than τn, has already equilibrated (i.e., is no
longer independent of X) and does not have to be used to specify the NEQ state. Thus, Sn is the state
space needed to specify the NEQ state for τn > τobs. However, as T0 is changed, both {τn} and τobs
can change as shown in Figure 2. This then affects the choice of the required state space Sn. Thus, the
hierarchy becomes a central concept in our analysis.

One of the most important sets of internal variables is that associated with the vibrational modes
in the system. We denote it by ξv, and it seems to have the property that it is always inactive. This is
shown by the lowest lying relaxation time curve corresponding to τv in Figure 2. This is because we
expect these modes to always come to equilibrium with the medium for any reasonable τobs.

tG

tr

t1

T0

t0

t2

t3

T0gT0GT*0 T01T0r

t

tobs

Active

Inactive

Figure 2. Schematic form of relaxation times {τn} as a function of the temperature T0 for a fixed
pressure P0 of the medium. This figure will play an important role in the discussion of vitrification
later. At low enough temperatures near T∗0 < T0G, relaxation times become extremely large so that
there is practically no relaxation over a long period of time. However, at T0 > T0g, all internal variables
have equilibrated over τobs in the figure. We have drawn τobs as a red solid horizontal line when it
does not change and as a red broken line when it increases, as T0 is reduced.

3. Generalized Nonequilibrium Thermodynamics in the Extended Space

We are mostly interested in disordered states of a system in this work. Any ordered state, if it
exists, is taken out of consideration from the start. Thus, the state space SX only contains disordered
states. For vitrification, states in SX refer to the (physical or hypothetical) EQ states of the supercooled
liquid. Defining such a restricted form of the equilibrium state space is very common in theoretical
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physics. For example, when we talk about an equilibrium crystal of a material, it is also defined in a
restricted sense in which its molecules are not supposed to dissociate into constituent atoms. From now
on, we will denote EQ quantities either by a subscript “eq” or “SCL” and NEQ quantities without any
subscript. If we are interested in a ordered state, we will use a subscript “CR” to denote its quantity.

3.1. Equilibrium State

In EQ thermodynamics, a body is specified by a set X formed by its independent extensive
observables (E, V, N, etc.); the set also serves the purpose of specifying the thermodynamic state (also
known as the macrostate) M of the system. All EQ states belong to the state space SX as said above.
The thermodynamic entropy of the body in equilibrium is a state function of X and is written as Seq(X).
It is one of the state functions of the system and is supposed to be differentiable except possibly at
phase transitions, which we will not consider in this review. It satisfies the Gibbs fundamental relation:

dSeq(X) = (dE + P0dV − µ0dN + ...)/T0, (9)

where we have shown only the terms related to E, V and N. The missing terms refer to the remaining
variables in X ≡

{
Xp
}

, and T0, P0, µ0, etc., have their standard meaning in equilibrium:

∂Seq/∂E .
= 1/T0, ∂Seq/∂V .

= P0/T0, ∂Seq/∂N .
= −µ0/T0, · · · . (10)

We have used a subscript 0 since in equilibrium, the fields of Σ and Σ̃ are the same.

3.2. Nonequilibrium States and Internal Equilibrium States

The above conclusion is most certainly not valid for a body out of equilibrium. If the body is
not in equilibrium with its medium, its (macro)state M(t) will continuously change (relax), which
is reflected in the changes in all of its physical quantities q(t) with time. Such variations mean that
the states no longer belong to SX. These states belong to the enlarged state space SZ spanned by
Z = (X,ξ). The set ξ of internal variables [14–23] cannot be controlled from the outside [13]; a readable
history of internal variables is available in a recent paper by Maugin [56]. They are used to characterize
internal structures or inhomogeneity [16,19,21–25,57–60] in the system and are independent of the
observables in X away from equilibrium, but become dependent on X in equilibrium. From Theorem 4
in [25], it follows that with a proper choice of the number of internal variables, the entropy can be
written as S(Z(t)) with no explicit t-dependence. The situation is now almost identical to that of a
body in equilibrium: the entropy is a function of Z(t) with no explicit time-dependence. This allows
us to identify Z(t) as the set of NEQ state variables. States for which the entropy S becomes a state
function of the state variable Z are called internal equilibrium (IEQ) states [18,22,24,25,57–60], and
we write:

Sieq(t) = S(Z(t))

for their entropy. This allows us to extend Equation (9) to:

dSieq(t) = ∑p
(
∂Sieq(t)/∂Zp(t)

)
dZp(t) (11)

in which the partial derivatives are related to the fields of the system:

∂Sieq(t)
∂E(t)

.
=

1
T(t)

,
∂Sieq(t)
∂V(t)

.
=

P(t)
T(t)

,
∂Sieq(t)
∂N(t)

.
= − µ(t)

T(t)
, · · · ,

∂Sieq(t)
∂ξ(t)

.
=

A(t)
T(t)

; (12)

These fields will change in time unless the system has reached equilibrium. It is customary to
call A the affinity [61]. For a fixed Z, Sieq does not change in time. Hence, it must have the maximum
possible value for fixed Z [52,53]. The EQ value of A vanishes [19,21]:
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Aeq = 0. (13)

In this case, Sieq is no longer a function of ξ, which means that ξ is no longer independent of X.
We consider the extension of the derivation given earlier [24] for the entropy of Σ0 by including

the internal variable contribution to obtain as the statement of the second law:

dS0(t)
dt

=

(
1

T(t)
− 1

T0

)
dE(t)

dt
+

(
P(t)
T(t)

− P0

T0

)
dV(t)

dt
+

A(t)
T(t)

· dξ(t)
dt

> 0; (14)

for an NEQ state. As the entropy of an isolated system Σ0 can only increase, dS0(t)/dt cannot be
negative, which explains the last inequality above for an NEQ process. The strict inequality will be
replaced by an equality for Σ0 in equilibrium. Each term in the first equation must be positive in
accordance with the second law for an NEQ state.

It follows from Equation (30) that the above discussion also applies to an interacting system in a
medium for which diS/dt is nonnegative. Thus, we can apply it to a vitrification process in which the
energy decreases with time during isothermal (fixed T0 of Σ0) relaxation. We must, therefore, have:

T(t) > T0 (15)

during any relaxation (at a fixed temperature and pressure of the medium) so that T(t) approaches
T0 from above [T(t)→ T+

0 ] and becomes equal to T0 as the relaxation ceases and the equilibrium is
achieved; the plus symbol is to indicate that the T(t) reaches T0 from above.

The relaxation times for different internal variables in ξ depend on their nature and do not have
to be the same. Indeed, the spectrum of relaxation times in various contexts such as in crystalline
solids [62] and glasses [44] is intimately related to the existence of internal variables. Therefore, the
spectrum of relaxation times will be pivotal in our discussion and will be picked up again in Section 4.

By attempting to describe NEQ properties of a system by invoking internal variables, one is able
to explain a broad spectrum of NEQ phenomena, but it should be stated here that the choice and the
number of state variables included in X or Z is not so trivial and must be determined by the nature
of the experiments [22]. As we will see in Section 4, the observation time τobs plays a central role in
determining the relevant state variables during an experiment:

Proposition 1. The state variables that determine the generalized NEQ thermodynamics are those whose
relaxation times are longer than τobs.

Proof. The proposition will be justified in Section 4; see the paragraph containing Equation (19).

We will assume here that Z has been specified. For any IEQ states Mieq(Z), we have τieq . τobs <

τeq, where we have introduced the internal equilibration time τieq required for the system to come to
an IEQ state in SZ. As expected, τieq = τieq(Z) depends on Z, but we will not explicitly exhibit its
state dependence unless clarity is needed. These states appear for τobs ≥ τieq. There are many other
states in SZ having non-state entropies that appear for τobs < τieq. As τobs → τieq, we obtain an IEQ
state Mieq(Z). Therefore, there appears a delicate balance between τobs and what internal variables
we can describe by our thermodynamic approach using the concept of IEQ states. This leads us to
consider the hierarchy of relaxation times, which is taken in Section 4.

It may appear to the reader that the concept of entropy being a state function is very restrictive.
This is not the case, as this concept, although not recognized by several works, is implicit in the
literature where the relationship of the thermodynamic entropy with state variables is investigated. To
appreciate this, we observe that the entropy of a body in internal equilibrium [24,25] is given by the
Boltzmann formula:

S(Z(t)) = ln W(Z(t)), (16)
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in terms of the number of microstates W(Z(t)) corresponding to Z(t). In classical NEQ
thermodynamics [19], the entropy is always taken to be a state function. In the Edwards approach [63]
for granular materials, all microstates are equally probable as is required for the above Boltzmann
formula. Bouchbinder and Langer [58] assume that the NEQ entropy is given by Equation (16).
Lebowitz [28,29] also takes the above formulation for his definition of the NEQ entropy. As a matter of
fact, we are not aware of any work dealing with entropy computation that does not assume the NEQ
entropy to be a state function. This does not, of course, mean that all states of a system are IEQ states.
For states that are not in internal equilibrium, the entropy is not a state function so that it will have
an explicit time dependence. However, as shown elsewhere [25], this can be avoided by enlarging
the space of internal variables. The choice of how many internal variables are needed will depend on
experimental time scales.

4. Hierarchy among Relaxation Times and Enlarged State Spaces

We now classify state variables in a hierarchical manner as below. In IEQ states, ξ has had enough
time τobs = τieq < τeq for Mieq to emerge. However, for τobs < τieq, the states in SZ have not had
enough time for Mieq to emerge so that their entropy is a non-state function, which will continue
to increase if the system is left isolated until it reaches Sieq(X, ξ) and becomes a state function. The
affinity A corresponding to ξ is nonzero in Mieq. If there were other internal variables ξ′, ξ′′, ξ′′′, · · ·
in the system, with relaxation times τ′, τ′′, τ′′′, · · · , respectively, that are distinct from ξ, then these
must have equilibrated during τieq so that their affinities A′, A′′, A′′′, · · · have vanished, implying that
they are no longer independent of X (A′ = ∂S/∂ξ′ = 0). This means that the entropy does not depend
on them. It is clear that τieq forms an upper bound for the relaxation times τ′, τ′′, τ′′′, · · · . Thus, they
play no role in SZ. When the process is carried out somewhat faster (τobs < τeq) than that required for
obtaining Meq(X), then ξ has not had enough time to “equilibrate”, as we have discussed earlier [52,53]
and A 6= 0.

Even if S does not depend on ξ′, ξ′′, ξ′′′, · · · , we will see in Section 8 that they affect the
thermodynamics of the system indirectly, a fact that does not seem to have been appreciated. For the
moment, we will not consider the internal variables ξ′, ξ′′, ξ′′′, · · · . We will consider them later and
will denote them collectively by ξE = (ξ′, ξ′′, ξ′′′, · · · ).

The discussion below is somewhat abstract and intricate and requires patience on the part of the
reader. The set-theoretic notation is perfectly suited for the abstract nature of the discussion. Some
readers may find the set-theoretic notation cumbersome, but this is the price we must pay to make the
discussion comprehensive, but compact.

To simplify our discussion, we assume that all internal variables in ξ are divided into
non-overlapping groups ξn indexed by n = 1, 2, · · · . We further assume that all internal variables in
ξn have the same relaxation time τn so that they equilibrate and are no longer independent of X for
∆t & τn. The relaxation times depend strongly on X. Let us also define ξ0 = X in order to compactify
our notation below. Because of this, we can include ξ0 = X whenever we speak of internal variables
from now on, unless clarity is needed. The groups ξn, n = 0, 1, 2, · · · are indexed by n so that τn’s
appear in a decreasing order (with τ0 = τeq):

τ0 > τ1 > τ2 > · · · . (17)

The relaxation times form a discrete set and not a continuum for simplicity. It is important that the
set {ξk} has a finite though large number of elements for a physically sensible thermodynamic
description of the system; having an enormous number of elements will make the description
unnecessarily too complex and completely useless for thermodynamics.

We now introduce the sequence of state spaces {Sn}, where Sn, n = 0, 1, 2, · · · , is spanned by
the union:

ξ(n)
.
= ∪n

k=1ξk, n ≥ 1,
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of all ξk, k ≤ n, with relaxation times τk > τn+1, with ξ(0) (not to be confused with ξ0 = X) denoting
an empty set, so that:

Zn
.
= (X, ξ1, ξ2, · · · , ξn) ≡ (ξ0, ξ(n)), n ≥ 0.

Thus, S0 = SX, formed by Z0 = ξ0 = X, is relevant when τ0 > τobs > τ1. Similarly, S1, formed
by Z1 = (ξ0, ξ(1)) = (X, ξ1), is relevant when τ1 > τobs > τ2, and so on.

It is clear from the construction that the state spaces Sn, n = 0, 1, 2, · · · , are ordered with
increasing dimensions:

S0 ⊂ S1 ⊂ S2 ⊂ · · · . (18)

The longest relaxation time in Sn is τ0 corresponding to ξ0 = X and the shortest relaxation time
is τn corresponding to ξn. Any ξk, k > n with relaxation time shorter than τn need not be considered
as it has already equilibrated and does not affect any state in Sn. We can summarize this conclusion
as follows:

Proposition 2. The additional internal variable ξk in Sk relative to Sk−1 equilibrates and plays no role (i.e.,
is absent) in any smaller state spaces Sl , l ≤ k− 1, but participates in all state spaces Sl larger than Sk−1,
i.e., l ≥ k.

Proof. See the discussion above.

Let us consider some observation time τobs used to observe a state M of an interacting system. We
can always find a pair of neighboring state spaces Sn+1 ⊃ Sn, n ≥ 0 satisfying:

τn+1 < τobs < τn; (19)

The two sides define a window ∆tn
.
= τn − τn+1 in which τobs must lie. As τobs > τn+1, no

ξk’s, k > n, have to be considered to describe the state M as they have already equilibrated (cf. the
discussion of ξ̀ above); thus, Sk, k > n, play no role in describing M. As τobs < τn, we need to consider
all ξk, k ≤ n to describe M. We must, therefore, use Sn to describe M for a τobs in this window; we
denote M by M(Zn) for clarity in this section. Among all the states in Sn, there are IEQ states Mieq(Zn)

for which S = Sieq(Zn). This happens when τobs ' τieq(Zn) ≤ τn, τieq(Zn) denoting the time required

for M(Zn) to evolve into Mieq(Zn); we will also use τ
(n)
ieq or simply τieq to denote τieq(Zn) in Sn if no

confusion will arise. For n = 0, τieq(Z0) simply refers to τeq.
There exists IEQ states Mieq(Zn) in Sn for which ξn is no longer independent of X; for these states,

τobs ' τieq(Zn−1, ξn(X)) ≡ τieq(Zn−1). However, ξn → ξn(X) as t→ τn even if M(Zn−1) in Sn−1 has
not turned into Mieq(Zn−1). As achieving internal equilibrium will take some additional time, we have

τieq(Zn−1) > τn. We thus conclude that (with τ
(0)
ieq representing τeq):

τ
(n)
ieq < τ

(n−1)
ieq , n > 0, (20)

which will be assumed in this work.
We now consider the window:

τ1 < τobs < τ0. (21)

As τ0 > τobs > τ1, ξ1 has already equilibrated, so it need not be considered, ξ0 = X has not yet
equilibrated. Thus, the entropy must be a function only of the observables X, which we must write as
Sieq(X(t)), as it continues to vary. As τobs → τ0, X(t)→ Xeq, Sieq continues to increase until it finally
reaches Seq; there is no explicit time dependence as all ξk’s, k > 0, have equilibrated; see also Landau
and Lifshitz [7] and Wilks [10], where NEQ states with respect to the medium are treated as IEQ states
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in SX. This is the most common way NEQ states in the literature are treated when internal variables
are not invoked. This is only possible when τobs satisfies Equation (21).

We now consider the remaining case:

τobs ≥ τ0. (22)

This situation corresponds to the quasistatic case so that even ξ0 = X has equilibrated to Xeq, and
we are dealing with an EQ state:

S = Seq = S(Xeq).

We know that {τn} depend on the state of the system. In vitrification, which is of our primary
interest here, they depend on the temperature T0. It is commonly believed that τn’s increase with
decreasing T0 as shown in Figure 2, where we show them as a function of T0. From this figure, we
observe that for a given τobs, drawn as a solid or broken line in red, ξE correspond to the internal
variables that lie in the inactive zone lying below τobs (recall that ξ0 = X is now included in internal
variables). They have all equilibrated. The active zone corresponds to internal variables that lie above
τobs. They have not equilibrated. For higher temperatures (T0 > T0g), all internal variables are inactive.
At lower temperatures, some of them become active and make the system out of equilibrium. At very
low temperatures, all internal variables become active for their NEQ role. We will discuss this figure
further in Section 6.

5. General Consideration

We have in Section 4 that for a given τobs, we can find the window ∆tn satisfying Equation (21),
which then determines the state space Sn to describe any state M for the given τobs. The internal
variables ξk’s, k > n, do not have to be considered as their affinities Ak’s have vanished for the given
τobs. However, the situation is somewhat complicated for the following reason. As τk’s are determined
by time-dependent Zn, the window will continue to change with time for a given τobs, so the value
of n will have to adjusted as τk’s change. The most simple solution for this complication is to allow
considering all the internal variables regardless of whether they have equilibrated or not. The fact that
A = 0 for equilibrated internal variables means that their contribution to diW will vanish so they will
not affect the Gibbs fundamental relation. Despite this, as we will see later in Section 8, these internal
variables leave their mark in relaxation. Therefore, from now on, we will consider the entire set Z in
the thermodynamic approach.

5.1. First Law

The infinitesimal heat exchange between the medium Σ̃ and the system Σ will be denoted by
deQ(t); similarly, the infinitesimal work done on Σ by Σ̃ will be denoted by deW(t). The subscript “e”
is a reminder of the exchange. Then, the first law of thermodynamics is written as:

dE(t) ≡ deQ(t)− deW(t) (23)

in terms of exchange heat and work deQ(t) = T0deS(t) and deW(t) = P0dV(t), respectively;
see Section 2. If there are other kinds of exchange work such as due to a magnetic field, an exchange
of particles, etc., they can be subsumed in deW(t). However, for simplicity, we will assume only
the pressure-volume work in this work. Both quantities are controlled from outside the system. If
the pressure P(t) of the system is different from the external pressure P0 of the medium, then their
difference gives rise to the internal work dV

i W(t) .
= (P(t)− P0) dV(t), which is dissipated within the

system; we have added a superscript as a reminder that this particular internal work is due to volume
variation. If there are internal variables, they do not contribute to deW(t) as the corresponding EQ
affinity A0 = 0. Despite this, the internal variable ξ does internal work given by dξ

i W(t) .
= A(t)·dξ(t)
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and must be added to the internal work due to pressure difference. We thus identify the internal work
diW(t) as:

diW(t) .
= (P(t)− P0) dV(t) + A(t)·dξ(t), (24)

and the net work is:

dW(t) = deW(t) + diW(t) = P(t)dV(t) + A(t)·dξ(t), (25)

a quantity that depends only on Σ and is oblivious to the properties of Σ̃. Such a quantity is called a
system-intrinsic (SI) quantity. Introducing a new quantity [25,53]:

diQ(t) ≡ diW(t), (26)

and the net heat:

dQ(t) .
= deQ(t) + diQ(t), (27)

we can write the first law as:

dE(t) = dQ(t)− dW(t). (28)

As dE(t) and dW(t) are both SI-quantities, dQ(t) must also be a SI-quantity. Thus, the above
formulation of the first law is in terms of quantities that refer to the system. There are no quantities that
refer to Σ̃. We will call dQ(t) and dW(t) as the generalized heat dQ(t) added to and the generalized
work dW(t) done by the system [24,25]. We will reserve exchange heat and work for deQ(t) = T0deS(t)
and deW(t) = P0dV(t), respectively, throughout this work; see Section 2. Remembering this, we will
also call generalized heat and work as simply heat and work, respectively, for brevity.

5.2. Second Law

The second law states that the irreversible (denoted by a suffix i) entropy diS generated in any
infinitesimal physical process going on within a system satisfies the inequality:

diS ≥ 0; (29)

the equality occurs for a reversible process. For the isolated system Σ0, we must have (see Equation (3)):

dS0 = diS0 = diS ≥ 0. (30)

As the thermodynamic entropy is not measurable except when the process is reversible, the
second law remains useless as a computational tool. In particular, it says nothing about the rate at
which the irreversible entropy increases. Therefore, it is useful to obtain a computational formulation
of the entropy, the statistical entropy. This will be done in the next section. The onus is on us to
demonstrate that the statistical entropy also satisfies this law if it is to represent the thermodynamic
entropy. This by itself does not prove that the two are the same. It has not been possible to show
that the statistical entropy is identical to the thermodynamic entropy in general. Here, we show their
equivalence only when the NEQ thermodynamic entropy is a state function of NEQ state variables to
be introduced below.

5.3. Internal Equilibrium Thermodynamic

For a body in internal equilibrium, its entropy S is a function of E, V and ξ. Introducing the
corresponding fields:
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(∂S/∂E) = β(t) .
= 1/T(t), (∂S/∂V) = β(t)P(t), (∂S/∂¸) = β(t)A(t), (31)

we can write down the differential:

dS(t) = β(t)[dE(t) + P(t)dV(t) + A(t)·dξ(t)],

which can be inverted to express dE(t) as follows:

dE(t) = T(t)dS(t)− P(t)dV(t)−A(t)·dξ(t). (32)

Comparing with Equation (28), we conclude an identity:

dQ(t) = T(t)dS(t), (33)

regardless of the number of internal variables used to describe Σ.
We now write dQ = T0deS(t) + T0diS(t) + [T(t) − T0]dS(t) = deQ(t) + T0diS(t) + [T(t) −

T0]dS(t). From this and using Equation (26), we conclude that:

diQ(t) = T0diS(t) + [T(t)− T0]dS(t) = TdiS(t) + [T(t)− T0]deS(t) = diW(t), (34)

which can be used to express diS(t) as follows:

T0diS(t) = [T0 − T(t)]dS(t) + [P(t)− P0]dV(t) + A(t) · dξ(t); (35)

TdiS(t) = [T0 − T(t)]deS(t) + [P(t)− P0]dV(t) + A(t) · dξ(t). (36)

Since dS(t), deS(t), dV(t) and dξ(t) are independent variations, each of the three contributions on
the right side in each equation must be non-negative:

[T0 − T(t)]dS(t) ≥ 0, (37a)

[T0 − T(t)]deS(t) ≥ 0, (37b)

[P(t)− P0]dV(t) ≥ 0, (37c)

A(t) · dξ(t) ≥ 0, (37d)

to comply with the second law requirement diS(t) ≥ 0; we are assuming T0 and T(t) are positive.
The factors T0 − T(t), P(t)− P0 and A(t) in front of the extensive variations are the corresponding
thermodynamic forces that act to bring the system to equilibrium. In the process, each force has its
own irreversible entropy generation [25]. The last inequality implies that each independent component
ξk ∈ ξ must satisfy Ak(t)dξk(t) ≥ 0. There will be no irreversible entropy generation, and the equalities
occur when thermodynamic forces vanish, which is the situation for a reversible process.

It should be noted that Equation (37b) simply states that heat exchanges (flows) from hot to cold.
To see this, we use the equality deS(t) = deQ(t)/T0 to rewrite the equation as [T0 − T(t)]deQ(t) ≥ 0.
If T0 > T(t), heat is exchanged to the system; if T0 < T(t), heat is exchanged from the system.

It follows from the last two inequalities in Equation (37) that:

diW(t) ≥ 0. (38)

This means that diW(t) truly represents irreversibility or dissipation within the system. We note
that while each term in diW(t) is non-negative, this is not so for diQ(t) written in the form:

diQ(t) = T0diS(t) + [T(t)− T0]dS(t), (39a)

= T(t)diS(t) + [T(t)− T0]deS(t) (39b)
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in which the first term is non-negative, but the second term is non-positive. This not only means that
the physics of diQ(t) and diS(t) is very different, but also that:

diQ(t) ≤ T0diS(t) , dQ(t) ≤ T0dS(t); (40)

the equalities occur only for isothermal (T = T0) or adiabatic (dS = 0) processes.
Let us consider the Helmholtz free energy H(S, V, ξ,P0) = E(S, V, ξ) + P0V(t) [24,25] in terms of

the external pressure P0 of the medium. We can treat HH(S, V, ξ,P0) as an SI-quantity by treating P0 as
a parameter. It is easy to see that:

dH = TdS(t)− [P(t)− P0]dV(t)−A(t) · dξ(t) + V(t)dP0. (41)

The above differential clearly shows that the enthalpy H is a function of S, V, ξ and P0. Recall that
for an EQ state, H(S, P0) is not a function of V, so it is a Legendre transform of E(S, V) with respect
to V(t). In other words, ∂H/∂V = 0. What we see from above is that, for an NEQ states, H is not a
Legendre transform of E with respect to V. This is clearly seen by evaluating:

∂H/∂V = P(t)− P0 6= 0,

as the pressure difference need not vanish in an irreversible process. Despite this, dH has no irreversible
component as we easily find that:

dH = TdS(t)− diW(t) + V(t)dP0 = deQ + V(t)dP0, (42)

regardless of the number and nature of the internal variables; we have used here Equations (33) and
(26). Thus, dH only contains exchange quantities as both terms on the right side are controllable from
outside the system. As such, it does not have any spontaneous or irreversible relaxation. For an
isobaric process, dP0 = 0, so dH reduces to:

dH = deQ. (43)

The above equality, which is well known for a reversible process, remains valid no matter how
irreversible a process is. Thus, it must remain valid for supercooled liquids and glasses. Observe that
just as diE = 0 (see Equation (6)), so is diH = 0, with deH = dH = deQ.

Let us now consider the Gibbs free energy G(S, V, ξ,T0, P0)
.
= E(S, V, ξ)− T0S(t) + P0V(t) [24,25]

in terms of the external temperature T0 and pressure P0 of the medium. As is the case with the enthalpy,
the Gibbs free energy is also not a Legendre transform of E(S, V, ξ) with respect to S(t) and V(t).
We find that:

dG = [T(t)− T0]dS(t)− diW(t)− S(t)dT0 + V(t)dP0 = −T0diS(t)− S(t)dT0 + V(t)dP0, (44)

in which the first term can be identified as diG
.
= −T0diS(t) and the remainder as deG .

= −S(t)dT0 +

V(t)dP0. At fixed T0 and P0, we have:

dG = diG = −T0diS(t) ≤ 0,

showing that the Gibbs free energy decreases during spontaneous relaxation such as on a glass.

6. Entropy Bound during Vitrification

We now apply the IEQ thermodynamics of the last section to the vitrification process, which
is carried out at some cooling rate as follows. The discussion in this section is an elaboration and
extension of our earlier discussion [53,64–68] and follows the approach first used by Bestul and
Chang [48] and later by Sethna and coworkers [69,70]. The temperature of the medium is isobarically
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changed by some small, but fixed ∆T0 from the current value to the new value, and we wait for (not
necessarily fixed) time τobs at the new temperature to make an instantaneous measurement on the
system before changing the temperature again. At some temperature T0g, the relaxation time τ0 = τeq,
which continuously increases as the temperature is lowered (see Figure 2), becomes equal to τobs, as
shown in Figure 3. The location of T0g depends on the rate of cooling, i.e., on τobs, which is clear
from the figure. The crossing T0g is lower for the broken τobs than for the solid τobs. There are several
other crossings at T01, T02, · · · (see Figure 2), at which τobs crosses other relaxation curves for τ1, τ2, · · · ,
respectively. The crossing again depends on whether we take the solid or the broken curve for τobs. Let
T0R > T0G denote the temperature of the last such crossing (not shown in the figure) before T0G. Just
below T0g, the structures are not yet frozen; they “freeze” at a lower temperature T0G (not too far from
T0g) to form an amorphous solid with a viscosity ηG ' 1013 poise corresponding to some time scale
tG; see Figure 3. This solid is identified as a glass determined by the choice of ηG or tG. At T0G, the
relaxation time τR is at least τG. Over the glass transition region between T0G and T0g in Figure 3, the
NEQ liquid gradually turns from an EQ supercooled liquid at or above T0g into a glass at or below T0G,
a picture already known since Tammann [2]; see also [71]. Over this region, some dynamical properties
such as the viscosity vary continuously, but very rapidly. However, thermodynamic quantities such
as the volume or the enthalpy change continuously, but slowly. As is evident from Figure 2, more
and more internal variables become active as the temperature is reduced and will determine the
thermodynamics in this region. Below T0G, all of these are almost “frozen” except those in the inactive
zone such as ξv corresponding to the relaxation time τv, representing localized oscillations within cells
in the cell model [72]; see the discussion in Sections 8 and 9.

Figure 3. Schematic behavior of the entropy: equilibrated supercooled liquid (solid curve) and a glass
(dotted curve) during vitrification as a function of the temperature T0 of the medium. Structures appear
to freeze at and below T0G; see the text. The transition region between T0g and T0G over which the
liquid turns into a glass has been exaggerated to highlight the point that the glass transition is not a
sharp point. For all T0 < T0g, the system undergoes isothermal (fixed T0) structural relaxation in time
towards the supercooled liquid shown by the downwards arrows. The entropy of the supercooled
liquid is shown to extrapolate to zero, but that of the glass to a positive value SR at absolute zero, per
our assumption.

As the observation time τobs is increased, the equilibrated supercooled liquid continues to lower
temperatures before the appearance of T0g. In the hypothetical limit τobs → ∞, it is believed that
the equilibrated supercooled liquid will continue to lower temperatures without any interruption
and is shown schematically by the solid blue curve in Figure 3. We overlook the possibility of the
supercooled liquid ending in a spinodal that has been seen theoretically [73]. It is commonly believed
that this entropy will vanish at absolute zero (SSCL(0) ≡ 0), as shown in the figure. As we are going
to be interested in SSCL(T0) over (0, T0g), we must also acknowledge the possibility of an ideal glass
transition in the system. If one believes in an ideal glass transition, then there would be a singularity in
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SSCL(T0) at some positive temperature TK < T0G, below which the system will turn into an ideal glass
whose entropy will also vanish at absolute zero [34, see also the references cited there]. The possibility
of an ideal glass transition, which has been discussed in a recent review elsewhere [34], will not be
discussed further in this work. All that will be relevant in our discussion here is the fact that the
entropy vanishes in both situations (SSCL(0) ≡ 0). However, it should be emphasized that the actual
value of SSCL(0) has no relevance for the theorems we derive below.

It is a common practice to think of the glass transition as occurring at a point that lies between T0g

and T0G. We have drawn entropy curves (glass and SCL) in Figure 3 for a process of vitrification in a
cooling experiment. The entropy curves Sg(T0, t) for glass emerges out of SSCL(T0) at T0g for a given
τobs in such a way that it lies above that of SCL for T0g > T0 ≥ 0. At any nonzero temperature T0,
S(T0, t) approach SSCL(T0) from above during isothermal (fixed temperature of the medium) relaxation;
see the two downward vertical arrows. These relaxations are discussed in the next section.

The concept of internal equilibrium is also a common practice now-a-days for glasses [2,4].
Employing the concept of internal equilibrium provides us with an instantaneous Gibbs fundamental
relation (see Equation (32)), which determines instantaneous temperature, pressure, etc., of the system.

We now prove the entropy bounds:

SR ≡ S(0) > Sexpt(0) > SSCL(0). (45)

in the form of Theorems 3 and 4. We will only consider isobaric cooling (we will not explicitly exhibit
the pressure in this section), which is the most important situation for glasses. The process is carried
out along some path from an initial state A at temperature T0A in the supercooled liquid state, which
is still higher than T0g, to the state A0 at absolute zero. The state A0 depends on the path A→A0,
which is implicit in the following. The change dS between two neighboring points along such a
path is [19,21,24,25,61] dS = deS + diS; for an NEQ system, the two parts of dS are path dependent.
The component:

deS(t) = −deQ(t)/T0 ≡ CPdT0/T0 (46)

represents the reversible entropy exchange with the medium in terms of the heat deQ(t) given out by
the glass at time t to the medium whose temperature at that instant is T0. The component diS > 0
represents the irreversible entropy generation in the irreversible process; see Equation (29). In general,
it contains, in addition to the contribution from the irreversible heat transfer with the medium,
contributions from all sorts of viscous dissipation going on within the system and normally requires
the use of internal variables [19,21,24,25,61]. The equality in Equation (29) holds for a reversible
process, which we will no longer consider unless stated otherwise. The strict inequality diS > 0 occurs
only for an irreversible process such as in a glass.

Theorem 3. The experimentally-observed (extrapolated) non-zero entropy Sexpt(0) at absolute zero in a
vitrification process is a strict lower bound of the residual entropy of any system:

SR ≡ S(0) > Sexpt(0).

Proof. We have along A→A0:

S(0) = S(T0) +
A0∫
A

deS +
A0∫
A

diS, (47)

where we have assumed that there is no latent heat in the vitrification process. The first integral is
easily determined experimentally since it is expressible in terms of the exchange heat:

A0∫
A

deS = −
A0∫
A

deQ
T0

.
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The second integral in (47) is always positive, but almost impossible to measure as it involves
thermodynamic forces (see Equation (37a)):

A0∫
A

diS =
A0∫
A

[T0 − T(t)]dS(t) + [P(t)− P0]dV(t) + A(t) · dξ(t)
T0

> 0. (48)

It involves knowing that since the residual entropy SR is, by definition, the entropy S(0) at
absolute zero, we obtain the important result:

SR ≡ S(0) > Sexpt(0)
.
= S(T0A) +

0∫
T0A

CPdT0/T0. (49)

This proves Theorem 3.

The irreversibility during vitrification does not allow for the determination of the entropy exactly,
because evaluating the integral in Equation (48) is not feasible [2,25]. The forward inequality:

SR − Sexpt(0) =
A0∫
A

diS > 0

is due to the irreversible entropy generation from all possible sources [19,21,24,25,61]. The inequality is
made strict as we are treating the NEQ glass with τobs < τeq(T0) and clearly establishes that the residual
entropy at absolute zero must be strictly larger than the “experimentally- or calorimetrically-measured”
Sexpt(0).

Theorem 4. The calorimetrically-measured (extrapolated) entropy during processes that occur when τobs <

τeq(T0) for any T0 < T0g is larger than the hypothetical supercooled liquid entropy at absolutely zero:

Sexpt(0) > SSCL(0).

Proof. Let Q̇e(t) ≡ deQ(t)/dt be the rate of net heat loss by the system during τobs < τeq(T0) as it
relaxes isothermally at some fixed T0. For each temperature interval dT0 < 0 below T0g, we have:

|deQ| ≡ CP |dT0| =
τobs∫
0

∣∣Q̇e
∣∣ dt < |deQ|eq (T0)

.
=

τeq(T0)∫
0

∣∣Q̇e
∣∣ dt, T0 < T0g

where |deQ|eq (T0) > 0 denotes the net heat loss by the system to come to equilibrium, i.e., become
supercooled liquid during cooling at T0. For T0 ≥ T0g, dQ ≡ dQeq(T0)

.
= CP,eqdT0. Thus, the entropy

loss observed experimentally with τobs < τeq(T0) is less than the entropy loss if the system is allowed
to come to SCL at each temperature T0. We thus conclude that:

Sexpt(0) > SSCL(0). (50)

This proves Theorem 4.

The strict inequality above is the result of the fact that glass is an NEQ state. Otherwise, we will
have Sexpt(0) ≥ SSCL(0) for any arbitrary state.

The difference SR− Sexpt(0) would be larger the more irreversible the process is. The quantity
Sexpt(0) can be determined calorimetrically by performing a cooling experiment. We take T0A to be
the melting temperature T0M and uniquely determine the entropy of the supercooled liquid at T0M

by adding the entropy of melting to the crystal entropy SCR(T0M) at T0M. The latter is obtained in a
unique manner by integration along a reversible path from T0 = 0 to T0 = T0M:

SCR(T0M) = SCR(0) +
T0M∫
0

CP,CRdT0/T0;
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here, SCR(0) is the entropy of the crystal at absolute zero, which is traditionally taken to be zero in
accordance with the third law, and CP,CR(T0) is the isobaric heat capacity of the crystal. This then
uniquely determines the entropy of the liquid to be used in the right-hand side in Equation (49).
We will assume that SCR(0) = 0. Thus, an experimental determination of Sexpt(0) is required to give
the lower bound to the residual entropy in Equation (45). Experimental evidence for a non-zero value
of Sexpt(0) is abundant as discussed by several authors [35,44–46,74–76]; various textbooks [2,4] also
discuss this issue. Goldstein [44] gives a value of SR ' 15.1 J/K mol for o-terphenyl from the value
of its entropy at T0 = 2 K. However, Equation (50) gives a mathematical justification of Sexpt(0) > 0.
The strict inequality proves immediately that the residual entropy cannot vanish for glasses, which
justifies the curve “Glass” in Figure 3. The relevance of the residual entropy has been discussed by
several authors in the literature [30,32,38–41,44,74,75,77].

By considering the state A0 above to be a state A0 of the glass in a medium at some arbitrary
temperature T′0 below T0g, we can get a generalization of Equation (49):

S(T′0) > Sexpt(T′0)
.
= S(T0) +

T′0∫
T0

CPdT0/T0. (51)

We again wish to remind the reader that all quantities depend on the path A→A0, which we
have not exhibited. By replacing T0 by the melting temperature T0M and T′0 by T0, adding the entropy
S̃(T0M) of the medium on both sides in the above inequality and rearranging terms, we obtain (with
SL(T0M) = SSCL(T0M) for the liquid):

SL(T0M) + S̃(T0M) ≤ S(T0) + S̃(T0M)−
T0∫

T0M

CPdT0/T0, (52)

where we have also included the equality for a reversible process. This provides us with an independent
derivation of the inequality given by Sethna and coworkers [69,70].

It is also clear from the derivation of Equation (50) that the inequality can be generalized to any
temperature T0 < T0g with the result:

Sexpt(T0) > SSCL(T0), (53)

with Sexpt(T0)→ SSCL(T0) as T0 → T0g from below.
While we have only demonstrated the forward inequality, the excess SR − Sexpt(0) can be

computed in NEQ thermodynamics [19,21,24,25,61], which provides a clear prescription for calculating
the irreversible entropy generation. The calculation will, of course, be system dependent and will
require detailed information. Gutzow and Scmelzer [74] provide such a procedure with a single
internal variable, but under the assumption of equal temperature and pressure for the glass and the
medium. However, while they comment that diS ≥ 0, whose evaluation requires system-dependent
properties, their main interest is to only show that it is negligible compared to deS.

We have prove, Theorems 3 and 4 by considering only the system without paying any attention
to the medium. For Theorem 3, we require the second law, i.e., Equation (29). This is also true of
Equation (51). The proof of Theorem 4 requires the constraint τobs < τeq(T0) for any T0 < T0g, which
leads to an NEQ state. The same is also true of Equation (53).

We have focused on the system in this section. This does not mean that the conclusion would be
any different had we brought the medium into our discussion. This is seen from the derivation of the
inequality in Equation (52) from Equation (51).

7. Entropy and Enthalpy during Isothermal Relaxation

We wish to consider isothermal relaxation in an isobaric cooling experiment carried out at a fixed
pressure P0. Let us assume that Σ is in equilibrium at some temperature T′0 ≤ T0g of some medium Σ̃′.
We change to a different medium Σ̃ at T0 < T′0, P0 and bring Σ in its contact. Initially, the temperature
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T (0) of Σ is T (0) = T′0 > T0, so it is out of equilibrium with the new medium, and its temperature
T(t) will strive to get closer to T0 as we wait for Σ to come to equilibrium with Σ̃; see Equation (15).
The initial entropy S(T0, 0) = SSCL(T′0) > SSCL(T0). If the system is now allowed to equilibrate, it will
undergo spontaneous (isothermal) relaxation at fixed T0 so that S(T0, t)→ SSCL(T0) in the time during
which its temperature changes. We assume that the relaxation times of ξn as a function of T(t) are
similar to those shown in Figure 2; all we need to do is to replace T0 by T(t). During relaxation,
the entropy of the glass is supposed to decrease. This is what we expect intuitively as the arrows show
in Figure 3. We now wish to consider such a relaxation and determine the behavior of thermodynamic
functions such as the entropy, enthalpy, etc., using IEQ thermodynamics introduced above. We prove
two additional theorems in this section. The theorems are general even though we have in mind NEQ
states including glasses obtained under the condition τobs < τeq(T0) for any T0 < T0g. We consider the
system to be in internal equilibrium with temperature T(t), pressure P(t), etc. We remind the reader
that all processes that go on within the medium occur at constant temperature T0, pressure P0, etc.
Thus, there will not be any irreversible process going on within the medium. All irreversible processes
will go on within the system.

We will exploit below the strict inequalities in Equation (37) to derive a bound on the rate of
entropy variation. For a system out of equilibrium, the instantaneous entropy S(t) and volume V(t)
seem to play the role [24] of “internal variables,” whose “affinities” are given by the corresponding
thermodynamic forces T0 − T(t) and P(t)− P0, respectively. This fact is not commonly appreciated
in the glass literature to the best of our knowledge. Even during an isobaric vitrification, there is
no fundamental reason to assume that the pressure P of the system is always equal to the external
pressure P0. However, it is a common practice to assume the two to be the same, which may not be a
poor approximation in most cases. We will not generally make such an approximation in this work.

We now state Theorem 5.

Theorem 5. The entropy of a glass reaches that of the supercooled liquid from above during relaxation at fixed
T0, P0 of the mediums. Thus,

S > SSCL,

so that the entropy variation in time has a unique direction as shown by the downward arrows in Figure 3.

Proof. It follows from Equations (15) and (37a) that for any NEQ state during relaxation (fixed T0, P0):

dS(t)/dt < 0; (54)

the inequality turns into an equality once equilibrium is reached. In other words, during relaxation,

S(T0, P0, t)→ S+
SCL(T0, P0);

the plus symbol is again to indicate that the glass entropy reaches SSCL(T0, P0) from above.
This completes the proof of Theorem 5.

We have shown T0, P0 in S(T0, P0, t) ≡ S(T(t), P(t), A(t)) to emphasize that the result is general
during any relaxation. In the derivation, we have only used the second law. Being a general result, it
should be valid for any real glass. Above T0g, the system is always in equilibrium with the medium so
its temperature is the same as T0. Below T0g, when the system is not in equilibrium with the medium,
then T(t) > T0 in accordance with Equation (15) based on the experimental observation. Any theory,
such as the one proposed in [78–81] and known as the entropy loss view of the glass transition, in
which S(T0, P0, t) drops below SSCL(T0, P0), is such that:

S(T0, t) ≤ SSCL(T0). (55)
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In this case, during relaxation, dS(t) > 0, so that (T0 − T(t))dS(t) < 0 in direct conflict with
Equation (37a), a consequence of the second law. Such a theory then violates the second law as first
pointed out by Goldstein [44]; we will revisit this issue in the final section.

We now prove the following theorem:

Theorem 6. For a glass, we must have H(T0, P0, t) > HSCL(T0, P0) at all T0 < T0g, where S > SSCL.

Proof. According to Equations (15) and (37b), we conclude that deQ = T0 deS < 0 (cf. Equation (46)),
while relaxation is going on and vanishes as T(t)→ T+

0 . It then follows from Equation (43) that:

dH(t)
dt

≤ 0, (56)

a result that is consistent with experimental observations [1]. This completes the proof of
the theorem.

It follows from the behavior of the Gibbs free energy G(t) = H(t)− T0S(t) during relaxation
(dG(t)/dt ≤ 0) that dH ≤ T0 dS, i.e., ∣∣∣∣dH(t)

dt

∣∣∣∣ ≥ T0

∣∣∣∣dS(t)
dt

∣∣∣∣ (57a)

and:
|∆H(T)| .

= H(T0)− HSCL(T0) ≥ T0[S(T0)− SSCL(T0)]; T0 < T0g. (57b)

The equality holds at T0 = T0g. We can also obtain Equation (57a) using dH = T0 deS ≤ T0 dS.
From Equations (41) and (37), we also have:∣∣∣∣dH(t)

dt

∣∣∣∣ ≥ T(t)
∣∣∣∣dS(t)

dt

∣∣∣∣ . (57c)

The last bound is tighter than the bound in Equation (57a) and reduces to the equality obtained
earlier [24] where ξ was neglected. This equality there was used to infer Equation (54). We have just
established that the conclusion remains unaltered even if we consider internal variables.

In summary, the isothermal relaxation originates from the tendency of the glass to come to thermal
equilibrium during which its temperature T(t) approaches T0 from above in time. The relaxation
process results in the lowering of the corresponding Gibbs free energy in time, as expected due to the
second law. However, it also results in the lowering of the corresponding entropy as shown in Figure 3
and the enthalpy during vitrification; the latter is observed experimentally [1].

8. Temperature Disparity due to Fast and Slow Variables: Tool–Narayanaswamy Equation

We have shown that for a given τobs, we can partition ξ into two distinct groups: one containing
internal variable ξE whose affinity has vanished and the other one, which we now denote by ξN, that
has not equilibrated and has a nonzero affinity A. These are the active internal variables. As ξE has
equilibrated, its temperature, pressure, etc., must be those of the medium, that is T0, P0, etc. It is the
inactive internal variable. On the other hand, the temperature, pressure, etc., associated with different
components of ξN must not be those of the medium as there will be nonzero thermodynamic forces
to bring each to equilibrium in due course. This raises a very interesting question. Because we are
dealing with an IEQ state of the system, there is a well-defined and unique thermodynamic definition
of its temperature T(t) .

= ∂E(t)/∂S(t). This temperature also satisfies the identity dQ(t) = T(t)dS(t).
How does T(t) relate to the temperatures of ξE and ξN? To make some progress, we assume ξE and ξN
to be quasi-independent over τobs. There is strong experimental evidence for this [82,83]. However,
there are observables in X that also participate in relaxation. For example, V will relax if P 6= P0.
Similarly, E will relax if T 6= T0. As we have discussed earlier [24], one can treat E, V, etc., in X as
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internal variables with their affinities 1/T− 1/T0, P/T− P0/T0, etc., that vanish once equilibrium is
reached. This is also seen from Equation (14), where the first two terms have the same form as the last
term involving dξ; recall that dS0/dt = diS/dt. Therefore, in this section, we will continue to include
ξ0 = X in ξ as we had done in Section 4. This should not cause any confusion. We only have to be
careful to always include ξ0 = X to specify the system even when τobs > τeq = τ0.

8.1. A Black Box Model

We consider a simple NEQ laboratory problem to model the above situation. Consider a system as
a “black box” consisting of two parts at different temperatures T1 and T2 > T1, but insulated from each
other so that they cannot come to equilibrium. The two parts are like slow and fast motions in a glass
or ξE and ξN, and the insulation allows us to treat them as independent, having different temperatures.
We assume that there are no irreversible processes that go on within each part so that there is no
irreversible heat diQ1 and diQ2 generated within each part. We wish to identify the temperature of the
system, the black box. To do so, we imagine that to each part is added a certain infinitesimal amount of
heat from outside, which we denote by dQ1 = deQ1 and dQ2 = deQ2. We assume the entropy changes
to be dS1 and dS2. Then, we have for the net heat and entropy change:

dQ = dQ1 + dQ2, dS = dS1 + dS2.

We introduce the temperature T by dQ = TdS. This makes it a thermodynamic temperature of
the black box; see Equation (33). Using dQ1 = T1dS1, dQ2 = T2dS2, we immediately find:

dQ(1/T − 1/T2) = dQ1(1/T1 − 1/T2).

By introducing x = dQ1/dQ, which is determined by the setup, we find that T is given by:

1
T

=
x
T1

+
1− x

T2
. (58)

As x is between zero and one, it is clear that T lies between T1 and T2 depending on the value
of x. Thus, we see from this heuristic model calculation that the thermodynamic temperature T of
the system is not the same as the temperature of either parts, a common property of a system not
in equilibrium.

If the insulation between the parts is not perfect, there is going to be some energy transfer between
the two parts, which would result in maximizing the entropy of the system. As a consequence, their
temperatures will eventually become the same. During this period, T will also change until all three
temperatures become equal.

8.2. Tool–Narayanaswamy Equation

We turn to the general case of the relaxation of thermodynamic properties. At high enough
temperatures, the time variation of T(t) as it relaxes towards T0 can be described as a single simple
exponential with a characteristic time scale τeq. This happens when all internal variables have come
to equilibrium during τobs > τeq, so no internal variables besides ξ0 are needed, a case discussed by
Landau and Lifshitz [7] and by Wilks [10].

At low temperatures, this is not true. There are quasi-independent slow and fast internal variables
ξN and ξE that are well known in glasses and supercooled liquids [82,83]. The situation is similar to
the black box considered above. Both parts will strive to come to equilibrium with the medium, but
they have widely separated relaxation times. As time goes on during relaxation, some of the groups in
{ξn} introduced in Section 4 become part of ξE after equilibration, as we have discussed there. We first
assume, for simplicity, that all active internal variables in ξN have the same relaxation time τ1, i.e., they
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equilibrate together, but have not equilibrated. The quasi-independence of ξN and ξE immediately
leads to the following partition of the S, E, V and ξ into two contributions, one from each kind:

Z(t) = ZE(t) + ZN(t). (59)

For example, quasi-independence gives the additivity S(t) = SE(t) + SN(t), where SE(t) and
SN(t) stand for SE(EE(t), VE(t), ξE(t)) and SN(EN(t), VN(t), ξN(t)), etc. Here, we have introduced
VE(t) as the volume difference V −Vf (t) in terms of the free volume Vf (t) in the cell model in which
Vf (t) allows for the molecules to move long distances (liquid-like slow motion) over τobs [84]. Thus,
VE corresponds to the fast center of mass solid-like motion within the cells, which are in equilibrium
with the medium; see also Zallen [72].

Let us now introduce the “energy fraction” x(t) as:

x(t) ≡ dEN(t)/dE(t), 1− x(t) ≡ dEE(t)/dE(t), (60)

at a given t, so that:

∂SN(t)/∂E(t) = x(t)∂SN(t)/∂EN(t), ∂SE(t)/∂E(t) = [1− x(t)]∂SE(t)/∂EE(t). (61)

By definition, we have ∂SE(t)/∂EE(t) = 1/T0, while ξN will have a temperature different from
this. Assuming internal equilibrium, we can introduce a new temperature TN(t) by:

∂SN(t)/∂EN(t) = 1/TN(t). (62)

The following identity:

1
T(t)

=
1− x(t)

T0
+

x(t)
TN(t)

(63)

easily follows from considering ∂S(t)/∂E(t) and using Equation (59) for S(t) and Equation (61). This
equation should be compared with (58) obtained above using a black box model and is identical to the
Tool–Narayanaswamy equation [1] in form, except that we have given thermodynamic definitions of
x(t) in (60) and TN(t) in Equation (62).

It is easy to extend the above calculation to the case of different groups {ξn} belonging to ξN. The
quasi-independence gives:

Z(t) = ZE(t) + ∑nZn(t), (64)

so that S(t) = SE(t) + ∑nSn(t) with SE(EE(t), VE(t), ξE(t)) and Sn(En(t), Vn(t), ξ 6n(t)) as discussed
above. For each Sn, we have its own temperature Tn using. It is now easy to see that Equation (63) is
extended to:

1
T(t)

=
1− x(t)

T0
+ ∑

n

xn(t)
Tn(t)

, (65)

with xn(t) ≡ dEn(t)/dE(t) and 1− x(t) = ∑n xn(t).
Let us now understand the significance of the above analysis. The partition in Equations (59)

and (64) along with the fractions x(t) and xn(t) shows that the partition satisfies a lever rule: the
relaxing glass can be conceptually (but not physically) thought of as a “mixture” consisting of different
“parts” corresponding to different temperatures and fractions. However, one of the temperatures is
T0 of the medium, while Tn(t)’s denote the temperature of the parts that are not equilibrated yet. As
some of these parts equilibrate, their temperature becomes T0, and they add to the weight 1− x(t)
for the equilibrated internal variables. Thus, we see that while ξE(t) may play no role in the IEQ
thermodynamics, it still plays an important role in relating the thermodynamic temperature T(t) with
those of various groups of ξ(t). Thinking of a system conceptually as a “mixture” of “parts” is quite
common in theoretical physics. One common example is that of a superfluid, which can be thought of
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as a “mixture” of a normal viscous “component” and a superfluid “component”. In reality, there exist
two simultaneous motions, one of which is “normal”, and the other one is “superfluid”. A similar
division can also be carried out in a superconductor: the total current is a sum of a “normal current”
and a “superconducting current”.

Such an analysis has been carried out in detail earlier [24], where a connection is made with the
notion of the “fictive” temperature [1], but in the absence of any internal variables (besides ξ0). Here,
we will summarize that discussion and refer the reader to this work for missing details. It is easy to
first consider the simple case in Equation (63). One can consider the part ξN of the energy fraction
x(t) at TN to represent a “fictitious” SCL at temperature TN. It is fictitious since the entire system
does not consist of this part, so it is not in equilibrium as SCL is supposed to be; it is missing the
part corresponding to the fraction 1− x(t). We can supplement mentally the fictitious SCL by the
same SCL of fraction x(t) at the same temperature TN to ensure that the entire system consists of ξN
at TN. This now represents an IEQ state at TN, the left side of Equation (63). Thus, TN represents the
thermodynamic temperature of this IEQ state, which can then be treated as an “unequilibrated” SCL, in
thermal equilibrium with a medium at TN (but not at T0). We have identified it as an “unequilibrated”
SCL since there is no reason for AN corresponding to ξN to vanish in this SCL, whereas it is required
to vanish in equilibrium. This SCL at TN is also not identical to the glass as the latter has ξE(t) at T0,
which is absent in this SCL. We can thus justify TN as the fictive temperature.

This picture can be extended to Equation (65) by introducing TN as follows:

x(t)
TN

= ∑
n

xn(t)
Tn(t)

,

which converts it to Equation (63). We can then introduce an equilibrated SCL, in equilibrium with a
medium at TN so that we can treat TN as the fictive temperature.

Instead of considering a derivative of S with E, we can consider derivatives with respect to other
state variables such as V. In that case, a similar analysis can be carried out as done in [24] to obtain a
similar looking Tool–Narayanaswamy equation for P(t)/T(t). We leave it to the reader to carry out
this simple extension. The result for P = P0 is given in [24].

9. Discussions and Conclusions

9.1. Consequence of the Relaxation Hierarchy

We have presented a hierarchical classification of relaxation times in increasing order in
Equation (17), which allows us to determine a unique temporal window ∆tn in Equation (19) for
a given τobs as shown by the two neighboring relaxation curves around the red horizontal line at the
temperature T0 of interest in Figure 2. The discussion is valid for any relaxing system with complex
relaxation and is not restricted to only SCL/glass undergoing vitrification. The temporal window is
not fixed as the state of the system changes, so it must be adjusted appropriately; see Figure 2. Let us
consider the vitrification considered in Section 6. Above T0 = T0g, the system is always in equilibrium
(recall that we have used SCL as the equilibrium state) so τobs ≥ τ0; see Equation (22). There are no
active internal variables. Therefore, the system’s temperature T = T0. Slightly below T0g, but above
T01, Equation (21) is satisfied, so ξ0 = X is active, but all ξk, k ≥ 1 are inactive, so they need not be
considered for a thermodynamic description. There are two different contributions that affect the
temporal window that needs to be considered:

(i) Cooling effect: As we lower T0 from its previous value T′0 = T0g (τobs = τ0), the system’s initial
temperature is T(0) = T′0. As the system’s temperature determines τ1, it has the previous value
τ′1 at T′0 initially, so it lies below the curve τ1 at T0. However, the value of τ0 at T0 is determined
by the new temperature T0, so it increases compared to τ′0 = τ0(T′0). Consequently, we have
τobs < τ0 to satisfy Equation (21).
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(ii) Relaxation effect: During isothermal relaxation at the new temperature, T(t) decreases towards
T0, which increases τ1 from τ′1 = τ1(T′0) to τ1(T0). This shrinks the window ∆t0 in Equation (21)
in width to the width shown in Figure 2 at T0.

The discussion can be now applied to the sequence of cooling steps to T0 between T01 and T02,
between T02 and T03, etc., where we are confronted with the new successive windows ∆t1, ∆t2, · · · .
In each window, we need to consider newer internal variables ξ1, ξ2, · · · so that in a window ∆tn,
we need to consider Zn consisting of X and ξ(n) as discussed in Section 4. We thus conclude that the
dimension of the state space continues to grow during cooling until all internal variables (presumably
leaving out ξv that refers to local vibrations as noted earlier) become active. Thus, in the glass
transition region between T0G and T0g, the irreversibility continues to grow until all internal variables
become active.

9.2. Residual Entropy

As discussed above, we cannot just consider a fixed, small number of internal variables (their
number keeps changing in the transition region) if we want to go to some small enough temperatures
T0 < T0G and be able to describe the cooling process thermodynamically. The best we can do is to
determine a large enough number of the internal variables that become active in the transition region.
This requires a deeper understanding of the structure of glasses and identifying these internal variables,
which seems to be an impossible task at present. In our view, this remains an unsolved problem at
present. Despite this, the inequalities in Equations (45), (50) and (53) remain valid for any choice of Z.

As these inequalities are very important, we summarize them for the benefit of the reader.
According to Equation (45), the residual entropy SR cannot be less than the experimentally-measured
or extrapolated Sexpt(0) at absolute zero; the latter itself cannot be less than the entropy of the
supercooled liquid at absolute zero. As we have assumed SSCL(0) = 0, we claim the strict inequality:

SR > 0.

Indeed, the strict inequality between Sexpt(0) and SSCL(0) holds at all positive temperatures
T0 < T0g, as derived in Equation (50).

We have not discussed the statistical formulation of the residual entropy, which has been discussed
by us in [32] (see Section 4.3.3) and [53] (see Section 7). The derivation does not require the use of the
second law or entropy maximization. Therefore, it applies to any nonequilibrium state and is purely
combinatorial in nature. For the sake of completeness, we summarize the result. Let Γλ, λ = 1, 2, · · · , C
denote the number of disjoint components in the state space, and let pkλ

denote the probability of a
microstate kλ in Γλ. The entropy S = −∑λ ∑kλ

pkλ
ln pkλ

, ∑λ ∑kλ
pkλ

= 1, can be written as a sum of
two parts:

S = ∑λ pλSλ + SC ,

where pλ
.
= ∑kλ

pkλ
is the probability of the component Γλ, Sλ = −∑kλ

p̂kλ
ln p̂kλ

, p̂kλ

.
= pkλ

/pλ, is the
entropy of the component, and:

SC
.
= −∑λ pλ ln pλ (66)

is the component confinement entropy. The residual entropy is the component confinement entropy
SC at absolute zero, with pλ = pλ0 denoting the probability of the component Γλ at absolute zero.
We have not imposed any equally-probable assumption in the above derivation so the result is very
general. However, to apply IEQ thermodynamics, we need to impose an equally-probable assumption.
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9.3. Fate of the Entropy Loss Conjecture

The isothermal relaxation considered in Section 7 shows that both S and H decrease with time,
which is consistent with our intuitive picture given at the start of that section for S and experimental
evidence for H. As we have shown, the behavior is a consequence of the second law. The entropy
loss view (ELV) mentioned after Theorem 5 and proposed in [78–81] results in a conclusion that
contradicts our results. In particular, the view suggests that during relaxation, the entropy increase
since S(T0, t) ≤ SSCL(T0); see Equation (55). As Goldstein [44] has shown, this is a violation of the
second law. These authors agree that in their view of the glass transition, the glasses do violate the
second law, while others [30,35,74–77] argue in favor of the second law. For most scientists, the fact that
the entropy loss view violates the second law should be a strong indication that the view is unrealistic.
However, the debate persists as is evident from some recent reviews [85–89].

Here, we hope to settle the debate by pointing out a hitherto unrecognized internal inconsistency
of the ELV, assuming its premise that the glasses do violate the second law. In other words, the second
law is not the absolute truth of Nature. This means that all the inequalities in Equation (37) must
be reversed for the view to hold. Since dS > 0 in ELV during relaxation, it follows from the reverse
inequality in Equation (37a) that T(t) > T0, which is the same as Equation (15). From the reverse
inequality in Equation (37b), we conclude that:

[T0 − T(t)]dH(t) < 0. (67)

If we demand that the ELV follow the experimental evidence (dH(t)/dt < 0), we must conclude
that T0 > T(t), which contradicts the previous conclusion, and the ELV becomes internally inconsistent.
If, however, we accept the previous conclusion T(t) > T0 to ensure that the ELV remain internally
consistent, then dH(t)/dt > 0, in contradiction with experimental evidence. Thus, the mere fact that
the ELV satisfies the experimental evidence (dH(t)/dt < 0) does not mean that it is internally consistent
in the entropy loss view. In other words, demanding that the ELV is consistent with experiments
disproves the ELV conjecture. Even though we have considered the entropy loss view at different
times [30,53,64–68], we believe that the conclusion drawn above is the most direct demonstration of the
internal inconsistency of the ELV, despite the fact that we have allowed it to contradict the second law.

9.4. Significance of Inactive Internal Variables

Even though the IEQ thermodynamics only involves the active internal variables, it is clear from
Section 8 that even inactive internal variables such as τr indirectly affect the thermodynamics through
the determination of the temperature, pressure, etc., of the system. In retrospect, this is not so surprising
once we recognize that the temperature of the system is a thermodynamic quantity. However, the
division of the internal variables into active and inactive parts means that the temperature of the
system must be different from the temperature T0 during isothermal relaxation.
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