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Background-—Whereas heart failure (HF) is a complex clinical syndrome, conventional approaches to its management have treated
it as a singular disease, leading to inadequate patient care and inefficient clinical trials. We hypothesized that applying advanced
analytics to a large cohort of HF patients would improve prognostication of outcomes, identify distinct patient phenotypes, and
detect heterogeneity in treatment response.

Methods and Results-—The Swedish Heart Failure Registry is a nationwide registry collecting detailed demographic, clinical,
laboratory, and medication data and linked to databases with outcome information. We applied random forest modeling to identify
predictors of 1-year survival. Cluster analysis was performed and validated using serial bootstrapping. Association between
clusters and survival was assessed with Cox proportional hazards modeling and interaction testing was performed to assess for
heterogeneity in response to HF pharmacotherapy across propensity-matched clusters. Our study included 44 886 HF patients
enrolled in the Swedish Heart Failure Registry between 2000 and 2012. Random forest modeling demonstrated excellent
calibration and discrimination for survival (C-statistic=0.83) whereas left ventricular ejection fraction did not (C-statistic=0.52):
there were no meaningful differences per strata of left ventricular ejection fraction (1-year survival: 80%, 81%, 83%, and 84%).
Cluster analysis using the 8 highest predictive variables identified 4 clinically relevant subgroups of HF with marked differences in
1-year survival. There were significant interactions between propensity-matched clusters (across age, sex, and left ventricular
ejection fraction and the following medications: diuretics, angiotensin-converting enzyme inhibitors, b-blockers, and nitrates,
P<0.001, all).

Conclusions-—Machine learning algorithms accurately predicted outcomes in a large data set of HF patients. Cluster analysis
identified 4 distinct phenotypes that differed significantly in outcomes and in response to therapeutics. Use of these novel analytic
approaches has the potential to enhance effectiveness of current therapies and transform future HF clinical trials. ( J Am Heart
Assoc. 2018;7:e008081. DOI: 10.1161/JAHA.117.008081.)
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P atients have had heart failure (HF) for centuries, and it is
estimated that more than 37 million people worldwide

are currently affected.1 Despite being a complex clinical

syndrome, contemporary clinical descriptors lag far behind its
nuanced scientific understanding. In fact, current classifica-
tions used clinically and in trials rely heavily on incomplete
descriptors such as left ventricular ejection fraction (LVEF) cut
points, stratifying patients simply as those with “reduced” or
“preserved” LVEF: HFrEF and HFpEF.2

There is increasing recognition that such classifications are
discordant with the current understanding of HF and may
impair our ability to personalize risk assessment and treat-
ment. The emphasis on LVEF is particularly notable as prior
studies have shown only modest differences in long-term
survival among patients with “reduced” as compared with
“preserved” LVEF.3,4 Still further, numerous promising ther-
apies have failed to demonstrate benefit in clinical trials
where inclusion was based almost exclusively on LVEF.5

Despite this, recent guidelines have recommended even
further subclassification of HF according to LVEF, with the
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introduction of HF with “midrange ejection fraction” as a
distinct clinical entity.6 However, many thought leaders in HF
have pushed for the move towards a more refined and
nuanced classification of HF, beyond ejection fraction, as this
approach is far more likely to have positive implications for
individualized patient care and clinical trial design.2,7 Against
this backdrop, the Institute of Medicine has emphasized the
need for a new taxonomy of disease that may provide a more
accurate classification of HF, with the goal of enhancing
diagnosis and treatment.8

Advanced analytics refers to the use of novel statistical
approaches that harness the substantial computing power
currently available to investigate large data sets.9,10 In
medicine, these methodologies can use a data-driven
approach to re-examine phenotyping of complex diseases
such as HF.11 Recently, these methods identified distinct
phenotypes of HF with reduced and preserved ejection
fraction (HFrEF and HFpEF) among 1619 patients with HFrEF
enrolled in the HF-ACTION (Heart Failure: A Controlled Trial
Investigating Outcomes of Exercise Training) clinical trial and
397 patients seen at the HF clinic at outpatient clinic of the
Northwestern University HFpEF Program.12,13

These prior analyses, while intriguing, were limited by their
small size, lack of real-world applicability, and predetermina-
tion of patients according to LVEF. Accordingly, we sought to
apply machine learning methods to the Swedish Heart Failure
Registry, a richly characterized national cohort of more than
40 000 HF patients, to identify clinically meaningful patient
subgroups, improve risk prediction, and detect heterogeneity
in response to common HF therapies.

Methods

Data Availability
The data, analytic methods, and study materials will not be
made available to other researchers for purposes of reproduc-
ing the results or replicating the procedure. These data are
curated and maintained by the SwedeHF research foundation
and can be requested at the following website: http://www.
ucr.uu.se/rikssvikt-en/research/general-information-research.

Study Population and Data Sources
The Swedish Heart Failure Registry (SwedeHF), the details of
which have been described elsewhere, is a nationwide registry
enrolling both hospitalized patients and outpatients with
clinician-assessed HF from over 65 hospitals and 113 clinics
within Sweden.14–17 The registry was started in 2000 and fully
implemented in 2003. The registry collects or derives more
than 130 patient variables including detailed demographic,
clinical, and laboratory data and is linked to other registries
for additional baseline comorbidity data and for data on
outcomes. For the current study, data were extracted from
the database on patients enrolled from May 2000 through
December 2012. This yielded 80 772 records that repre-
sented 51 060 unique patients. Patients lacking follow-up
were excluded, leaving us 44 886 patients for the analysis.
All-cause mortality at 1 year was the primary outcome for the
present study and was obtained by merging the SwedeHF
database with the Swedish Population Registry using the
unique 10-digit personal identification number of Swedish
citizens. The Swedish Board of Health and Welfare (http://
www.socialstyrelsen.se) maintains the Population Registry,
the Patient Registry, and the Dispensed Drug Registry. The
Population Registry provided date of death. The protocol,
registration form, and annual report of SwedeHF are available
at http://www.SwedeHF.se. Establishment of the registry
and analysis of data for this study were approved by a
multisite ethics committee. Individual patient consent was not
required, but patients were informed of entry into national
registries and allowed to opt out. The registry and this study
conform to the Declaration of Helsinki.

Definitions
Definitions were based on those used in the SwedeHF
Registry. HF was diagnosed by the attending physician based
on guideline recommendations at the time of inclusion. New
York Heart Association functional classes I to IV were used to
define severity. Revascularization was defined as history of
coronary artery bypass surgery or percutaneous coronary
intervention. Myocardial infarction was based on information
from patient records. Type 2 diabetes mellitus was defined as

Clinical Perspective

What Is New?

• We applied machine learning methodologies to a large
clinical data set (>40 000 heart failure patients) and
demonstrated that these methods can predict outcomes
in a highly accurate manner as well as identify clinically
distinct subgroups that have differential responses to
commonly used therapies.

What Are the Clinical Implications?

• Advanced analytic methods can use readily available patient
clinical data to predict outcomes with a high degree of
accuracy and precision.

• Agnostic algorithms can define clinically recognizable
patient clusters with unique clinical trajectories.

• As healthcare systems collect massive amounts of informa-
tion on patients, there is a need for machine learning
methods to augment clinical decision making.

• Advanced analytics can play a role in improving heart failure
clinical trial design and execution.
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a confirmed history of this diagnosis. Comorbidities were
defined as the presence of any or several of the following:
hypertension, atrial fibrillation, chronic obstructive pulmonary
disease, valvular heart disease, stroke, peripheral artery
disease, or idiopathic dilated cardiomyopathy, all of which
were classified as “yes” or “no” based on patient records.
LVEF was the most recently estimated value and was grouped
into 4 classes: ≥50%, 40% to 49%, 30% to 39%, and <30%.
Creatinine clearance was calculated with the Modification of
Diet in Renal Disease formula and an estimated glomerular
filtration rate <60 mL/min per 1.73 m2 was considered the
cutoff for renal insufficiency.

Statistical Analysis
As previously described, variables with >20% missing data
were excluded from the analysis.12,13 Missing data for the
remaining 86 variables were handled using mean (numeric
variables) or most common value (non-numeric variables)
imputation. We trained a random forest model to predict
survival up to 1 year after hospital discharge or at an
outpatient clinic visit.18,19 The random forest algorithm was
chosen because it can be applied to a data set with mixed
variable types, performs well on data sets with large
numbers of variables, is not prone to overfitting, and allows
estimation of variable importance. The model was validated
by 10-fold bootstrapped cross-validation. To assess model
calibration, patients were grouped into deciles based on
predicted risk before plotting observed versus predicted risk.
We ranked predictors (variables) by decrease in Gini impurity
index, estimated while training the random forest model.
Using the 8 strongest derived predictors of mortality, we
then clustered patients into 4 groups using K-means
clustering with Euclidean distance as a measure of dissim-
ilarity. The variables were the following: age, creatinine,
hemoglobin, weight, heart rate, systolic blood pressure,
mean arterial pressure, and income. K-means clustering is an
unsupervised learning method that partitions N objects into
K clusters in which each object belongs to the cluster with
the nearest mean. K-means can be computed in a compu-
tationally efficient manner for large data sets. We selected 4
clusters as the smallest number of clusters that optimized
cluster separation (evaluated by the Silhouette score),
cluster stability (evaluated by Jaccard coefficient estimation
over 10 bootstrapped samples), and variation in cluster size
and difference in mortality between clusters.20 The full
cohort was also stratified according to cut points of LVEF
that were adapted from the European Society of Cardiology
Guidelines for the diagnosis and treatment of acute and
chronic HF.4 Four cohorts were delineated representing
preserved LVEF (LVEF≥50%) as well as mild-to-severe
decrements in systolic function (LVEF 40–49%, LVEF

30–39%, and LVEF<30%). One-year Kaplan–Meier survival
curves were generated for each of the 4 clusters and LVEF
group to compare the predictive utility of each methodology.
The log-rank test was used to compare the difference in
survival between groups. Each novel cluster was interrogated
for variability with respect to demographics, comorbidities,
medications, laboratory data, and socioeconomics. Finally,
interaction terms in a logistic regression model were used to
test for the statistical significance of interactions between
clusters and commonly prescribed HF medications. We
sought to identify the variation in outcomes between each
cluster when exposed to traditionally used HF medications,
namely: b-blockers, digoxin, angiotensin-converting enzyme
inhibitors, angiotensin receptor blockers, mineralocorticoid
receptor antagonists, diuretics, and nitrates. We propensity-
matched groups (drug versus no drug) within each cluster for
age, sex, and LVEF using the coarsened exact matching
method; this ensures that groups being compared are evenly
matched on selected variables by removing those subjects
who skew the matching. Hazard ratios were estimated
through Cox regression after adjustment for LVEF, the major
criteria for use of HF therapeutics. Analyses were performed
using R 3.2.2 (R Development Core Team, Vienna, Austria). A
2-sided P≤0.05 was considered statistically significant for all
analyses.

Random Forest Machine Learning
The Random Forest (RF) machine learning algorithm is a
process of fitting a series of classification and regression
trees to the data.18 A tree is constructed by first taking a
single bootstrap sample of the data. The data are iteratively
split into nodes as in a standard classification tree; however,
the RF process uses a random subset of the predictors at
each considered split. Each of the trees is fitted and results
are combined across trees. The R package “randomForest”
was used to implement this method. We trained a RF model to
predict survival up to 1 year after hospital discharge or an
outpatient clinic visit.

Model Validation and Calibration
The model was validated by 10-fold bootstrapped cross-
validation. To assess model calibration, patients were grouped
into deciles based on predicted risk before plotting observed
versus predicted risk. The RF algorithm was chosen because it
can be applied to a data set with mixed variable types,
performs well on data sets with substantial number of
variables, is not prone to overfitting, and allows estimation of
variable importance. We ranked predictors (variables) by
decrease in Gini impurity index, estimated while training the
RF model.21
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Clustering
Using the 8 strongest derived predictors of mortality, we then
clustered patients into 4 groups using K-means clustering
with Euclidean distance as a measure of dissimilarity.12,13 The
variables were the following: age, creatinine, hemoglobin,
weight, heart rate, systolic blood pressure, mean arterial
pressure, and income. K-means clustering is an unsupervised
learning method that partitions n objects into k clusters in
which each object belongs to the cluster with the nearest
mean. K-means can be computed in a computationally
efficient manner for large data sets. K-means clustering is
an unsupervised learning method that partitions N objects
into K clusters in which each object belongs to the cluster
with the nearest mean. K-means can be computed in a
computationally efficient manner for large data sets. We
selected 4 clusters as the smallest number of clusters that
optimized cluster separation (evaluated by Silhouette score),
cluster stability (evaluated by Jaccard coefficient estimation
over 10 bootstrapped samples), and variation in cluster size
and difference in mortality between clusters.22 The Jaccard
similarity coefficient is a measure of similarity between 2 data
sets. A high coefficient indicates that the same members
were grouped together each time. Low coefficients meant that
a subject jumped across clusters when the clustering is
redone with a bootstrapped sample. Jaccard Index=(the
number in both sets)/(the number in either set)9100.
Silhouette analysis is used to study the separation between
clusters. The silhouette score measures how similar a subject
is (considering all the variables used for clustering) to
subjects in the same cluster, and how distant from members
of other clusters.

Results

Baseline Characteristics Across Clusters and
LVEF
Baseline characteristics of the patients in the 4 clusters are
described below and listed in Table 1; those according to
LVEF cut points are shown in Table 2. Compared with
differences in patient characteristics when stratified by
clusters, demarcation according to LVEF was far more
homogeneous.

As shown, patients in Cluster 1 of 4 (N=11 090; 24.7%)
were the oldest, weighed the least, and were more likely than
any other cluster to be women. This cluster had, by far, the
largest percentage of patients with a normal LVEF
(LVEF>50%). They had the highest median blood pressure
and the highest percentage of patients with prior strokes/
transient ischemic attacks. These patients were the most
likely to have a nonischemic cause for their cardiomyopathy
(3.4%) and had the lowest percentage to undergo

percutaneous coronary intervention (9.7%) or coronary artery
bypass surgery (16.3%). A high percentage of these patients
had comorbid conditions such as atrial fibrillation (55%),
peripheral artery disease (11%), renal insufficiency (12%),
aortic stenosis (11%), and prior malignancy (15%) that were
second only to Cluster 3. Patients in Cluster 1 also had the
second lowest hemoglobin levels and the highest plasma
brain natriuretic peptide levels. They had the lowest use of
b-blockers and angiotensin-converting enzyme inhibitors and
second highest use of diuretics, nitrates, and digoxin. Use of
implanted device therapies was lowest in this cluster. Patients
in this cluster had the lowest rates of smoking or alcohol
abuse. They were the least likely to be married/cohabitating
or university educated and had the lowest income. They were
also the least likely to be seen in the cardiology clinic for
follow-up.

Cluster 2 of 4 (N=9000; 20.1%) comprised mostly men
(�77%) and had the second lowest median age. These
patients tended to have the highest weight, with a median
body mass index in the obese range (30 kg/m2). They had the
second highest median blood pressures and mean arterial
pressures. This cluster was characterized by a high prevalence
of diabetes mellitus, dyslipidemia, and hypertension: They
also had the highest median hemoglobin A1C and cholesterol
levels. They had the second highest (after Cluster 4) rates of
ischemic cardiomyopathy and patients with reduced LVEF
(<40%). They had the highest number of patients who
underwent coronary artery bypass surgery (23%). Patients in
this cluster generally had the second lowest prevalence of
comorbid conditions, again second only to Cluster 4. Accord-
ingly, use of guideline-recommended HF medications was
second to Cluster 4. They had the lowest natriuretic peptide
levels. These patients were most likely to be married/
cohabitating (62%), had the second highest rates of a
university education (16%), and a relatively higher number
(51%) were seen in a cardiology specialty clinic.

Cluster 3 of 4 (17 438; 38.8%) were also older, as Cluster
1, but almost evenly split between men and women. These
patients had a far lower prevalence of LVEF (>50%). These
patients similarly had the lowest body mass index and the
highest prevalence of comorbid conditions such as renal
insufficiency, atrial fibrillation, aortic stenosis, chronic
obstructive pulmonary disease, peripheral artery disease,
and malignancy. They had the highest percentage of patients
who had a prior myocardial infarction and 22% had undergone
coronary artery bypass surgery. They had the lowest
hemoglobin levels as well as the lowest estimated glomerular
filtration rate. They had the highest levels of N-terminal
prohormone of brain natriuretic peptide. They had the highest
use of diuretics, nitrates, and digoxin; their use of b-blockers
and angiotensin-converting enzyme inhibitor (ACE-I)/angio-
tensin receptor blocker was the lowest. They tended to have
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Table 1. Baseline Characteristics According to Patient Cluster

Characteristic Cluster 1 (N=11 090) Cluster 2 (N=9000) Cluster 3 (N=17 438) Cluster 4 (N=7358)

Age, y 83 (79–87) 68 (63–72) 82 (77–86) 60 (53–65)

Male, % 45.10 76.58 56.34 73.54

Weight, kg 70 (61–80) 92 (82–104) 71 (62–81) 82 (72–94)

BMI, kg/m2 25 (22–28) 30 (27–34) 25 (22–27) 27 (24–30)

NYHA class, %

I 11 15 8 16

II 46 52 40 48

III 39 30 45 31

IV 4 2 8 3

LVEF, %

<30% 16 27 29 44

30%–39% 25 30 27 27

40%–49% 25 23 20 18

≥50% 34 20 24 12

SBP, mm Hg 150 (140–160) 140 (130–150) 117 (109–124) 110 (100–120)

DBP, mm Hg 80 (74–87) 80 (75–90) 65 (60–70) 70 (60–75)

Pulse pressure 70 (60–80) 60 (50–70) 50 (40–60) 40 (35–50)

Heart rate, bpm 72 (64–83) 72 (63–82) 72 (64–84) 71 (62–81)

ICM, % 3.36 14.18 6.71 27.69

PCI, % 9.74 15.71 12.87 18.58

CABG, % 16.33 21.98 21.80 21.54

Hypertension, % 62.32 59.68 48.26 31.73

Atrial fibrillation, % 54.77 46.98 57.96 37.55

Diabetes mellitus, % 23.28 32.22 24.17 22.07

Myocardial infarction, % 36.50 33.46 45.22 33.87

Stroke/TIA, % 22.33 13.18 20.68 10.22

PAD, % 11.25 8.27 11.38 6.31

CKD, % 11.67 7.91 14.36 5.88

COPD, % 16.56 16.77 20.06 15.37

AS, % 11.14 4.98 12.05 4.09

PAD, % 11.25 8.26 11.38 6.30

Malignancy, % 14.63 9.28 16.87 8.51

Hemoglobin, g/L 127 (117–138) 141 (130–152) 126 (115–137) 139 (127–150)

Creatinine clearance, mL/min per 1.73 m2 45 (33–58) 84 (66–106) 44 (32–58) 89 (71–112)

Potassium, mmol/L 4.1 (3.8–4.4) 4.2 (3.9–4.4) 4.2 (3.8–4.5) 4.2 (3.9–4.4)

BNP, pg/mL 619 (270–1307) 337 (139–842) 519 (206–1303) 399 (128–1000)

NT-proBNP, pg/mL 3003 (1393–6610) 1600 (710–3500) 3753 (1675–8172) 1749 (712–4000)

LDL, mmol/L 2.6 (2.0–3.3) 2.6 (2.0–3.2) 2.3 (1.8–3.0) 2.5 (2.0–3.3)

HbA1C, mmol/L 5.8 6.1 5.8 6.0

Cholesterol, mmol/L 4.6 4.6 4.3 4.3

b-Blockers, % 78.66 87.77 80.55 90.21

ACE-I, % 55.98 69.18 56.59 74.79

Continued
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the lowest rates of university education and had the lowest
income.

Cluster 4 of 4 (N=7358; 16.4%) was the smallest cluster,
and comprised the youngest patients, with a median age of 60
years. They tended to be males (74%) and had the second
highest median body mass index (27 kg/m2). The majority of
patients in this cluster had HFrEF (LVEF<40%); it was the
highest of any cluster. These patients had the lowest rates of
hypertension and diabetes mellitus, but the highest rates, by
far, of smoking. They had the highest prevalence of ischemic
cardiomyopathy and the highest likelihood of having under-
gone coronary artery revascularization, especially via percu-
taneous coronary intervention (19%). Patients in this cluster
had the lowest rates of comorbid conditions, had the best
renal function, and the second-lowest natriuretic peptide
levels. Patients in this cluster had the highest use of
neurohormonal blockade and the lowest use of diuretics.
They were more likely than any other cluster to be treated
with an implantable device. They were the most likely to be
married/cohabitating, have a university education, and be
followed in a cardiology clinic.

Clinical Outcomes Across Clusters
As shown in Figure 1, analysis of the 1-year outcomes
showed marked differences in outcomes per cluster, with
1-year survival being as follows: 69% (Cluster 3), 77% (Cluster
1), 92% (Cluster 4), and 93% (Cluster 2). Compared with
patients in Cluster 2 (lowest risk), patients had increased risk

of adverse outcomes as follows: Cluster 1 (hazard ratio [HR]
3.31, 95% confidence interval [CI], 3.04–3.59), Cluster 3 (HR
4.52, 95% CI, 4.18–4.89), and Cluster 4 (HR 1.19, 95% CI,
1.07–1.33). In contrast, we noted only slight differences in
outcomes per LVEF, with 1-year survival as follows: 79.93%
(LVEF≥50%), 80.92% (LVEF<30), 83.40% (LVEF 40–49%), and
83.72% (LVEF 30–39%).

The area under the curve (AUC) for the 8 strongest derived
predictors of mortality from the RF modeling was 0.78. As
shown in Figure 2, the addition of further variables improved
the AUC to 0.83, which indicated a stronger ability to
discriminate individual risk. Membership within clusters in
themselves had modest predictive capabilities, with AUC of
0.68. Of note, the LVEF strata that have been proposed to
categorize HF had extremely poor prognostic value
(AUC=0.52). An online tool based on our methodology is
presented at the following website: The SwedeHF Cluster Risk
Score (http://hfcalculator.qure.ai) and provides both a pre-
diction of 1-year mortality as well as membership in the
cluster that matches the individual patient best (Figure 3).

Interaction with HF Therapies
We noted significant differences in associations between
therapies and mortality across patient clusters and therapies
after propensity matching for age, sex, and LVEF, the key
determinants of therapeutic intervention in HF (Figures 4 and
5). Patients on diuretics in all clusters did worse than those
who were not on diuretics, potentially reflecting more

Table 1. Continued

Characteristic Cluster 1 (N=11 090) Cluster 2 (N=9000) Cluster 3 (N=17 438) Cluster 4 (N=7358)

ARB, % 19.53 25.01 18.51 19.78

Diuretics, % 84.32 73.81 87.14 69.69

Nitrates, % 21.18 11.90 22.09 7.55

Digoxin, % 18.11 16.15 18.54 17.61

Pacemaker, % 10.34 5.68 11.55 4.37

ICD, % 0.39 1.74 1.27 3.81

CRT-D, % 0.14 0.85 0.58 2.42

Smoking (current), % 5 14 5 21

Alcoholism, % 1 6 2 9

Married, % 42 62 48 63

University education, % 10 16 12 18

F/U cardiology clinic, % 39 51 45 59

Annual disposable income, $ 13 420 (11 260–16 020) 15 680 (12 620–21 640) 13 810 (11 630–16 680) 17 560 (13 120–24 870)

P<0.001 for all characteristics. ACE-I indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; AS, aortic stenosis; BMI, body mass index; bpm, beats per
minute; BNP, brain-type natriuretic peptide; CABG, coronary artery bypass grafting; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CRT-D, cardiac
resynchronization therapy-Defibrillator; DBP, diastolic blood pressure; HbA1C, hemoglobin A1C; ICD, implantable cardioverter defibrillator; ICM, ischemic cardiomyopathy; LDL, low-density
lipoprotein; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal prohormone of brain natriuretic peptide; NYHA, New York Heart Association; PAD, peripheral artery disease; PAD,
peripheral artery disease; PCI, percutaneous coronary intervention; SBP, systolic blood pressure; TIA, transient ischemic attack.
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Table 2. Baseline Characteristics According to Cut Points of LVEF

Characteristic LVEF<30% (N=10 702) LVEF 30%–39% (N=10 085) LVEF 40%–49% (N=8043) LVEF>50% (N=8591)

Age, y 72 (63–80) 75 (66–82) 77 (68–83) 80 (72–85)

Male, % 74.38 67.93 60.47 45.33

Weight, kg 77 (67–89) 78 (67–90) 78 (67–90) 76 (65–89)

BMI, kg/m2 25 (23–29) 26 (23–30) 26 (23–30) 27 (3

NYHA class, %

I 7 12 15 16

II 40 49 52 45

III 46 36 30 35

IV 7 3 3 4

SBP, mm Hg 120 (108–132) 125 (110–140) 130 (116–142) 130 (120–149)

DBP, mm Hg 70 (64–80) 71 (65–80) 72 (65–80) 70 (65–80)

Pulse pressure 46 (39–60) 50 55 (45–68) 60 (48–70)

Heart rate, bpm 73 (64–84) 71 70 (62–80) 72 (63–82)

ICM, % 27.01 9.77 5.97 2.82

PCI, % 12.82 18.93 17.21 10.23

CABG, % 21.6 25.36 23.75 16.61

Hypertension, % 41.32 48.78 54.01 61.66

Atrial fibrillation, % 44.61 48.49 54.25 59.36

Diabetes mellitus, % 25.14 25.72 24.61 25.65

Myocardial infarction, % 40.31 47.13 41.66 28.96

Stroke/TIA, % 15.48 15.64 16.42 19.56

PAD, % 9.47 9.98 10.22 9.86

CKD, % 11 10.39 9.92 11.38

COPD, % 15.26 16.42 17.41 21.57

AS, % 6.91 8.41 9.97 14.24

PAD, % 9.47 9.98 10.22 9.86

Malignancy, % 11.94 12.98 13.32 14.83

Hemoglobin, g/L 136 (123–147) 133 (121–145) 132 (120–143) 127 (116–139)

Creatinine clearance, mL/min per 1.73 m2 61 (42–86) 60 (41–85) 59 (41–83) 53 (38–75)

Potassium, mmol/L 4.2 (3.9–4.5) 4.2 (3.9–4.4) 4.1 (3.8–4.4) 4.0 (3.8–4.4)

BNP, pg/mL 714 (296–1613) 488 (205–1150) 367 (142–835) 341 (139–834)

NT-proBNP, pg/mL 3870 (1740–8203) 2389 (1070–5595) 2180 (954–4810) 1933 (834–4224)

LDL, mmol/L 2.5 (1.9–3.3) 2.5 (2.0–3.2) 2.5 (1.9–3.2) 2.5 (1.9–3.2)

HbA1C, mmol/L 5.5 (4.9–6.5) 5.6 (4.8–6.7) 5.5 (4.8–6.5) 5.7 (5.0–6.7)

Cholesterol, mmol/L 4.3 (3.6–5.2) 4.4 (3.7–5.2) 4.4 (3.7–5.2)

b-Blockers, % 90.06 89.02 85.12 77.49

ACE-I, % 73.44 68.68 63.79 51.17

ARB, % 20.37 21.70 20.84 21.03

Diuretics, % 84.17 75.23 74.84 84.41

Nitrates, % 14.32 18.53 17.21 18.54

Digoxin, % 20.11 15.53 16.52 18.49

Pacemaker, % 7.51 8.74 9.56 9.82

Continued
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advanced disease. However, there was evidence of interaction
between use of diuretics and patient clusters, with patients in
Cluster 4 doing the worst (HR for diuretics yes versus no,
2.68, 95% CI, 2.32–3.09), while those in Cluster 3 fared the
best (HR 1.69, 95% CI, 1.57–1.82, Pinteraction<0.001). Patients

in all clusters who were on b-blockers and ACE-I appeared to
benefit from the therapy when compared with patients who
were not on these therapies. For ACE-I, despite heterogeneity
in patient risks, outcomes were similar among all clusters,
implying an interaction between therapy and cluster
(Pinteraction<0.05). In the case of b-blockers, patients in Cluster
3 and Cluster 4 appeared to derive the greatest benefit from
therapy (HR 0.56, CI, 0.56–0.64), whereas those in Cluster 1
derived the least (HR 0.82, CI, 0.80–0.93), Pinteraction<0.001.
We noted no significant association between digoxin therapy
and outcomes in any of the clusters except for Cluster 4 (HR
1.27, CI, 1.13–1.43), and no evidence of interaction with

Table 2. Continued

Characteristic LVEF<30% (N=10 702) LVEF 30%–39% (N=10 085) LVEF 40%–49% (N=8043) LVEF>50% (N=8591)

ICD, % 3.23 1.90 1.13 0.47

CRT-D, % 2.30 0.74 0.28 0.13

Smoking (current), % 16.88 13.74 11.82 9.84

Alcoholism, % 4.93 3.27 3.43 3.26

Married, % 60.31 60.78 57.83 57.83

University education, % 14.16 13.54 14.45 13.06

F/U cardiology clinic, % 58.40 53.98 52.59 49.95

Annual disposable income, $ 14 921 (12 242–20 314) 14 679 (12 038–19 422) 14 503 (13 000–19 014) 13 876 (11 587–17 463)

P<0.001 for all characteristics. ACE-I indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; AS, aortic stenosis; BMI, body mass index; BNP, brain-type
natriuretic peptide; bpm, beats per minute; CABG, coronary artery bypass grafting; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CRT-D, cardiac
resynchronization therapy-Defibrillator; DBP, diastolic blood pressure; HbA1C, hemoglobin A1C; ICD, implantable cardioverter defibrillator; ICM, ischemic cardiomyopathy; LDL, low-density
lipoprotein; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal prohormone of brain natriuretic peptide; NYHA, New York Heart Association; PAD, peripheral artery disease; PCI,
percutaneous coronary intervention; SBP, systolic blood pressure; TIA, transient ischemic attack.

Figure 1. Survival curves according to cluster and ejection
fraction groups. Survival curves per (A) cluster and (B) left
ventricular ejection fraction groups.

Figure 2. Receiver operating characteristic curves for predic-
tion of all-cause mortality at 1 year.
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clusters. Lastly, there was evidence of an association with
harm with use of nitrates in all clusters, as well as a strong
interaction (Pinteraction<0.001), such that Cluster 4 patients on
this therapy did the worst and Cluster 3 patients did relatively
better when treated with nitrates.

Discussion
In this study, we used machine learning methods for a cohort
of >40 000 HF patients in Sweden to examine whether we
might gain unique insights into prognostication, categoriza-
tion, and assessment of therapeutic heterogeneity. We
generated 4 novel phenotypes of disease within this popula-
tion using cluster analysis. Despite being entirely data driven,
these phenotypic clusters were clinically recognizable and
demonstrated strong prognostic value, more so than currently
used approaches. We demonstrated that this method can
identify differences in benefit from common therapeutics, a
clinical actuality that needs to be quantified. As a proof of
concept, we created an online tool that is readily amenable to
inclusion into the electronic health record (EHR) and can allow
for cluster assignment and prognostication based on clinical
input. These findings highlight the potential for data-driven
classifications of HF to supplant the currently used catego-
rization system, as well as the potential for novel and nuanced
approaches to advance risk stratification, prediction, and
treatment response. As shown in Figure 6, our work has
important implications for patients and providers, with the
ability to personalize risk and response to therapy, and for
future clinical trials in which enriched phenotyping and more
refined classification can facilitate testing of novel therapies.

Our goal was not to create yet another risk prediction score
for HF. Rather, this was a proof-of-concept demonstration that
machine learning methods can provide a very high degree of

discrimination for patient risk (AUC=0.83), far superior to
currently recommended risk models such as the Seattle Heart
Failure Model (AUC=0.73) and the Meta-Analysis Global Group
in Chronic Heart Failure (MAGGIC) risk score (AUC=0.74).23,24

Furthermore, whereas prediction models might do well on a
population level, their ability to be precise in regard to the
individual patient and patients outside of the derivation cohort
is modest at best; this issue can be overcome by machine
learning methods that can tailor predictability to the patients
under study.25 Also, published risk models are static, and
prognostically important variables such as therapies, habits,
physical activity, and location can frequently change, pro-
foundly limiting the clinical application of these risk models in
the clinical setting. Last, tremendous amounts of patient-
specific data are available to integrated healthcare systems,
ranging from biomarkers to geospatial mapping; this man-
dates the creation and application of innovative prediction
algorithms that are malleable, constantly improving, and allow
integration of massive amounts of information.9,26,27 As key
components of a learning healthcare system, machine learn-
ing methods such as the ones demonstrated in this article are
dynamic and can improve in response to feedback.

Drug development for HF has been characterized largely by
failures of mechanistically promising compounds to show
benefit in large clinical trials. A key reason for this has been
the amalgamation of patients under the broad umbrellas of
arbitrary LVEF cut points when it is increasingly recognized
that HF is far too complex a syndrome to be adequately
described using these subjective and simplistic variables. In
fact, our findings extend the landmark work by Owan and
colleagues in 2006 that, even in the contemporary era, there
are only modest differences in outcomes across LVEF
categories.3,28,29 Furthermore, we identified clusters that
were clinically recognizable and practical in routine care and

Figure 3. Online tool for prediction of outcomes and assignment of patient into cluster (http://hfcalcula
tor.qure.ai).
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provided key information about patients beyond the current
classification of HF. For example, Cluster 1 patients tended to
be older females with hypertension, nonischemic cardiomy-
opathy, and preserved LVEF. They had a high burden of
comorbid conditions and lowest rates of medication use.
While this phenotype is intuitively recognized by clinicians, our
work formalizes and quantifies the characteristics and
associated risk as well as the potential therapy response in
this and the other 3 clusters. Patients in this cluster on
diuretics, aldosterone antagonists, and nitrates did much
worse than those who were not. It is plausible that these
patients might benefit from more aggressive use of ACE-I/
b-blockers, even in cases of “preserved” LVEF, as well as a
focus on management of comorbid conditions.16,30 Cluster 2
patients were mostly men and appeared to have the
constellation of pro-atherosclerotic conditions, namely, dia-
betes mellitus, dyslipidemia, hypertension, and smoking.
Thus, they had a high prevalence of patients with ischemic
cardiomyopathy and high rates of patients with “reduced”

LVEF. Patients in this cluster who were on diuretics,
aldosterone antagonists, digoxin, and nitrates tended to fare
worse than those who were not. Apart from avoiding the
above medications, these patients might represent a “diabetic
HF” phenotype that is increasingly being described, and be
managed with aggressive neurohormonal blockade along with
medications such as the sodium/glucose cotransporter-2
inhibitors.31,32 Cluster 3 patients were similar to Cluster 1 in
being older with multiple comorbid conditions and a large
percentage of patients with preserved LVEF. They appeared to
have the highest rates of renal insufficiency and the most
neurohormonal activation as gauged by natriuretic peptide
levels. Accordingly, these patients had the worst survival, with
only 69% alive at 1 year (compared with 93% of Cluster 2).
Beyond neurohormonal blockade with ACE-I and b-blockers,
all other medications were associated with harm in these
patients. A focus on managing comorbid conditions and
discussions of goals-of-care might be most important for this
group of patients. Studies have shown, for example, the

Figure 4. Heterogeneity in response to heart failure therapies per patient clusters that are propensity
matched for age, sex, and left ventricular ejection fraction. ACE indicates angiotensin-converting enzyme;
ARB, angiotensin receptor blocker; CI, confidence interval.
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limited benefit of implantable cardioverter defibrillators in
patients with concomitant chronic kidney disease.33,34 Lastly,
Cluster 4 patients were the youngest and tended to be males
with ischemic cardiomyopathy and HFrEF. Despite being the
smallest cluster, these patients best fit the profile of those
who had been included in most “positive” HF clinical trials.
Patients in this cluster on diuretics, aldosterone antagonists,
digoxin, and nitrates appeared to do far worse than those who
were not on these therapies. Our online tool provides a
paradigm by which patient data from the electronic health
record (EHR) might be used to rapidly assign patients to
specific clusters and then enroll them into studies that are
more specific for the therapy being evaluated.

Our aim in this project was to illustrate the potential of
using machine learning algorithms to improve care of HF
patients and provide novel pathways by which to test new
therapies. Several key points should be considered in light of
our findings. First, it is important to note that our patient
clusters were clinically recognizable despite relatively

superficial patient-specific data in our cohort (eg, no detailed
information on biomarkers) and outperformed the predictive
and classification capabilities of LVEF-based categories.
Second, we uncovered the significant heterogeneity in
response to guideline-recommended HF therapies after cor-
recting for LVEF, the key determinant of whether a patient
qualifies for treatment, based on the guidelines. We demon-
strated the near universal benefit of ACE-I and b-blockade,
suggesting that these therapies work on pathways that may
be fundamental to the syndrome. Digoxin and nitrates,
therapies whose mortality benefit in HF is largely unsupported
by clinical trial, tended to be associated with a null effect or
harm across the clusters. The data in regard to aldosterone
antagonists were intriguing, because while these medications
have been shown to provide benefit in HF in closely monitored
trials, real-world experience has countered these findings.35

Although intriguing, these findings should be interpreted with
caution given the observational nature of our data and
potential for selection bias and unmeasured confounding.

Figure 5. Interaction between heart failure therapies and clusters that are propensity matched for age,
sex, and left ventricular ejection fraction. ACE indicates angiotensin-converting enzyme; ARB, angiotensin
receptor blocker; CI, confidence interval.
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Moving forward, it is entirely plausible that machine
learning methods will be used across healthcare systems to
identify patients who may gain the most benefit or most harm
from therapies (eg, implantable cardioverter defibrillator use)
and create platforms for “next generation” clinical trials. An
example is demonstrated in Figure 3, where information from
a fictitious patient is entered and they are fit into Cluster 4;
subsequently, they can then be entered into particular
treatment pathways that have been enriched for that
particular patient phenotype.

The major limitation of our study is that the findings are
heavily reliant on available data; a separate set of variables
and more complete data are very likely to have yielded
dissimilar clusters. We excluded those with >20% of missing
data, with the missing variables likely to be laboratory values
that have prognostic value in HF. Their inclusion—natriuretic
peptide levels in particular—are likely to have impacted
prognostication and clustering. Whereas a more comprehen-
sive exploration of imputation methods might have improved
accuracy slightly, our purpose was not to create yet another
prediction algorithm. Rather, it was a proof-of-concept effort
aimed at demonstrating that machine learning methodologies
can prognosticate patients in an accurate and precise manner
from a large patient data set. Also, this limitation is liable to
occur in many similar settings that involve large databases

and there is a need, in the future, for expert consensus
regarding applying advanced analytics to clinical data of varying
quality and completeness. Furthermore, our goal was not to
present yet another set of patient clusters; rather, it was to
show how machine learning algorithms have the potential to
move us beyond the simplistic phenotyping of HF that hinders
care of patients and development of new therapies. This
approach has potential if embedded within electronic heart
records in our ultimate quest to create a learning healthcare
system. Second, we only included patients from Sweden in this
article, a relatively homogeneous population of patients.
However, this likely helped us do away with many unmeasured
confounders that impact clinical trajectory, and strengthened
our ability to find clinically important clusters. Lastly, the
heterogeneity in treatment response may have to do with
confounders other than age, sex, and LVEF, but our goal was to
simply demonstrate a concept; furthermore, it is entirely in
accordance with guidelines, where pharmacological therapies
are based almost entirely on LVEF.

In conclusion, we found that machine learning algorithms
predict outcomes in a large data set of HF patients from
Sweden with a high degree of precision and accuracy. Cluster
analysis identified 4 distinct phenotypes that differed signif-
icantly in outcomes and in response to therapeutics. The use
of these novel analytic approaches has the potential to

Figure 6. Current and future paradigm for prognostication and testing of therapeutics in patients with
heart failure using machine learning. AA indicates Aldosterone Antagonist; ACE-I, angiotensin-converting
enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, Angiotensin Receptor-Neprilysin Inhibitor; AUC,
area under the curve; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced
ejection fraction.
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enhance effectiveness of current therapies and transform
future clinical trials.

Sources of Funding
The Swedish Heart Failure Registry is funded by the Swedish
Federal Government. Lund is a Swedish Research Council
Clinical Researcher. SwedeHF data management was funded
by the Swedish Research Council, the Swedish Heart-Lung
Foundation, and Stockholm County Council.

Disclosures
Ahmad reports a grant from Heart Failure Society of America
unrelated to this work. Lund reports grants from AstraZeneca;
Novartis and Boston Scientific unrelated to the present work,
and consulting honoraria from AstraZeneca, Novartis, Bayer,
Relypsa, and Vifor Pharma. Dahlstr€om reports work grants
from AstraZeneca unrelated to this work and consulting
honoraria from AstraZeneca, Novartis, and Vifor Pharma.
Desai reports research funding from the Centers for Medicare
and Medicaid Services to develop and maintain performance
measures that are used for public reporting, and support from
Johnson & Johnson and Medtronic. K12 HS023000-01 was
from the Agency for Healthcare Research and Quality. The
remaining authors have no disclosures to report.

References
1. Braunwald E. The war against heart failure: the Lancet lecture. Lancet.

2015;385:812–824.

2. Konstam MA, Abboud FM. Ejection fraction: misunderstood and overrated
(changing the paradigm in categorizing heart failure). Circulation.
2017;135:717–719.

3. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends
in prevalence and outcome of heart failure with preserved ejection fraction. N
Engl J Med. 2006;355:251–259.

4. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V,
Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoy-
annopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka
F, Rutten FH, van der Meer P; ESC Scientific Document Group. 2016 ESC
Guidelines for the diagnosis and treatment of acute and chronic heart failure: the
task force for the diagnosis and treatment of acute and chronic heart failure of
the European Society of Cardiology (ESC). Developed with the special
contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail.
2016;37:2129–2200.

5. Felker GM, Pang PS, Adams KF, Cleland JG, Cotter G, Dickstein K, Filippatos
GS, Fonarow GC, Greenberg BH, Hernandez AF, Khan S, Komajda M, Konstam
MA, Liu PP, Maggioni AP, Massie BM, McMurray JJ, Mehra M, Metra M,
O’Connell J, O’Connor CM, Pina IL, Ponikowski P, Sabbah HN, Teerlink JR,
Udelson JE, Yancy CW, Zannad F, Gheorghiade M; International AHFS Working
Group. Clinical trials of pharmacological therapies in acute heart failure
syndromes: lessons learned and directions forward. Circ Heart Fail.
2010;3:314–325.

6. Hsu JJ, Ziaeian B, Fonarow GC. Heart failure with mid-range (borderline)
ejection fraction: clinical implications and future directions. JACC Heart Fail.
2017;5:763–771.

7. Packer M. Heart failure with a mid-range ejection fraction: a disorder that a
psychiatrist would love. JACC Heart Fail. 2017;5:805–807.

8. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH,
Filippatos G, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi
FA, McBride PE, Peterson PN, Stevenson LW, Westlake C. 2016 ACC/AHA/
HFSA Focused Update on New Pharmacological Therapy for Heart Failure: An

Update of the 2013 ACCF/AHA Guideline for the Management of Heart
Failure: A Report of the American College of Cardiology/American Heart
Association Task Force on Clinical Practice Guidelines and the Heart Failure
Society of America. J Am Coll Cardiol. 2016;68:1476–1488.

9. Ahmad T, Testani JM, Desai NR. Can big data simplify the complexity of
modern medicine?: prediction of right ventricular failure after left ventricular
assist device support as a test case. JACC Heart Fail. 2016;4:722–725.

10. Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine learning,
and clinical medicine. N Engl J Med. 2016;375:1216–1219.

11. Darcy AM, Louie AK, Roberts LW. Machine learning and the profession of
medicine. JAMA. 2016;315:551–552.

12. Ahmad T, Pencina MJ, Schulte PJ, O’Brien E, Whellan DJ, Pina IL, Kitzman DW,
Lee KL, O’Connor CM, Felker GM. Clinical implications of chronic heart failure
phenotypes defined by cluster analysis. J Am Coll Cardiol. 2014;64:1765–
1774.

13. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, Bonow
RO, Huang CC, Deo RC. Phenomapping for novel classification of heart failure
with preserved ejection fraction. Circulation. 2015;131:269–279.

14. Svanstrom H, Pasternak B, Hviid A. Association of treatment with losartan vs
candesartan and mortality among patients with heart failure. JAMA.
2012;307:1506–1512.

15. Jonsson A, Edner M, Alehagen U, Dahlstrom U. Heart failure registry: a
valuable tool for improving the management of patients with heart failure. Eur J
Heart Fail. 2010;12:25–31.

16. Lund LH, Benson L, Dahlstrom U, Edner M. Association between use of renin-
angiotensin system antagonists and mortality in patients with heart failure and
preserved ejection fraction. JAMA. 2012;308:2108–2117.

17. Lund LH, Benson L, Dahlstrom U, Edner M, Friberg L. Association between use
of beta-blockers and outcomes in patients with heart failure and preserved
ejection fraction. JAMA. 2014;312:2008–2018.

18. Frizzell JD, Liang L, Schulte PJ, Yancy CW, Heidenreich PA, Hernandez AF,
Bhatt DL, Fonarow GC, Laskey WK. Prediction of 30-day all-cause readmis-
sions in patients hospitalized for heart failure: comparison of machine learning
and other statistical approaches. JAMA Cardiol. 2017;2:204–209.

19. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve
cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12:
e0174944.

20. Lovmar L, Ahlford A, Jonsson M, Syvanen AC. Silhouette scores for
assessment of SNP genotype clusters. BMC Genom. 2005;6:35.

21. Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, Petrich W,
Hamprecht FA. A comparison of random forest and its Gini importance with
standard chemometric methods for the feature selection and classification of
spectral data. BMC Bioinformatics. 2009;10:213.

22. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J Comput Appl Math. 1987;20:53–65.

23. Sartipy U, Dahlstrom U, Edner M, Lund LH. Predicting survival in heart failure:
validation of the MAGGIC heart failure risk score in 51,043 patients from the
Swedish heart failure registry. Eur J Heart Fail. 2014;16:173–179.

24. Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand
I, Maggioni A, Burton P, Sullivan MD, Pitt B, Poole-Wilson PA, Mann DL, Packer
M. The Seattle heart failure model: prediction of survival in heart failure.
Circulation. 2006;113:1424–1433.

25. Allen LA, Matlock DD, Shetterly SM, Xu S, Levy WC, Portalupi LB, McIlvennan
CK, Gurwitz JH, Johnson ES, Smith DH, Magid DJ. Use of risk models to predict
death in the next year among individual ambulatory patients with heart failure.
JAMA Cardiol. 2017;2:435–441.

26. Krumholz HM. Big data and new knowledge in medicine: the thinking, training,
and tools needed for a learning health system. Health Aff (Millwood).
2014;33:1163–1170.

27. Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY, Chen R, Miriami E,
Karczewski KJ, Hariharan M, Dewey FE, Cheng Y, Clark MJ, Im H, Habegger L,
Balasubramanian S, O’Huallachain M, Dudley JT, Hillenmeyer S, Haraksingh R,
Sharon D, Euskirchen G, Lacroute P, Bettinger K, Boyle AP, Kasowski M,
Grubert F, Seki S, Garcia M, Whirl-Carrillo M, Gallardo M, Blasco MA,
Greenberg PL, Snyder P, Klein TE, Altman RB, Butte AJ, Ashley EA, Gerstein M,
Nadeau KC, Tang H, Snyder M. Personal omics profiling reveals dynamic
molecular and medical phenotypes. Cell. 2012;148:1293–1307.

28. Kaye DM, Krum H. Drug discovery for heart failure: a new era or the end of the
pipeline? Nat Rev Drug Discov. 2007;6:127–139.

29. Loscalzo J. Personalized cardiovascular medicine and drug development: time
for a new paradigm. Circulation. 2012;125:638–645.

30. Mehra MR, Butler J. Comorbid conditions in heart failure: an unhappy marriage.
Heart Fail Clin. 2014;10:ix.

DOI: 10.1161/JAHA.117.008081 Journal of the American Heart Association 13

Machine Learning in Heart Failure Ahmad et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



31. Sattar N, Petrie MC, Zinman B, Januzzi JL Jr. Novel diabetes drugs and the
cardiovascular specialist. J Am Coll Cardiol. 2017;69:2646–2656.

32. Fitchett D, Butler J, van de Borne P, Zinman B, Lachin JM, Wanner C, Woerle HJ,
Hantel S, George JT, Johansen OE, Inzucchi SE; EMPA-REG OUTCOME® trial
investigators. Effects of empagliflozin on risk for cardiovascular death and
heart failure hospitalization across the spectrum of heart failure risk in the
EMPA-REG OUTCOME(R) trial. Eur Heart J. 2018;39:363–370.

33. Allen LA, Stevenson LW, Grady KL, Goldstein NE, Matlock DD, Arnold RM,
Cook NR, Felker GM, Francis GS, Hauptman PJ, Havranek EP, Krumholz HM,
Mancini D, Riegel B, Spertus JA, American Heart Association; Council on
Quality of Care and Outcomes Research; Council on Cardiovascular Nursing;
Council on Clinical Cardiology; Council on Cardiovascular Radiology and

Intervention; Council on Cardiovascular Surgery and Anesthesia. Decision
making in advanced heart failure: a scientific statement from the American
Heart Association. Circulation. 2012;125:1928–1952.

34. Bansal N, Szpiro A, Reynolds K, Smith DH, Magid DJ, Gurwitz JH, Masoudi F,
Greenlee RT, Tabada GH, Sung SH, Dighe A, Go AS. Long-term outcomes
associated with implantable cardioverter defibrillator in adults with chronic
kidney disease. JAMA Intern Med. 2018;178:390–398.

35. Hernandez AF, Mi X, Hammill BG, Hammill SC, Heidenreich PA, Masoudi FA,
Qualls LG, Peterson ED, Fonarow GC, Curtis LH. Associations between
aldosterone antagonist therapy and risks of mortality and readmission among
patients with heart failure and reduced ejection fraction. JAMA.
2012;308:2097–2107.

O
R
IG

IN
A
L
R
E
S
E
A
R
C
H

DOI: 10.1161/JAHA.117.008081 Journal of the American Heart Association 14

Machine Learning in Heart Failure Ahmad et al


