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Abstract: There is limited evidence for the effects of diet on cardiometabolic profiles during the
pubertal transition. We collected repeated measures of diet quality and cardiometabolic risk factors
among Mexican youth. This analysis included 574 offspring of the Early Life Exposure in Mexico
to Environmental Toxicants (ELEMENT) birth cohort followed up to three time points. Dietary
Approaches to Stop Hypertension (DASH), alternate Mediterranean Diet (aMedDiet), and Children’s
Dietary Inflammatory Index (C-DIITM) scores were computed from food frequency questionnaires.
Higher DASH and aMedDiet scores reflect a higher diet quality, and lower C-DII scores reflect an
anti-inflammatory diet. Cardiometabolic risk factors were lipid profile, glucose homeostasis, blood
pressure, and waist circumference. Linear mixed models were used between quartiles of each diet
score and outcomes. Compared to the first quartile, the fourth DASH quartile was inversely associated
with log serum insulin (µIU/mL) [β = −0.19, p = 0.0034] and log-Homeostatic Model Assessment of
Insulin Resistance [β = −0.25, p = 0.0008]. Additionally, log serum triglycerides (mg/dL) was linearly
associated with aMedDiet score [β = −0.03, p = 0.0022]. Boys in the highest aMedDiet quartile had
higher serum high-density lipoprotein cholesterol (mg/dL) [β = 4.13, p = 0.0034] compared to the
reference quartile. Higher diet quality was associated with a better cardiometabolic profile among
Mexican youth.

Keywords: cardiometabolic risk factors; diet quality; inflammation; longitudinal analysis; population-
based study; children and adolescent; Mexicans

1. Introduction

The prevalence of childhood obesity is increasing worldwide. In the Latin America
region, the prevalence for boys and girls aged 5–19 year increased from 1.6%, and 1.8% in
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1975 to 10.4%, and 13.4% in 2016, respectively [1]. Childhood obesity is associated with
increases in the risk and prevalence of cardiometabolic abnormalities [2–5]. The cluster
of cardiometabolic abnormalities is a risk factor for the incidence of cardiovascular dis-
ease (CVD), cardiovascular-related mortality, all-cause mortality [6,7], and other chronic
conditions in adulthood [8,9]. Targeting childhood obesity is crucial for effective primary
interventions for “adulthood cardiometabolic sequela” [5], and understanding the determi-
nants of cardiometabolic risk factors in youth can inform risk-reduction and prevention
programs [4,10].

Diet is a well-established risk factor for cardiometabolic health [11]. Using dietary
patterns to assess the association between diet and health outcomes has been suggested
as superior to the traditional single-nutrient approach [12]. A dietary pattern summary
score can be used to evaluate a subject’s overall diet and categorize their intake based on
the degree of adherence to the eating recommendations used to construct the score [12,13].
This multi-dimensional approach allows for detecting the collective impact of multiple
nutrients and delivering practical, holistic dietary messages [14,15], consistent with public
health recommendations.

Evidence relating diet patterns to cardiometabolic health has identified three dietary
scores relevant to pediatric populations. The Dietary Approaches to Stop Hypertension
(DASH) and the alternate Mediterranean Diet (aMedDiet) are considered to have “the
most evidence for CVD prevention” [16]. The DASH is an eating pattern for reducing
blood pressure based on research findings sponsored by the US National Institutes of
Health [17]. The aMedDiet is an eating pattern among people living in the countries
bordering the Mediterranean Sea [18], which has shown favorable associations with obesity,
cardiometabolic risk clustering [19], and cardiovascular health [20]. These two eating plans
emphasize a higher consumption of fruits, vegetables, whole grains, and nuts [17,18]. The
Dietary Inflammatory Index (DII®) is a tool to assess the inflammatory potential of the
diet, and it has been associated with multiple inflammatory markers in adolescents [21,22]
and adults [23–27]. The use of the DII in cardiometabolic health is well justified in light
of the established link between inflammation and cardiometabolic abnormalities [28–31].
Contrasting the associations between each of these dietary scores and cardiometabolic
risk factors is useful for accumulating evidence needed to formulate precise public health
messages for preventing or managing cardiometabolic abnormalities in youth. Given that
none of the three dietary scores were originally developed for Mexican youths, contrasting
the associations is crucial to shed light on the role of eating habits, traditions, and cultural
values in facilitating the adoption of these scores across different populations [32,33].

Current evidence about the associations between each of these diet quality scores and
cardiometabolic risk in pediatric populations is inconsistent [10,34–39], underscoring the
need for prospective cohort studies that investigate the relationship between diet quality
and cardiometabolic risk factors [18,35,39–41]. Thus, the aim of this study was to investigate
the relationship between diet quality scores, DASH, aMedDiet, and the Children’s Dietary
Inflammatory Index (C-DIITM), and cardiometabolic risk factors using a repeated-measures
longitudinal study design among Mexican youth enrolled in the Early Life Exposure in
Mexico to Environmental Toxicants (ELEMENT) birth cohorts. We hypothesized that a
lower diet quality and more pro-inflammatory diets will be associated with an impaired
cardiometabolic profile, higher waist circumference, blood pressure and triglycerides (TG),
impaired glucose homeostasis, and lower high-density lipoprotein cholesterol (HDL-C).
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2. Materials and Methods
2.1. Study Population

The analytic sample consisted of children and adolescents from two of three cohorts
comprising the ELEMENT project in Mexico City, Mexico [42–44]. A detailed description
of the ELEMENT project has been published elsewhere [44]. In brief, during 1997–2004,
1012 mother-child dyads were recruited from prenatal clinics, which serve low- to middle-
income populations [45]. At childbirth, mothers reported sociodemographic information.
A sub-sample of mothers enrolled in Cohort 3 participated in a randomized controlled trial
(RCT) of daily calcium supplementation (1200 mg) during their pregnancies up to one year
postpartum [43,44]. Offspring were followed at multiple time points during childhood to
collect relevant data about growth, diet, and health outcomes.

The current analysis included 574 children and adolescents who attended at least
one of three follow-up visits in late childhood and adolescence, had data for at least one
of eight cardiometabolic risk factors (waist circumference, systolic and diastolic blood
pressure, fasting glucose, fasting TG, fasting HDL-C, fasting insulin, and Homeostatic
Model Assessment of Insulin Resistance (HOMA-IR)), and dietary information. At the
2011 follow-up visit, henceforth called Time 1, 250 children aged between 8–14 years were
included [44]. Time 2, a follow-up study conducted in 2015, re-recruited 554 children aged
10–18 years [44]. In the 2018 visit, called Time 3, 518 adolescents aged 12–21 years completed
the last follow-up visit. The sample sizes available and the number of repeated measures for
each diet quality score are presented in Figure 1. The National Institute of Public Health of
Mexico and the University of Michigan institutional review boards approved the research
protocol (CI 599 and HUM00034344). The research team collected written informed consent
and assent from mothers upon their enrollment and from adolescents, respectively.
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Figure 1. Flowchart summary of analytical samples of the Early Life Exposures in Mexico to ENvi-
ronmental Toxicants (ELEMENT) cohort.

2.2. Cardiometabolic Risk Factors
2.2.1. Anthropometric Measures

Trained research staff collected duplicate measurements for body weight (kilograms
[kg]) to the nearest 0.1 kg and height (centimeters [cm]) to the nearest 0.5 cm using in Time 1
a digital scale (BAME Model 420; Catálogo Médico/Tanita Co. Tokyo, Japan with height rod
(model WB-3000m [38]), and only for weight in Time 2 and 3 the body composition device
Inbody (model 230, Seoul, Korea). For waist circumference (cm), duplicate measurements
were also performed to the nearest 0.1 cm using a non-stretchable measuring tape (SECA
(model 201, Hamburg, Germany [38])). The average of the two measurements was used for
the analysis [46].
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2.2.2. Cardiometabolic Biomarkers

For Time 1 study visit, duplicate readings for systolic and diastolic blood pressure
were recorded with participants in a seated position using SpaceLabs 90217 Ambulatory
Blood Pressure Measurement (Issaquah, WA, USA). Four cuff sizes: x-small (17–26 cm),
small (24–32 cm), medium (32–42 cm), and large (38–50 cm), were available. For Time 2 and
3 study visits, duplicate readings for systolic and diastolic blood pressure were recorded
with participants in a seated position using an automated blood pressure monitor (BPM-200
Medical Devices Blood Pressure Monitor, BpTRU; Coquitlam, BC, Canada). Following cuffs
were available at these study visits: Child Cuff (13–18 cm), Adult-S (small: 18–26 cm), Adult-
R (regular: 26–34 cm), Adult-L (large: 32–43 cm) and Adult-XL (Extra-large: 41–52 cm).
Staff members assured the proper use of the cuff’s size based on the participant’s arm size.
The average of the two measurements was used for the analysis. Fasting blood samples
were used to analyze serum glucose via automated chemiluminescence immunoassay
(Immulite® 1000; Siemens Medical Solutions, Erlangen, Germany) [46], and TG and HDL-C
using a biochemical analyzer (Cobas Mira Plus; Roche Diagnostics) [46]. Levels of insulin
were quantified via enzyme-linked immunosorbent assay chemiluminescence method with
Immulite ® 1000; Siemens Medical Solutions, Erlangen, Germany [38]. A HOMA-IR was
calculated as [fasting plasma glucose (mmol/L) × fasting serum insulin (mU/L))/22.5];
higher values represent lower insulin sensitivity/insulin resistance [47].

2.3. Diet Quality Scores

Dietary intake was assessed using a semi-quantitative food frequency questionnaire
(FFQ) adapted from the nationally representative 2006 Mexican National Health and Nutri-
tion Survey [48]. The FFQ contains 101 food items in 14 food groups: (1) dairy products;
(2) fruits; (3) vegetables; (4) homemade fast food; (5) meat, sausages, and eggs; (6) fish and
seafood; (7) legumes; (8) cereal and starchy vegetables; (9) corn products; (10) beverages;
(11) snacks, sweets and desserts; (12) soups, creams, and pasta; (13) miscellaneous, and
(14) tortillas. The FFQ queries usual intake over the previous week [38,48]. The frequency
of consumption fell into 8 categories, ranging from never to 6 times a day [38]. Mothers
of children younger than 11 years of age attended the study visit and assisted in the FFQ
session to improve the accuracy and validity of children’s answers. FFQs were analyzed
using a food composition software developed by the National Institute of Public Health,
Mexico [49]. The average daily intake was calculated by multiplying the nutrient content
for each food item by its frequency of reported consumption. Then, all intake values of all
nutrients were summed to compute the daily consumption for each nutrient.

After grouping FFQ food items according to their nutritional properties, DASH and
aMedDiet scores were calculated similarly to the methods proposed by Fung et al. (2008) [50]
and Fung et al. (2005) [51], respectively (Supplementary Materials Tables S1 and S2). To
account for the age and sex effects on dietary intake, we grouped our sample into 20 strata
based on two-year increments by sex using a previously published approach [10,52] Starting
with DASH score, the intake was ascendingly ranked into quintiles for each of eight
components/food groups. Then, a score from 1–5 was given for each quantile. For each
of the following components/food groups, fruits, vegetables, nuts and legumes, low-
fat dairy products, and whole grains, we assigned 1 and 5 to quintile 1 and quintile 5,
respectively. For sodium, red and processed meats, and sweetened beverages, we assigned
5 and 1 to quintile 1 and quintile 5, respectively. The component/food group scores were
summed, and the possible range of scores was 8–40 [50]. aMedDiet score is the sum of
eight indicators. For the fruits, vegetables, whole-grains, nuts, legumes, fish, and the ratio
of monounsaturated to saturated fatty acids groups, if the intake was greater than the age
and sex-specific median, a score of 1 was given. On the other hand, for the red/processed
meats group, if the intake was less than or equal to the age and sex-specific median values,
a score of 1 was given. Thus, the possible range of values was 0–8–down from 9 due to the
exclusion of the alcohol group [51]. For DASH and aMedDiet scores, higher values indicate
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higher adherence to the diet pattern (i.e., individuals consumed more food/groups that
characterized the dietary pattern).

Collected FFQ data at each time point was used to calculate the validated C-DII that
included 25 components [53] (Supplementary Material Table S3). An inflammatory effect
score was given to each C-DII sub-component according to their relationship with various
inflammatory markers, which was based on published literature [23]. To calculate the z-
score for each component of the C-DII score, each child’s dietary information was mapped
to a population-based food consumption database composed of means and standard
deviations from children in approximately 14 nations, which were referred to as global
means and standard deviations [53]. The z-scores were calculated by subtracting the
participants’ intake from the global means and dividing by the global standard deviations.
The z-scores were standardized per 1000 calories to adjust for between-person variability
in energy intake [54]. The scores were converted into centered percentiles by doubling
the value and then subtracting 1 to minimize the right-skewing in the distributions. The
resulting percentiles were multiplied by their corresponding inflammatory effect score to
obtain a component-specific C-DII value. Lastly, each child’s C-DII score was the sum of its
component-specific C-DII scores. The range of values for the C-DII in the current study
was −4 to +4, where positive values indicate a more pro-inflammatory diet and negative
values represent a more anti-inflammatory diet [38].

2.4. Covariates

Based on prior knowledge, potential confounders assessed for this research study
were: (1) baseline characteristics assessed at childbirth or follow-up visit during the 5 years
of child age, including sex, gestational age, mode of delivery, birth weight, duration of
breastfeeding, and mother’s age, marital status, parity, years of education, and enrollment
in the calcium supplementation RCT during pregnancy, and (2) follow-up characteristics
for the children as measured at the follow-up study visits, including child’s age, body mass
index (BMI), total daily caloric intake, physical activity measured as metabolic equivalents
(METs), and pubertal status.

Mothers reported demographic information, including their age, marital status (mar-
ried, or others—includes free union, single, separated, and divorced), parity status (1, 2, or
≥3), and years of education (<12 years., 12 years., or >12 years.), gestational age estimated
by a registered nurse, mode of delivery (vaginal, or C-section childbirth), and enrollment in
the calcium supplementation RCT (not enrolled, or enrolled). The newborns were followed
until 5 years of age, and information reported by mothers about breastfeeding duration
was quantified across the visits [55].

A physical activity questionnaire modified from the Youth Activity Questionnaire
(YAQ) was validated relative to 24 hours physical activity recall among Mexican school-
children aged 10 to 14 years [56]. The questionnaire was used to calculate total METs. For
each self-reported physical activity; the corresponding MET [57] was multiplied by the
activity intensity. The total METs per week was calculated by summing the METs for all
activities. Tanner stages for sexual maturation were assessed by a trained pediatrician
including female breast development, male genitalia and female and male pubic hair [58]
with values ranging from 1 for pre-pubertal status to 5 for fully mature status [59,60]. In
this study, pubertal onset was indicated by a value greater than 1 for one or more Tanner
stages [61].
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2.5. Statistical Analysis

The outcomes were (1) waist circumference (cm), (2) systolic and (3) diastolic blood
pressure (mm Hg), (4) fasting glucose (mg/dL), (5) fasting TG (mg/dL), (6) fasting HDL-C
(mg/dL), (7) fasting insulin (µIU/mL), and (8) HOMA-IR. Demographic characteristics of
the study participants were presented as means (standard deviations (SDs)) for continuous
variables and frequency (proportions) for categorical variables. To examine the correlation
between the diet quality scores at each visit, we ran partial Spearman’s correlations adjusted
for age, sex, and total caloric intake. Linear mixed-effects models with a compound sym-
metry error structure were used to examine the repeatedly assessed relationship between
diet quality scores and each cardiometabolic risk factor. A generalized linear mixed model
(specifically PROC GLIMMIX) with log links was used for the outcomes of TG, insulin,
and HOMA-IR, as their residuals from the linear mixed-effects models indicated skewness.
Residuals of the final models were assessed for the model assumptions. Diet quality scores
were categorized into quartiles and median values were assigned to each quartile. Our
models included quartile indicators of exposure, and the first quartile was considered a
reference group. Additionally, we examined the linearity of trends across quartiles by
modeling the quartiles as a continuous exposure variable. Findings are presented as β

(standard error (SE)), and p-values (p).
The crude model included a variable for each diet score, and fully adjusted models

included covariates that were considered potential confounders. Potential confounders
were selected based on prior knowledge of the cardiometabolic health literature and their
associations with the quartiles of each diet quality score. We had repeated measures for the
following covariates: age, total daily caloric intake, physical activity (METs), and pubertal
onset. All models were adjusted for total caloric intake and age, and sex only when models
included boys and girls together. We also adjusted waist circumference models for BMI to
account for body size [62]. In the tables, we present the results from the overall sample and
sex-stratified models. To account for the multiple testing, a p < 0.00625 (0.05/8 [number
of outcomes]) was considered a significant finding. The SAS statistical software package,
version 9.4, was used for analyses (SAS Corp, Cary, NC, USA).

3. Results

Figure 1 summarizes the study design, sample sizes, and the number of repeated
measures for each diet quality score. Table 1 shows the demographic characteristics of the
youth and their maternal characteristics at childbirth stratified by study visit. The mean
(SD) age of the sample was 10.32 (1.67), 14.50 (2.12), and 16.43 (2.14) years at Time 1, 2, and
3, respectively. Across the follow-up visits, the mean values of the cardiometabolic risk
factors and diet quality scores varied. Time 1 had the highest values for the diet quality
scores (i.e., higher DASH, and aMedDiet scores, and lower C-DII score (anti-inflammatory
diet)); while Time 3 had the lowest diet quality scores (Table 1). The Spearman’s correlation
coefficients [rs] between DASH and aMedDiet scores ranged from 0.39 to 0.45, for DASH
and C-DII scores ranged from rs = −0.53 to −0.57, and for C-DII and aMedDiet scores
ranged from rs = −0.43 to −0.47 across the three follow-up visits; all correlations were
significant (p < 0.0001).
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Table 1. Descriptive statistics of mother and child characteristics of the Early Life Exposures in
Mexico to ENvironmental Toxicants (ELEMENT) analytical sample.

Time 1
N = 250

Time 2
N = 554

Time 3
N = 518

Maternal Characteristics (at time of child’s birth)

Years of education, %

<12 years 123 (49.20) 1 284 (51.26) 2 265 (51.16) 2

12 years 91 (36.40) 1 187 (33.75) 2 171 (33.01) 2

>12 years 35 (14.00) 1 78 (14.08) 2 77 (14.86) 2

Age at childbirth, (years) 26.80 (5.63) 1 26.36 (5.40) 3 26.38 (5.44) 3

Parity, %
1 93 (37.20) 1 209 (37.73) 2 194 (37.45) 2

2 89 (35.60) 1 194 (35.02) 2 183 (35.02) 2

≥3 67 (26.80) 1 146 (26.35) 2 136 (26.25) 2

Marital status, %

Married 178 (71.20) 1 390 (70.40) 4 363 (70.08) 4

Others 71 (28.40) 1 157 (28.34) 4 148 (28.57) 4

Enrollment in calcium
supplementation study, %

Not enrolled 154 (61.60) 1 399 (72.02) 2 375 (72.39) 2

Enrolled 95 (38.00) 1 150 (27.08) 2 138 (26.64) 2

Child characteristics (at birth)

Female, % 132 (52.80) 286 (51.62) 273 (52.70)
Gestation age, (weeks) 38.85 (1.49) 5 38.76 (1.61) 6 38.75 (1.60) 6

Mode of delivery, %
Vaginal delivery 144 (57.60) 7 352 (63.54) 8 329 (63.51) 8

C-Section 103 (41.20) 7 194 (35.02) 8 181 (34.94) 8

Birth weight, (kg) 3.15 (0.45) 9 3.15 (0.49) 4 3.15 (0.48) 4

Breastfeeding duration, (months) 8.10 (5.88) 1 8.05 (6.07) 2 8.00 (5.98) 2

Child characteristics (at follow-up visits)

Age, (years) 10.32 (1.67) 14.50 (2.12) 16.43 (2.14)
Body mass index, (kg/m2) 19.38 (3.60) 21.62 (4.15) 22.81 (4.46)
Body mass Z score for age 0.84 (1.24) 0.50 (1.25) 8 0.50 (1.25) 10

Pubertal onset, % 175 (70.00) 545 (98.38) 515 (99.42) 11

Metabolic equivalents, (METs/week) 31.39 (19.82) 57.23 (39.01) 44.95 (35.18) 1

Cardiometabolic risk factors

Waist circumference, (cm) 70.75 (10.67) 79.56 (11.38) 85.53 (11.80) 1

Systolic blood pressure, (mmHg) 102.68 (10.20) 98.66 (9.92) 101.53 (9.83) 1

Diastolic blood pressure, (mmHg) 65.52 (7.32) 63.03 (6.86) 64.14 (7.20) 1

Glucose, (mg/dL) 87.02 (9.36) 77.81 (7.27) 12 90.22 (8.41) 13

TG, (mg/dL) 87.54(44.41) 103.97 (55.85) 12 105.52 (50.09) 13

HDL-C, (mg/dL) 58.68 (11.94) 43.06 (8.60) 12 44.70 (9.03) 13

Insulin, (µIU/mL) 6.26 (11.03) 14 19.06 (11.84) 12 19.21 (12.62) 15

HOMA-IR 1.59 (3.51) 14 3.69 (2.31) 12 4.32 (2.94) 15

Diet quality scores

DASH diet scores 24.84 (4.06) 24.23 (3.99) 24.00 (4.00)
aMedDiet scores 4.26 (1.83) 3.81 (1.67) 3.77 (1.69)

C-DII scores −0.16 (1.35) −0.11 (1.43) −0.10 (1.46)
Means (SD) or count (percentages) are presented for continuous or categorical variables, respectively. Number
of missing values 1 n = 1; 2 n = 5; 3 n = 6; 4 n = 7; 5 n = 4; 6 n = 9; 7 n = 3; 8 n = 9; 9 n = 2; 10 n = 65; 11 n = 11;
12 n = 154; 13 n = 142; 14 n = 174; 15 n = 143. Abbreviations: TG = triglycerides; HDL-C = high density lipoprotein
cholesterol; HOMA-IR = Homeostatic Model Assessment of Insulin Resistance; DASH = Dietary Approach to
Stop Hypertension; aMedDiet = Alternate Mediterranean Diet; C-DII = Children’s Dietary Inflammatory Index.
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3.1. Association between DASH Diet Scores and Cardiometabolic Risk Factors

The distributions of potential confounding factors were examined across quartiles of
the DASH diet score. DASH scores had medians of 19, 23, 26 and 29 in each quartile and
were associated with several factors, including mother’s characteristics (such as enrollment
in the calcium intervention study, parity, and years of education) and youth’s characteristics
(such as pubertal onset and METs) (data not shown). In adjusted models, girls in the second
DASH quartile had higher waist circumference (cm) [β = 1.11, p = 0.0041] compared to
those in the lowest DASH quartile. An inverse association was detected with log serum
insulin (µIU/mL) among participants in the highest DASH quartile compared to the
lowest DASH quartile [β = −0.19, p = 0.0034], corresponding to a 19% reduction in serum
insulin. Although the DASH score was linearly associated with log HOMA-IR [β = −0.02,
p = 0.0050], corresponding to a 2.0% reduction for every unit increase in DASH score, the
difference in log HOMA-IR between the DASH quartiles was significant only between
the highest vs. lowest quartile with a 25.0% reduction [β = −0.25, p = 0.0008]. In the
sex-stratified analysis, the inverse associations between log serum insulin and HOMA-IR
were evident among boys only. No association was found with other cardiometabolic risk
factors in the overall sample or the sex-stratified analysis (Table 2).

3.2. Association between aMedDiet Scores and Cardiometabolic Risk Factors

The aMedDiet scores had medians of 2, 3, 5 and 6 in each quartile. The aMedDiet
quartiles were associated with several confounding factors, including mother’s charac-
teristics (such as enrollment in the calcium intervention study, and mode of childbirth)
and youth’s characteristics (such as pubertal onset and METs) (data not shown). In ad-
justed models, an inverse linear trend association was detected for log-serum TG (mg/dL)
[β = −0.03, p = 0.0022]. This change represented a reduction by 3.0% in serum TG for every
unit increase in aMedDiet score. Moreover, a positive association was detected with serum
HDL-C (mg/dL) among boys in the highest quartile [β = 4.13, p = 0.0034] compared to the
lowest quartile. No association was found with other cardiometabolic risk factors either in
the overall sample or the sex-stratified analysis (Table 3).

3.3. Association between C-DII Scores and Cardiometabolic Risk Factors

The C-DII scores had medians of −1.809, −0.630, 0.367, and 1.627 in each quartile.
The C-DII quartiles were associated with several confounding factors, including mother’s
characteristics (such as enrollment in the calcium intervention study, parity, and years of
education) and youth-related factors (such as pubertal onset and METs) (data not shown).
In the fully adjusted models, no association was found between any cardiometabolic risk
factors either in the overall sample or the sex-stratified analysis and C-DII scores (Table 4).
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Table 2. Linear mixed regression models for the relationship between quartile of dietary approaches to stop hypertension (DASH) score and cardiometabolic
risk factors.

DASH Score 1

Waist Circumference (cm) Systolic Blood Pressure
(mmHg)

Diastolic Blood Pressure
(mmHg) Glucose (mg/dL) Log TG (mg/dL) HDL-C (mg/dL) Log Insulin (µIU/mL) Log HOMA-IR

All
N = 574

Boys
N = 274

Girls
N = 300

All
N = 574

Boys
N = 274

Girls
N = 300

All
N = 574

Boys
N = 274

Girls
N = 300

All
N = 435

Boys
N = 213

Girls
N = 222

All
N = 435

Boys
N = 213

Girls
N = 222

All
N = 435

Boys
N = 213

Girls
N = 222

All
N = 410

Boys
N = 202

Girls
N = 208

All
N = 410

Boys
N = 202

Girls
N = 208

# obs. =
1297

# obs. =
621

# obs. =
676

# obs. =
1296

# obs. =
621

# obs.=
675

# obs. =
1296

# obs. =
621

# obs.=
675

# obs. =
1012

# obs.=
495

# obs.=
517

# obs. =
1012

# obs. =
495

# obs.=
517

# obs. =
1012

# obs. =
495

# obs.=
517

# obs. =
840

# obs. =
402

# obs.=
438

# obs. =
840

# obs. =
402

# obs.=
438

Crude model 2

Quartile 1
Median =

19
(Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref)

Quartile 2
Median =

23

β
SE

0.3290
0.7379

−1.7641
0.9053

2.6736
1.1428

−0.2851
0.7010

−1.1086
1.0205

0.5242
0.9425

0.1422
0.5197

−0.3087
0.7595

0.6257
0.7036

−0.01814
0.01028

−0.03199
0.01421

−0.00497
0.01462

−0.02739
0.03915

−0.03320
0.05055

−0.00404
0.05795

0.3166
0.9464

2.5288
1.3624

−1.7406
1.2842

−0.1135
0.06004

−0.1376
0.08008

−0.09521
0.08672

−0.1357
0.06520

−0.1861
0.08607

−0.09082
0.09513

p-value 0.6557 0.0520 0.0197 0.6843 0.2778 0.5783 0.7844 0.6846 0.3741 0.0779 0.0249 0.7342 0.4843 0.5118 0.9445 0.7380 0.0640 0.1760 0.0591 0.0865 0.2730 0.0377 0.0312 0.3403

Quartile 3
Median =

26

β
SE

0.09201
0.7617

−2.7801
0.9663

2.8635
1.1434

−0.6746
0.7160

−2.1720
1.0700

0.9136
0.9372

0.1368
0.5285

−0.8724
0.7908

1.2081
0.6986

−0.00357
0.01012

−0.01102
0.01431

0.003340
0.01406

−0.04297
0.04017

−0.08885
0.05455

−0.00079
0.05725

0.8016
0.9592

2.6308
1.4055

−1.0614
1.2775

−0.02292
0.05840

−0.1146
0.08184

0.04391
0.08160

−0.03110
0.06276

−0.1482
0.08715

0.05679
0.08886

p-value 0.9039 0.0042 * 0.0125 0.3463 0.0428 0.3300 0.7958 0.2704 0.0842 0.7242 0.4417 0.8123 0.2851 0.1041 0.9891 0.4035 0.0618 0.4065 0.0591 0.1623 0.5908 0.6203 0.0899 0.5231

Quartile 4
Median =

29

β
SE

−0.9829
0.8514

−2.5003
1.1382

0.5892
1.2309

−0.4748
0.7877

−0.3090
1.2243

−0.05971
0.9996

0.003925
0.5772

−0.6580
0.8948

0.8226
0.7432

−0.02344
0.01078

−0.02786
0.01572

−0.01465
0.01458

−0.07407
0.04518

−0.06178
0.06286

−0.08139
0.06342

1.0313
1.0494

3.4680
1.5760

−1.2203
1.3620

−0.1721
0.07142

−0.2227
0.1047

−0.1375
0.09639

−0.2218
0.07850

−0.2619
0.1118

−0.1895
0.1084

p-value 0.2485 0.0285 0.6323 0.5468 0.8008 0.9524 0.9946 0.4624 0.2687 0.0300 0.0771 0.3153 0.1015 0.3262 0.1999 0.3260 0.0282 0.3707 0.0162 0.0340 0.1546 0.0048 * 0.0197 0.0810

Linear
β
SE

−0.08280
0.08159

−0.2866
0.1078

0.07905
0.1193

−0.05908
0.07507

−0.1037
0.1157

0.01289
0.09584

0.002651
0.05492

−0.08367
0.08410

0.09677
0.07117

−0.00164
0.001019

−0.00197
0.001488

−0.00100
0.001378

−0.00708
0.004278

−0.00823
0.006007

−0.00661
0.005922

0.1084
0.1000

0.3329
0.1490

−0.09810
0.1309

−0.01183
0.006560

−0.01964
0.009345

−0.00729
0.008975

−0.01537
0.007096

−0.02392
0.01002

−0.01054
0.009819

p-value 0.3104 0.0081 0.5077 0.4314 0.3705 0.8930 0.9615 0.3202 0.1744 0.1081 0.1873 0.4704 0.0985 0.1715 0.2652 0.2787 0.0259 0.4539 0.0718 0.0362 0.4173 0.0306 0.0174 0.2835

Adjusted model 3,4,5

Quartile 1
Median =

19
(Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref)

Quartile 2
Median =

23

β
SE

0.5597
0.2438

0.1253
0.2953

1.1055
0.3838

−0.3056
0.6906

−0.7790
1.0089

0.4733
0.9382

0.1631
0.5152

−0.07641
0.7473

0.6637
0.7018

−0.01824
0.01016

−0.02924
0.01417

−0.00462
0.01460

−0.02871
0.03882

−0.02728
0.04990

0.006651
0.05742

0.3541
0.7539

1.7154
1.0650

−1.3066
1.0386

−0.1192
0.05586

−0.1711
0.07680

−0.09504
0.08028

−0.1502
0.06118

−0.2224
0.08116

−0.1166
0.09012

p-value 0.0219 0.6716 0.0041 * 0.6582 0.4403 0.6141 0.7517 0.9186 0.3447 0.0730 0.0396 0.7519 0.4597 0.5850 0.9078 0.6387 0.1080 0.2091 0.0332 0.0265 0.2372 0.0143 0.0065 0.1966

Quartile 3
Median =

26

β
SE

−0.03468
0.2509

−0.3516
0.3155

0.3894
0.3828

−0.5741
0.7030

−1.6714
1.0605

0.9477
0.9303

0.1587
0.5221

−0.4328
0.7793

1.2149
0.6949

−0.00317
0.01002

−0.01045
0.01442

0.004289
0.01412

−0.04299
0.03956

−0.08448
0.05358

0.01517
0.05701

0.9758
0.7707

1.8873
1.1168

−0.2532
1.0372

−0.05021
0.05519

−0.1367
0.07799

0.000769
0.07804

−0.06758
0.05980

−0.1734
0.08134

−0.00826
0.08641

p-value 0.8901 0.2657 0.3095 0.4143 0.1155 0.3087 0.7613 0.5789 0.0809 0.7520 0.4691 0.7615 0.2775 0.1156 0.7903 0.2058 0.0917 0.8073 0.3633 0.0805 0.9921 0.2588 0.0337 0.9239

Quartile 4
Median =

29

β
SE

−0.01519
0.2811

−0.2061
0.3711

0.2409
0.4103

−0.1163
0.7730

0.08917
1.2070

0.1322
0.9899

0.1862
0.5695

−0.3518
0.8722

0.9279
0.7372

−0.02130
0.01076

−0.02664
0.01584

−0.01395
0.01466

−0.06989
0.04442

−0.05062
0.06156

−0.07330
0.06244

1.0360
0.8555

3.1918
1.2780

−0.9157
1.1101

−0.1943
0.06607

−0.3012
0.1027

−0.1310
0.08773

−0.2482
0.07341

−0.3569
0.1085

−0.1934
0.1006

p-value 0.9569 0.5790 0.5574 0.8804 0.9411 0.8938 0.7437 0.6868 0.2086 0.0481 0.0933 0.3417 0.1160 0.4114 0.2410 0.2262 0.0128 0.4099 0.0034 * 0.0036 * 0.1363 0.0008 * 0.0011 * 0.0553

Linear
β
SE

−0.01519
0.02697

−0.03387
0.03519

0.004382
0.03969

−0.02563
0.07361

−0.05473
0.1142

0.03158
0.09487

0.01777
0.05413

−0.04452
0.08211

0.1047
0.07058

−0.00144
0.001019

−0.00192
0.001505

−0.00091
0.001387

−0.00672
0.004210

−0.00729
0.005891

−0.00565
0.005834

0.1149
0.08184

0.2951
0.1214

−0.05378
0.1069

−0.01475
0.006133

−0.02550
0.009040

−0.00870
0.008334

−0.01893
0.006733

−0.03099
0.009520

−0.01338
0.009395

p-value 0.5735 0.3361 0.9121 0.7277 0.6319 0.7393 0.7427 0.5878 0.1384 0.1571 0.2032 0.5108 0.1106 0.2166 0.3336 0.1608 0.0154 0.6153 0.0164 0.0050 * 0.2970 0.0050 * 0.0012 * 0.1550

1 Median values of DASH score at each quartile. 2 Model includes DASH score quartiles as fixed effects and compound symmetry matrix structure to model the covariance structure of
the repeated measurements for each outcome. 3 Models additionally adjusted for the following fixed effects mother’s enrollment in the calcium intervention study, parity status, years of
education at childbirth, child age, pubertal onset, metabolic equivalents, and calories. 4 Sex is an additional fixed effect in the adjusted models for the overall sample. 5 BMI is an
additional fixed effect in the waist circumference models.* p < 0.00625.
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Table 3. Linear mixed regression models for the relationship between quartile of alternate mediterranean diet (aMedDiet) score with cardiometabolic risk factors.

aMedDiet Score 1

Waist Circumference (cm) Systolic Blood Pressure
(mmHg)

Diastolic Blood Pressure
(mmHg) Log Glucose (mg/dL) Log TG (mg/dL) HDL-C (mg/dL) Log Insulin (µIU/mL) Log HOMA-IR

All
N = 570

Boys
N = 273

Girls
N = 297

All
N = 570

Boys
N = 273

Girls
N = 297

All
N = 570

Boys
N = 273

Girls
N = 297

All
N = 432

Boys
N = 212

Girls
N = 220

All
N = 432

Boys
N = 212

Girls
N = 220

All
N = 432

Boys
N = 212

Girls
N = 220

All
N = 407

Boys
N = 201

Girls
N = 206

All
N = 407

Boys
N = 201

Girls
N = 206

# obs. =
1289

# obs. =
618

# obs. =
671

# obs. =
1289

# obs. =
618

# obs. =
670

# obs. =
1289

# obs. =
618

# obs.=
670

# obs. =
1006

# obs. =
492

# obs. =
514

# obs. =
1006

# obs. =
492

# obs. =
514

# obs. =
1006

# obs. =
492

# obs. =
514

# obs. =
835

# obs. =
400

# obs.=
435

# obs. =
835

# obs. =
400

# obs. =
435

Crude model 2

Quartile 1
Median = 2 (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref)

Quartile 2
Median = 3

β
SE

−0.00397
0.7844

0.7594
0.9800

−0.9840
1.2059

0.4164
0.7559

1.3783
1.1285

−0.5512
0.9909

−0.08385
0.5620

−0.05524
0.8456

−0.07809
0.7386

−0.00357
0.01151

−0.00018
0.01632

−0.00761
0.01583

−0.00385
0.04129

0.005047
0.05501

−0.02006
0.05928

−0.2450
1.0179

0.7166
1.5139

−1.4923
1.3510

0.000894
0.06484

0.08904
0.09242

−0.06589
0.08965

−0.00519
0.07099

0.1151
0.09868

−0.1035
0.1005

p-value 0.9960 0.4388 0.4149 0.5818 0.2225 0.5783 0.8814 0.9479 0.9158 0.7563 0.9914 0.6311 0.9258 0.9270 0.7351 0.8099 0.6362 0.2699 0.9890 0.3360 0.4628 0.9417 0.2442 0.3036

Quartile 3
Median = 5

β
SE

−0.2745
0.7210

0.02010
0.9054

−0.6808
1.1045

0.2544
0.6813

2.1387
1.0115

−1.7062
0.8957

−0.2516
0.5025

0.4121
0.7494

−0.9031
0.6661

−0.01308
0.009827

−0.01314
0.01400

−0.01469
0.01345

−0.06952
0.03794

−0.03186
0.05027

−0.1064
0.05467

−0.2306
0.9057

1.2595
1.3255

−1.8469
1.2221

−0.03687
0.05918

0.06432
0.08509

−0.1130
0.08125

−0.05262
0.06449

0.06291
0.09156

−0.1444
0.08958

p-value 0.7035 0.9823 0.5379 0.7089 0.0349 0.0572 0.6167 0.5826 0.1756 0.1834 0.3482 0.2756 0.0672 0.5266 0.0522 0.7991 0.3425 0.1314 0.5334 0.4502 0.1649 0.4148 0.4924 0.1077

Quartile 4
Median = 6

β
SE

−2.2631
0.9080

−1.6717
1.1817

−3.0287
1.3487

0.1265
0.8487

0.4668
1.2956

−0.2324
1.0866

0.1132
0.6229

−0.5120
0.9521

0.7676
0.8072

−0.00235
0.01160

−0.01952
0.01708

0.01022
0.01546

−0.1193
0.04854

−0.08361
0.06650

−0.1565
0.06809

4.0263
1.1043

4.9457
1.6492

2.8388
1.4559

−0.1290
0.07998

0.02699
0.1122

−0.2499
0.1114

−0.1118
0.08538

−0.01289
0.1232

−0.1937
0.1163

p-value 0.0128 0.1578 0.0251 0.8815 0.7187 0.8307 0.8558 0.5910 0.3420 0.8397 0.2536 0.5089 0.0141 0.2093 0.0220 0.0003 * 0.0028 * 0.0518 0.1073 0.8100 0.0254 0.1906 0.9167 0.0965

Linear
β
SE

−0.3730
0.1952

−0.2823
0.2557

−0.4632
0.2881

0.02046
0.1813

0.3241
0.2771

−0.2624
0.2326

−0.01863
0.1329

0.008106
0.2023

−0.02874
0.1732

−0.00207
0.002493

−0.00511
0.003611

0.000150
0.003373

−0.02878
0.01019

−0.01741
0.01398

−0.03914
0.01431

0.6025
0.2403

0.8655
0.3553

0.3395
0.3192

−0.02406
0.01609

0.006684
0.02284

−0.04782
0.02216

−0.02430
0.01743

−0.00129
0.02443

−0.04287
0.02429

p-value 0.0563 0.2700 0.1085 0.9101 0.2426 0.2597 0.8885 0.9681 0.8682 0.4075 0.1574 0.9645 0.0048 * 0.2137 0.0064 0.0123 0.0152 0.2881 0.1353 0.7700 0.0315 0.1635 0.9579 0.0783

Adjusted model 3,4,5

Quartile 1
Median = 2 (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref)

Quartile 2
Median = 3

β
SE

−0.1404
0.2602

0.03642
0.3208

−0.3207
0.4021

0.5814
0.7470

1.4833
1.1171

−0.3454
0.9877

−0.05008
0.5595

0.02250
0.8350

−0.05735
0.7394

−0.00098
0.01132

0.001653
0.01611

−0.00258
0.01568

−0.01424
0.04090

−0.00912
0.05498

−0.03828
0.05885

0.1217
0.8142

1.7105
1.1721

−1.4624
1.0979

−0.01011
0.06014

0.1039
0.08814

−0.05645
0.08246

−0.01370
0.06598

0.1340
0.09244

−0.09206
0.09332

p-value 0.5896 0.9097 0.4256 0.4366 0.1848 0.7267 0.9287 0.9785 0.9382 0.9310 0.9183 0.8691 0.7277 0.8684 0.5157 0.8812 0.1453 0.1836 0.8666 0.2392 0.4941 0.8356 0.1482 0.3245

Quartile 3
Median = 5

β
SE

−0.3892
0.2458

−0.4985
0.3045

−0.3532
0.3777

0.4154
0.6912

2.3554
1.0291

−1.4118
0.9170

−0.2620
0.5134

0.4335
0.7584

−0.8423
0.6846

−0.00785
0.01002

−0.00725
0.01441

−0.00760
0.01375

−0.08973
0.03858

−0.05247
0.05128

−0.1248
0.05545

−0.00216
0.7566

2.2068
1.0793

−2.2225
1.0264

−0.03920
0.05608

0.04363
0.08402

−0.09581
0.07563

−0.05244
0.06160

0.04249
0.08899

−0.1275
0.08504

p-value 0.1136 0.1023 0.3501 0.5479 0.0224 0.1242 0.6099 0.5678 0.2190 0.4331 0.6151 0.5805 0.0203 0.3069 0.0249 0.8812 0.0415 0.0309 0.4847 0.6039 0.2060 0.3948 0.6333 0.1345

Quartile 4
Median = 6

β
SE

0.1856
0.3214

−0.3103
0.4056

0.4716
0.4887

0.4930
0.8973

1.2086
1.3530

0.06617
1.1824

0.2122
0.6643

−0.1003
0.9897

0.7708
0.8820

0.007172
0.01254

−0.01295
0.01842

0.02358
0.01711

−0.1316
0.05127

−0.09615
0.06949

−0.1723
0.07298

1.8205
0.9718

4.1344
1.4027

−0.3810
1.3088

−0.06270
0.07777

0.03936
0.1130

−0.1385
0.1071

−0.03106
0.08427

0.009474
0.1220

−0.06554
0.1154

p-value 0.5638 0.4446 0.3350 0.5828 0.3721 0.9554 0.7495 0.9193 0.3825 0.5674 0.4825 0.1688 0.0104 0.1672 0.0186 0.0614 0.0034 * 0.7711 0.4204 0.7279 0.1966 0.7126 0.9381 0.5703

Linear
β
SE

−0.03578
0.06906

−0.1396
0.08783

0.03408
0.1043

0.08428
0.1912

0.4670
0.2898

−0.2201
0.2515

−0.01518
0.1414

0.06694
0.2103

−0.04865
0.1880

−0.00025
0.002693

−0.00331
0.003920

0.002248
0.003706

−0.03302
0.01077

−0.02147
0.01470

−0.04273
0.01533

0.2389
0.2097

0.8033
0.3041

−0.2907
0.2818

−0.01457
0.01600

0.003412
0.02338

−0.03102
0.02186

−0.01332
0.01759

−0.00353
0.02468

−0.02637
0.02466

p-value 0.6045 0.1127 0.7440 0.6594 0.1076 0.3818 0.9145 0.7504 0.7959 0.9251 0.3995 0.5444 0.0022 * 0.1449 0.0055 0.2548 0.0085 0.3027 0.3628 0.8840 0.1567 0.4491 0.8864 0.2856

1 Median values of aMedDiet score at each quartile. 2 Model includes aMedDiet score quartiles as fixed effects and compound symmetry matrix structure to model the covariance
structure of the repeated measurements for each outcome. 3 Models additionally adjusted for the following fixed effects mother’s enrollment in the calcium intervention study, parity
status, mode of childbirth, child age, pubertal onset, metabolic equivalents, and calories. 4 Sex is an additional fixed effect in the adjusted models for the overall sample. 5 BMI is an
additional fixed effect in the waist circumference models. * p < 0.00625.
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Table 4. Linear mixed regression models for the relationship between quartile of children’s dietary inflammatory index (C-DII) and cardiometabolic risk factors.

C-DII Score 1

Waist Circumference (cm) Systolic Blood Pressure
(mmHg)

Diastolic Blood Pressure
(mmHg) Log Glucose (mg/dL) Log TG (mg/dL) HDL-C (mg/dL) Log Insulin (µIU/mL) Log HOMA-IR

All
N = 574

Boys
N = 274

Girls
N = 300

All
N = 574

Boys
N = 274

Girls
N = 300

All
N = 574

Boys
N = 274

Girls
N = 300

All
N = 435

Boys
N = 213

Girls
N = 222

All
N = 435

Boys
N = 213

Girls
N = 222

All
N = 435

Boys
N = 213

Girls
N = 222

All
N = 410

Boys
N = 202

Girls
N = 208

All
N = 410

Boys
N = 202

Girls
N = 208

# obs. =
1297

# obs. =
621

# obs. =
676

# obs. =
1296

# obs. =
621

# obs. =
675

# obs. =
1296

# obs. =
621

# obs. =
675

# obs. =
1012

# obs. =
495

# obs. =
517

# obs. =
1012

# obs. =
495

# obs. =
517

# obs. =
1012

# obs. =
495

# obs. =
517

# obs. =
840

# obs. =
402

# obs. =
438

# obs. =
840

# obs. =
402

# obs. =
438

Crude model 2

Quartile 1
Median =
−1.809

(Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref)

Quartile 2
Median =
−0.630

β
SE

−1.7767
0.7480

−1.5876
0.9488

−1.6627
1.1287

−0.8237
0.7132

−0.8569
1.0841

−1.0464
0.9262

−0.8375
0.5289

−1.2088
0.8073

−0.5412
0.6915

0.01185
0.01037

0.01802
0.01502

0.006933
0.01401

0.02667
0.04125

0.05751
0.05467

0.01242
0.05944

1.2633
0.9442

1.4994
1.4080

1.1387
1.2547

−0.01112
0.06234

0.02392
0.08838

−0.03165
0.08618

−0.00900
0.06819

0.04720
0.09667

−0.04518
0.09444

p-value 0.0177 0.0950 0.1413 0.2484 0.4296 0.2590 0.1136 0.1349 0.4341 0.2536 0.2306 0.6209 0.5181 0.2935 0.8346 0.1812 0.2875 0.3646 0.8585 0.7868 0.7137 0.8951 0.6256 0.6326

Quartile 3
Median =

0.367

β
SE

−0.7154
0.7746

0.9719
0.9874

−2.3282
1.1678

−0.01267
0.7302

0.8179
1.1069

−1.0997
0.9509

−0.3229
0.5389

0.006068
0.8185

−0.7512
0.7087

0.01915
0.01040

0.03382
0.01487

0.003251
0.01429

0.06592
0.04183

0.05300
0.05595

0.09213
0.05973

0.3462
0.9700

0.1860
1.4195

0.5931
1.3192

0.02611
0.06237

0.1313
0.08391

−0.06484
0.09243

0.03706
0.06781

0.1720
0.09130

−0.07919
0.1010

p-value 0.3559 0.3255 0.0467 0.9862 0.4603 0.2479 0.5492 0.9941 0.2895 0.0660 0.0234 0.8201 0.1154 0.3441 0.1236 0.7212 0.8958 0.6532 0.6756 0.1184 0.4834 0.5849 0.0604 * 0.4336

Quartile 4
Median =

1.627

β
SE

−0.4730
0.8139

0.5592
1.0580

−1.3017
1.2065

0.3410
0.7557

1.0353
1.1543

−0.5672
0.9737

−0.1045
0.5543

0.06080
0.8452

−0.3924
0.7246

0.009471
0.01064

0.02123
0.01554

−0.00136
0.01427

0.09871
0.04350

0.1510
0.05866

0.05567
0.06214

0.4201
1.0196

0.8044
1.5123

0.4001
1.3566

−0.04730
0.06760

−0.07156
0.09781

−0.01034
0.09126

−0.05217
0.07365

−0.04971
0.1064

−0.03442
0.09976

p-value 0.5613 0.5974 0.2811 0.6519 0.3701 0.5604 0.8505 0.9427 0.5883 0.3734 0.1725 0.9239 0.0235 0.0104 0.3708 0.6804 0.5950 0.7682 0.4844 0.4648 0.9099 0.4789 0.6405 0.7302

Linear
β
SE

−0.02710
0.2294

0.3636
0.3003

−0.4014
0.3386

0.1637
0.2122

0.4279
0.3244

−0.1571
0.2728

0.01930
0.1556

0.1336
0.2373

−0.1228
0.2030

0.003109
0.002951

0.006803
0.004292

−0.00061
0.003976

0.02965
0.01220

0.04082
0.01655

0.02089
0.01724

0.03564
0.2862

0.09435
0.4231

0.06718
0.3815

−0.00938
0.01870

−0.00948
0.02598

−0.00578
0.02622

−0.00984
0.02027

−0.00293
0.02794

−0.01262
0.02865

p-value 0.9060 0.2266 0.2363 0.4406 0.1876 0.5650 0.9013 0.5736 0.5452 0.2923 0.1137 0.8789 0.0152 0.0141 0.2263 0.9009 0.8236 0.8603 0.6162 0.7154 0.8258 0.6273 0.9166 0.6598

Adjusted model 3,4,5

Quartile 1
Median =
−1.809

(Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref)

Quartile 2
Median =
−0.630

β
SE

−0.1622
0.2481

−0.4641
0.3073

0.1158
0.3783

−0.9515
0.7032

−0.9685
1.0724

−0.9390
0.9205

−0.8455
0.5245

−1.2116
0.7953

−0.4926
0.6885

0.01326
0.01025

0.02101
0.01484

0.01012
0.01392

0.02897
0.04094

0.06968
0.05402

0.003959
0.05863

0.7208
0.7511

0.5212
1.0902

0.8175
1.0117

−0.00072
0.05866

0.04457
0.08694

−0.02456
0.07993

−0.00165
0.06456

0.08241
0.09388

−0.04292
0.08926

p-value 0.5133 0.1317 0.7597 0.1763 0.3669 0.3081 0.1072 0.1282 0.4746 0.1958 0.1575 0.4678 0.4794 0.1978 0.9462 0.3376 0.6329 0.4196 0.9902 0.6086 0.7588 0.9797 0.3807 0.6309

Quartile 3
Median =

0.367

β
SE

−0.05138
0.2572

0.1094
0.3210

−0.2653
0.3921

−0.4100
0.7205

0.3755
1.0970

−1.2512
0.9455

−0.5400
0.5348

−0.2713
0.8052

−0.8539
0.7058

0.01760
0.01033

0.03426
0.01475

0.003487
0.01428

0.07035
0.04149

0.05348
0.05512

0.07973
0.05913

−0.2508
0.7793

−0.2023
1.1102

−0.02910
1.0755

0.03325
0.05918

0.1630
0.08286

−0.07402
0.08592

0.03778
0.06475

0.2121
0.08928

−0.09819
0.09589

p-value 0.8417 0.7333 0.4990 0.5694 0.7322 0.1862 0.3128 0.7363 0.2268 0.0886 0.0206 0.8072 0.0903 0.3325 0.1781 0.7477 0.8555 0.9784 0.5744 0.0499 0.3895 0.5598 0.0180 0.3065

Quartile 4
Median =

1.627

β
SE

−0.06379
0.2710

0.2387
0.3430

−0.3789
0.4077

−0.1990
0.7460

0.4404
1.1387

−0.9106
0.9770

−0.4396
0.5500

−0.3937
0.8245

−0.6105
0.7282

0.007480
0.01061

0.02143
0.01547

−0.00365
0.01452

0.09054
0.04314

0.1463
0.05779

0.03924
0.06192

0.5218
0.8310

0.6096
1.2068

0.7541
1.1187

−0.04283
0.06388

−0.03861
0.09624

−0.04039
0.08593

−0.05409
0.06986

−0.00900
0.1034

−0.06534
0.09521

p-value 0.8139 0.4868 0.3531 0.7897 0.6990 0.3517 0.4243 0.6332 0.4021 0.4811 0.1665 0.8015 0.0361 0.0117 0.5265 0.5302 0.6137 0.5006 0.5028 0.6885 0.6386 0.4389 0.9307 0.4929

Linear
β
SE

−0.00700
0.07627

0.1167
0.09747

−0.1327
0.1143

−0.00199
0.2097

0.2405
0.3203

−0.2696
0.2738

−0.08756
0.1545

−0.01362
0.2313

−0.1931
0.2041

0.002315
0.002950

0.006580
0.004281

−0.00142
0.004051

0.02739
0.01206

0.03837
0.01626

0.01612
0.01723

0.05919
0.2340

0.1014
0.3391

0.1344
0.3152

−0.00876
0.01766

−0.00146
0.02556

−0.01473
0.02453

−0.01133
0.01925

0.005503
0.02711

−0.02213
0.02726

p-value 0.9269 0.2319 0.2461 0.9924 0.4531 0.3253 0.5711 0.9531 0.3444 0.4327 0.1250 0.7259 0.0233 0.0187 0.3498 0.8003 0.7651 0.6700 0.6199 0.9546 0.5483 0.5563 0.8393 0.4174

1 Median values of C-DII score at each quartile. 2 Model includes C-DII score quartiles as fixed effects and compound symmetry matrix structure to model the covariance structure of
the repeated measurements for each outcome. 3 Models additionally adjusted for the following fixed effects mother’s enrollment in the calcium intervention study, mother years of
education at childbirth, child age, pubertal onset, metabolic equivalents, and calories. 4 Sex is an additional fixed effect in the adjusted models for the overall sample. 5 BMI is an
additional fixed effect in the waist circumference models.* p < 0.00625.
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4. Discussion

In this longitudinal study, we examined the relationships between three diet quality
scores and cardiometabolic risk factors among Mexican children and adolescents aged 8 to
21 years. Our study showed that insulin and HOMA-IR were inversely associated with
the DASH scores, and TG was negatively associated aMedDiet scores. As far as we know,
our study is one of a few prospective studies with repeated measures of multiple dietary
quality scores and cardiometabolic risk factors among Mexican youth.

We found an inverse association between DASH score and HOMA-IR and serum
insulin. Our results are consistent with findings from a meta-analysis of RCTs among
adults [63], as well as a randomized cross-over clinical trial of 6 weeks of DASH intervention
conducted among adolescent girls [64]. Moreover, the nutrients in the DASH diet have
potential roles in insulin and glucose homeostasis [65–67]. The inverse associations with
insulin sensitivity were of special interest for Hispanic youth because insulin resistance can
occur in Mexican children without evidence of overweight or obesity [68]. Insulin sensitivity
is a driver of adipose tissue partitioning [69], and abnormal fat deposition is a potent factor
in the development and pathology of obesity [70]. Regarding the association between
DASH score and blood pressure, our null results are consistent with other studies [37,71].

Our results showed that serum TG was linearly and inversely associated with the
higher adherence to the aMedDiet pattern, which is consistent with the established role of
diet in managing hypertriglyceridemia [72–74]. The inter-quartile increases were relatively
small on serum TG (i.e., 3.0%) and may not be of clinical significance; however, a greater
improvement in diet quality was associated with a higher effect size. This evidence collec-
tively endorses controlling for serum TG as a potential primary intervention among youth
to mitigate future cardiometabolic consequences, given the role of TG as an established risk
factor for CVD among adults [75–78].

The positive association between HDL-C and aMedDiet scores was in agreement with
intervention studies conducted among Mexican and Italian youth that showed positive
associations between adhering to Mediterranean diet and serum HDL-C [34,79], as well as
on HDL-C function (i.e., enhanced efflux capacity, reduced HDL-C oxidation) and quality
(i.e., particles’ composition and size) [80].

We identified a few longitudinal studies conducted among Mexican youth with which
to compare our results [38,81]. In a sub-sample of young adults in the ELEMENT cohort
(N = 100, and mean age = 21.5 years), Betanzos-Robledo et al. examined the association
between DII scores, as a cumulative exposure from the first year of life until 21 years of age;
only blood pressure was positively associated with DII scores [38]. Moreover, Barragán-
Vázquez et al. investigated the longitudinal association between C-DII scores and adiposity,
assessed at 5, 7, and 11 years among Mexican children [81]. They found no association with
waist circumference, which was consistent with our conclusions. However, a one-unit in-
crease in the C-DII score was associated with a 0.41% change in waist circumference among
girls [81]. Future longitudinal studies should examine the role of diet and cardiometabolic
health in youth from different analytical perspectives [38,81].

One unexpected finding was a positive association between higher DASH score and
waist circumference among girls. Waist circumference is an effective non-invasive tool for
assessing truncal fat among children and adolescents [82]. However, repeated measures of
waist circumference in childhood must be interpreted with caution as waist circumference
captures information about subcutaneous fat, muscle, intramuscular fat, visceral fat, and
bone [83]. The documented increase in waist circumference that parallels growth in children
and adolescents [81,84,85] may not necessarily reflect a high-fat mass [84]. Additionally,
waist circumference is affected by genetic and environmental factors [85], which may be a
source of residual confounding.

Our sample had relatively lower diet quality and variability assessed by the three
scores, which was consistent with other studies conducted on youth [86,87]. A plausible
explanation could be that neither DASH or aMedDiet scores were developed to accommo-
date Mexican eating habits. Eating habits are influenced by culture [32], which is captured
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via methods of preparing foods, norms about food consumption, the availability of certain
foods, and other factors [33]. Previously, it was shown that identifying empirically-driven
dietary patterns did not necessarily capture the overall dietary pattern; rather, these pat-
terns reflected the meal patterns within households among adolescents enrolled in the
ELEMENT cohort [88]. In addition, no evidence was found to suggest a distinction be-
tween “westernized” or “traditional” patterns, as they were simultaneously incorporated
into eating patterns among adolescents [88]; similar results were found in an adolescent
Brazilian cohort [86]. This evidence showed the importance of considering the cultural
context when assessing diet quality across different populations.

Differences in the associations between each diet score and cardiometabolic risk factors
require explanation. We found moderate associations; others also have reported both mod-
erate [89,90] and higher associations among diet quality scores [91,92]. The differences in
the analytical methods deriving each score could be an additional reason [91,93]. Moreover,
each score captures slightly distinct diet characteristics. We found that DASH score was
associated with lower fat intake from all types. In contrast, aMedDiet and C-DII scores were
positively associated with all types of fat, except for an inverse association for saturated
fat and polyunsaturated fat (Data not shown). The DASH eating plan is characterized by
reducing the intake of fat of all types [17] while aMedDiet and C-DII distinguish between
fat types [18,94]

Our associations could have larger effect sizes if we had a longer duration of follow-up
and greater variabilities in diet quality scores and cardiometabolic risk factors. Children and
adolescents are generally metabolically healthy [95,96] and dietary exposures may require
more time to manifest their impact on biomarkers of cardiometabolic health [97]. Further
studies with longer follow-up duration are recommended to examine cardiometabolic
abnormalities among youth as these associations may be pronounced in middle age.

The current study has several strengths. The ELEMENT birth cohort is a well-
characterized cohort and permits adjustment for multiple confounders at baseline. We
examined the overall associations in addition to sex-stratified associations due to the plau-
sible differences among boys and girls in their eating patterns and their cardiometabolic
profile during pubertal transition. Moreover, most other longitudinal studies limited
their analysis to baseline dietary assessment in predicting the future occurrence of car-
diometabolic risk factors [36,37]. Repeated assessment of dietary intake enhances our
understanding of the change in dietary patterns during pubertal transition.

Despite its strengths, the current study has several limitations. The aMedDiet and
the DASH scores use “population-specific” cut-offs for food consumption that allowed for
these scores to be used in pediatric populations [10,52], despite their original application
in adults [50,51]. Nevertheless, this may inflate type II error because of the reduction in
diet variability in homogenous populations [98,99]. Another concern is that our sample
may have had different scores if other cut-off values were used [33,93,100–102]. To address
these limitations, we used C-DII scores as a third approach to assess diet quality. The
C-DII scores use a population-based food consumption database from multiple countries
as a reference [53,103]. The standardization of reference values in C-DII scores enhances
cross-studies comparability and reduces the inherent bias that could occur when using the
study population as a reference.

Moreover, dietary assessment in children and adolescents is subject to reporting errors
due to limited skills in retrieving information or estimating portion sizes [104,105]. Diet
quality patterns may not be a precise measure of overall healthy habits among adoles-
cents [86,88] because they are not a comprehensive dietary assessment [106,107]. Also, the
FFQs used in this study queried the intake in the previous week [105], which may not
capture long-term dietary patterns, but could still be a reasonable estimation. Moreover,
the FFQ did not measure eating behaviors, such as watching media while eating and un-
healthy snacks between meals [108]. Another limitation is that the FFQ used has not been
formally validated, but was used in the National Nutrition Survey of Mexico, which offered
advantages of a culturally relevant food list [48]. It is worth noting that our conclusions
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may not be generalizable to youth with Mexican heritage who do not live in Mexico City
due to differences in the regional and cultural context and available resources and assets.
Lastly, the possibility of residual confounding could not be ruled out.

5. Conclusions

In conclusion, we found a protective association between higher diet quality and
selected cardiometabolic risk factors, e.g., TG, HDL-C, insulin, and HOMA-IR among
Mexican children and adolescents. Further studies are needed to validate the use of diet
quality scores among youth and examine their reflection of the overall diet. Additional
studies are warranted to enhance dietary assessments by including aspects of food habits
and eating behaviors. Finally, healthy diet patterns may have a null or modest effect
on cardiometabolic health outcomes compared to larger effect sizes for unhealthy eating
patterns [109]. Thus, we endorse supplementing the diet quality assessment with indices
of unhealthy eating behaviors, i.e., the consumption of processed foods, which is of great
interest because Mexico had the highest annual retail sales per capita of ultra-processed food
and drink products across Latin America [110,111], and the fourth highest worldwide [110].
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//www.mdpi.com/article/10.3390/nu14040896/s1, Table S1. Scoring Criteria for Dietary Approach
to Stop Hypertension (DASH) Score; Table S2. Scoring Criteria for Alternate Mediterranean Diet
(aMedDiet) Score; Table S3. Availability of Children’s Dietary Inflammatory Index (C-DII) Sub-
components Used in the Current Study.
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