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 The term glaucoma is used to describe a heterogeneous
group of diseases that have in common a characteristic optic
cup neuropathy with loss of visual field defects [1]. Elevated
intraocular pressure (IOP) is a strong risk factor for open-angle
glaucoma, but some patients with glaucoma have normal IOP
and many patients with elevated IOP do not have glaucoma
[2,3]. In Finland and other Nordic countries, the most com-
mon types of glaucoma are primary open-angle glaucoma
(POAG) and exfoliation glaucoma (ExG) [4-6]. Usually ExG
is more aggressive; it reacts worse to medical treatment, and
optic nerve damage and visual field loss take place earlier than
in POAG [7-12]. Elevated IOP in ExG may be attributed to
accumulation of the exfoliation material or pigment particles
in the angle chamber [13-15].

PLA
2
 (EC 3.1.1.4) belongs to a superfamily of enzymes

that catalyzes the hydrolysis of the sn-2 ester bond in phos-
pholipids. The hydrolysis products are free fatty acids and
lysophospholipids [16,17]. Different PLA

2
 isoenzymes have

been found and classified into several groups (from I to XIV)
based on their structures, subcellular distributions, cellular
functions, and enzymatic characteristics [18,19]. In a simpli-
fied classification system, PLA

2
s can be divided into four major

groups: secretory PLA
2
 (sPLA

2
), Ca2+-independent PLA

2

(iPLA
2
), cytosolic PLA

2
 (cPLA

2
), and a class of PLA

2
 called

platelet-activating factor (PAF) acetylhydrolase (PAF-AH) [20-
22]. sPLA

2
 is optimally active at millimolar Ca2+ concentra-

tion and cPLA
2
 requires micromolar amounts of Ca2+, whereas

iPLA
2
 does not need Ca2+ for activity [23].

PLA
2
s play a key role in various biological processes.

sPLA
2
 has been implicated in the regulation of a wide array of

cellular functions, such as arachidonic acid (AA) metabolism,
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Purpose: Phospholipase A
2
 (PLA

2
) is a growing family of lipolytic enzymes that play a key role in various biological

processes including general lipid metabolism, membrane homeostasis, and in diseases such as atherosclerosis, arthritis,
and acute pancreatitis. Oxidative stress as well as inflammation may be associated with glaucoma pathogenesis. There-
fore, our aim was to examine the expression of group IIA secretory PLA

2
 (sPLA

2
-IIA), group V secretory PLA

2
 (sPLA

2
-

V), calcium-independent PLA
2
 (iPLA

2
), and cytosolic PLA

2
 (cPLA

2
) type in the trabecular meshwork (TM) and the canal

of Schlemm in normal eyes and in juxtacanalicular tissue samples from patients with primary open angle glaucoma
(POAG) or exfoliation glaucoma (ExG).
Methods: TM tissues were isolated from healthy donor eyes for corneal transplantation. Specimens of inner wall of the
Schlemm’s canal and the juxtacanalicular tissue were collected during deep sclerectomy from the eyes of patients who
had POAG or ExG. Antibodies against PLA

2
s (sPLA

2
-IIA, sPLA

2
-V, iPLA

2
, and cPLA

2
) and a standard immunohis-

tochemical procedure were used for the analysis. Quantification of immunoreactions was provided using a Photoshop-
based image analysis. Double-staining immunofluorescence of macrophages and sPLA

2
-IIA was performed by using

confocal microscopy.
Results: sPLA

2
-IIA was not present in normal TM. In contrast, sPLA

2
-IIA levels were significantly higher in glaucoma

patients than in controls. Furthermore, sPLA
2
-IIA expression was much higher in POAG when compared to ExG. iPLA

2

was found to predominate in normal human TM, and it demonstrated strong labeling in the uveal and corneoscleral
meshwork. The staining of juxtacanalicular meshwork was only moderate in density. In contrast, expression of the en-
zyme was significantly decreased in glaucoma patients, especially in ExG, when compared to normal controls or to
POAG. In addition, strong regional differences were detected in sPLA

2
-IIA and iPLA

2
 levels in POAG, whereas

immunostaining of these enzymes was much lower and rather uniform throughout ExG sample. In POAG, sPLA
2
-IIA

staining was restricted to certain parts of the trabecular samples where sPLA
2
-IIA positive macrophages were also present.

Immunostaining of sPLA
2
-V or cPLA

2
 was low, and no significant changes were found in levels of these enzymes be-

tween normal and glaucomatous samples.
Conclusions: sPLA

2
-IIA, an oxidative stress marker in atherosclerosis, is overexpressed especially in POAG. This result

supports the hypothesis that oxidative stress may play a significant role in the pathogenesis of POAG. In ExG, a dramatic
decrease in the expression level of iPLA

2
, a housekeeping enzyme in phospholipid remodeling, may indicate imbalance in

phospholipid turnover and also inhibition of normal physiological functions in the TM. These findings may contribute to
understanding the pathogenesis of POAG and ExG and may be important for the development of novel therapeutic strat-
egies to different glaucomas.
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phospholipids digestion, extracellular matrix (ECM) remod-
eling, regulation of proliferation and cell contraction, endot-
helial cell migration, antimicrobial defense, and regulation of
acrosome reaction of spermatozoa [23-33]. Elevated levels of
sPLA

2
 have been detected in several diseases including ath-

erosclerosis, inflammatory diseases, arthritis, acute pancreati-
tis, and neurodegeneration [34-39].

cPLA
2
 is the only PLA

2
 that shows significant selectivity

toward AA at the sn-2 position of the phospholipid molecule
[40]. Therefore, it plays an important role in mediating im-
portant cellular processes including eicosanoid biosynthesis
[41].

iPLA
2
 is generally regarded as a housekeeping enzyme

as it remodels and maintains membrane phospholipids [42].
Recent studies have suggested the enzyme has other roles.
iPLA

2
 has a proliferative effect and a functional role in cellu-

lar signaling cascades, vascular smooth muscle contraction,
artery relaxation, and in apoptotic processes [43-48]. Recently,
it was reported that iPLA

2
 is required for activation of store-

operated Ca2+ channels to initiate Ca2+ influx [49].
In general, mammalian cells contain more than one PLA

2

[17] thus there is considerable interest in determining the role
of each PLA

2
. To our knowledge, although much research has

been done to characterize, purify, and clone various forms of
PLA

2
 from diverse sources, virtually nothing has been pre-

sented about the existence of PLA
2
 in the human anterior cham-

ber angle. The anterior segment of the eye is filled with aque-
ous humor. A major component of the anterior chamber angle
is the trabecular meshwork (TM) and the canal of Schlemm.
The TM regulates the outflow facility of the aqueous humor
and is also responsible for IOP control [50]. Recent notions
that oxidative stress may play a role in glaucomatous TM cells
have brought new insights to probable pathophysiologic
mechanisms behind glaucoma [51]. Interestingly, PLA

2
s are

important mediators of oxidative damage in cells [20,39]. To
fill this gap, the goal of the present study was to
immunohistochemically analyze the expression of PLA

2
 in

normal human chamber angle and the inner wall of Schlemm’s
canal and the juxtacanalicular tissue of patients with POAG
or ExG. In this work we used antibodies against four distinct
PLA

2
s, including group IIA secretory PLA

2
 (sPLA

2
-IIA), group

V secretory PLA2 (sPLA
2
-V), iPLA

2
, and cPLA

2
.

METHODS
Materials:  Monoclonal antibodies against sPLA

2
-IIA were

purchased from Upstate (Lake Placid, NY). Monoclonal anti-
bodies against sPLA2-V and cPLA2 (sc-4-4B-3C, lot number
E1704) and rabbit polyclonal antibodies against iPLA

2
 were

purchased from Santa Cruz Biotechnology, Inc (Santa Cruz,
CA). Monoclonal antibodies against CD68 (Lab Vision Cor-
poration) were used for immunohistochemical staining of
macrophages. For the double labeling experiments goat
antimouse IgG conjugated to Alexa Fluor 488 or Alexa Fluor
594 secondary antibodies (Molecular probes, Eugene OR) were
used. For Western blot experiments, horseradish peroxidase-
linked antimouse (GE Healthcare, Buckinghamshire, England)
or antirabbit (GE Healthcare) secondary antibodies were used.

Samples:  Normal human TM tissue samples were ob-
tained from healthy eyes donated for corneal transplantation
(n=8). Tissue samples were also obtained from patients with
POAG (n=6) and patients with ExG (n=6), who were under-
going elective deep sclerectomy. During the operation, the
external wall of Schlemm’s canal was opened, and the tissue
specimens were taken from the inner wall of Schlemm’s ca-
nal. The juxtacanalicular meshwork and corneoscleral trabe-
cular layers were taken by direct visual control during the sur-
gery. Tissue specimens were frozen in -70 °C until used, or
they were fixed in formalin and embedded in paraffin. Paraf-
fin sections (5 µm) and cryostat (Leica CM3050S, Leica
Microsystems, Nussloch, Germany) sections (5 µm) were
placed on Super Frost®Plus microscope slides (Menzel GmbH
& Co KG, Germany). The procedure for obtaining the tissues
was within the tenets of the Declaration of Helsinki.

Clinical findings in primary open angle glaucoma and
exfoliation glaucoma patients:  Prior to the surgery, clinical
data was collected on each patient, including age, gender, use
of prostaglandin analogs, number of argon laser trabeculoplasty
and other ocular surgical interventions, type and duration of
glaucoma, IOP, and visual acuity. Glaucoma classification was
based on careful clinical eye examination. All patients under-
went slit lamp examination on the day before surgery. All IOPs
in the POAG or ExG group exceeded 20 mmHg at the time of
surgery. Visual acuity varied from 0.3 to 1.0.

Homogenization and western blot analysis of control
samples:  Low molecular weight standards were obtained from
Amersham Biosciences. Normal human TM tissue samples
were homogenized on ice in T-PER Tissue Protein Extraction
Reagent with protease inhibitor coctail (Pierce, Rockford, IL).
Proteins (10 µg) were separated by SDS-PAGE [52], and af-
ter the run, the gels were subjected to western blot. Briefly,
the samples were transferred (voltage: 12 V; current: 100 mA)
to Hypond ECL (nitrocellulose) membranes (Amersham Bio-
sciences) for 1 h using a semidry blotter (Transblot system,
Bio-Rad, Hercules, CA). Transfer buffer was 25 mM Tris con-
taining 192 mM glycine and 20% methanol. The membranes
were blocked with 3% milk powder in phosphate-buffered
saline (PBS) with 0.3% Tween for 1 h at 25 °C. After blocking
the membranes were incubated overnight at 4 °C with anti-
bodies directed against sPLA

2
-IIA, sPLA

2
-V, iPLA

2
, or cPLA

2

(each with 1:500 dilution in blocking solution). Membranes
were washed in PBS with 0.3% Tween three times for 10 min
each. Membranes were probed with the appropriate second-
ary antibody (antimouse IgG used at 1:50,000 dilution in block-
ing solution or antirabbit IgG used at 1:20,000 dilution in block-
ing solution) linked to horseradish peroxidase for 2 h. Mem-
branes were then washed in PBS with 0.3% Tween three times
for 10 min each. Proteins were visualized with Immobilon
Western Chemiluminescent HPR substrate (Millipore,
Billerica, MA) and exposed to Fuji RX film (Fuji, Japan).
Purified recombinant human sPLA

2
-IIA (BioVendor GmbH,

Heidelberg, Germany) and sPLA
2
-V (BioVendor, GmbH) were

used as positive controls.
Immunohistochemistry:  Cryosections were fixed in ice-

cold acetone for 7 min, air-dried, then rinsed twice with tris-
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buffered saline (TBS). Paraffin sections were dewaxed in xy-
lene and dehydrated in graded ethanols according to standard
procedures. Immunostaining was carried out with
HistostainTM-Plus Mouse Primary Bulk kit (Zymed Labora-
tories, South San Francisco, CA) or Histostain™-Plus Broad
Spectrum Bulk kit (Zymed Laboratories) and with DAB sub-
strate kit (Zymed Laboratories) following guidelines described
in reference [53]. The antibodies for demonstrating sPLA

2
-V,

iPLA
2
, and cPLA

2
 were all used at a dilution of 1:100, and a

dilution of 1:400 was used for sPLA
2
-IIA. The tissue sections

were examined and digitally captured using a Nikon Eclipse
TE300 inverted microscope (Nikon, Tokyo, Japan) equipped
with Nikon E995 digital camera (Nikon), and the images were
processed with Adobe Photoshop (version 5.5) software.

Confocal laser scanning microscopy:  Double-immunof-
luorescence was performed for colocalization studies of sPLA

2

and macrophages using the method described in Kroeber et
al. [54]. Primary antibodies used were anti-sPLA

2
-IIA (1:400

dilution) and anti-CD68 (1:10 dilution). sPLA
2
-IIA was de-

tected with antimouse IgG Alexa Fluor 488 (1:200 dilution),
and macrophages were detected with Alexa Fluor 594 (1:5
dilution; red fluorescence). In addition, nuclei were stained
with a 1 mM solution of far red nucleic acid dye (SYTO 62;
Molecular Probes).

For colocalization studies cryosections were fixed in ice-
cold acetone for 7 min, air-dried, rinsed twice with TBS and
blocked with blocking solution. Colocalization of sPLA

2
-IIA

and macrophages was observed by merged images with
UltraVIEW confocal imaging systems (PerkinElmer Life Sci-
ences, Shelton, CT) following guidelines established in refer-
ence [55]. Sections were mounted on Vectashield mounting
medium (Vector, Burtingame, CA). To verify an absence of
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Figure 1. Immunohistochemical localization of PLA
2
s in normal human trabecular meshwork.  Immunostaining for sPLA

2
-IIA ( A) or sPLA

2
-

V (B) was negative in the trabecular meshwork. Intense staining for sPLA
2
-IIA or sPLA

2
-V was evident in a few inflammatory-like cells

(arrow). iPLA
2
 immunolabeling was strong (C). Labeling of the uveal and corneoscleral meshwork was stronger compared to the staining of

the juxtacanalicular meshwork. Low positive staining was seen in the apical parts of the cells lining Schlemm’s canal (arrowhead) as well as
in nearby extracellular regions. Positive staining was also seen in a few macrophages (arrow). Inset: A portion of trabecular meshwork
lamellae at higher magnification. Uveal trabecular meshwork cells covering the lamellae were more intensely labeled compared to connective
tissue core. cPLA

2
 was weakly positive (D) and staining was slightly higher in uveal and corneoscleral meshwork compared to juxtacanalicular

meshwork. The cells lining Schlemm’s canal showed weak staining. Positive staining was seen in a few macrophages (arrow). AC, anterior
chamber; SC, Schlemm’s canal. The scale bar is equal to 50 µm.
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cross-reaction between antibodies, we omitted each primary
or secondary antibody from the incubation. All control ex-
periments confirmed that there was no cross-reactivity between
the antibodies.

Quantification of immunohistochemical staining:  The
amount of antibody staining was quantified by using
Photoshop-based image analysis [53]. All samples were ana-
lyzed in triplicate. The final immunostaining intensity (AU)
was determined by subtracting the intensity of the negative
control.

Statistical analysis:  Differences between experimental
groups were determined using the Mann-Whitney Rank Sum
test (SigmaStat statistical software, SPSS Inc, Chicago, IL). A
p less than or equal to 0.05 was considered statistically sig-
nificant.

RESULTS
Distribution of sPLA

2
-IIA, sPLA

2
-V, iPLA

2
, and cPLA

2
 in nor-

mal human trabecular meshwork:  We immunostained tissue
sections to assess the immunohistochemical localization of
sPLA

2
-IIA, PLA

2
-V, iPLA

2
, and cPLA

2
 in human TM. sPLA

2
-

IIA (Figure 1A) or sPLA
2
-V (Figure 1B) immunohistochemi-

cal labeling was observed in few macrophages. In contrast,
iPLA

2
 demonstrated strong labeling of the uveal and

corneoscleral meshwork, and the staining of juxtacanalicular
meshwork was only moderate in density. Uveal TM cells cov-
ering the lamellae were more intensely labeled compared to
the connective tissue core of the lamellae, and, similarly, the
luminal parts of the cells lining Schlemm’s canal were notice-
ably stained with iPLA

2
. Staining intensity of cPLA

2
 was con-

siderably weaker when compared to iPLA
2
. Immunohis-

tochemical staining showed that cPLA
2
 expression was slightly

higher in uveal and corneoscleral meshwork compared to
juxtacanalicular meshwork (Figure 1D). The cells lining
Schlemm’s canal were also faintly stained with cPLA

2
. More-

over, intense staining of iPLA
2
 (Figure 1C) or cPLA

2
 (Figure

1D) was also seen in few macrophages. A similar pattern of
PLA2s was found in paraffin-embedded and frozen sections
of normal human tissue.

Localization of sPLA
2
-IIA, sPLA

2
-V, iPLA

2
, and cPLA

2
 in

trabecular meshwork of primary open angle glaucoma and
exfoliation glaucoma patients:  We examined the locations of
sPLA

2
-IIA, sPLA

2
-V, iPLA

2
, and cPLA

2
 in TM samples from

eyes with glaucoma. POAG and ExG specimens were col-
lected during deep sclerectomy by removing the inner wall of
Schlemm’s canal and adjacent juctacanalicular tissue and the
TM but leaving the inner meshwork intact (Figure 2). In gen-
eral, we found that immunoreaction of sPLA

2
-IIA was much

heavier in POAG samples than that in ExG samples (Figure
3A,B). In POAG eyes, heavy immunoreactivity was seen in
trabecular tissue and around the macrophages, which stained
positive for sPLA

2
-IIA (Figure 3A). In ExG samples, strong

positive PLA
2
-IIA staining was detectable mostly in few mac-

rophage-like cells, and components of extracellular matrix
were not so intensively stained compared to POAG samples
(Figure 3B).

No apparent differences were seen in expression levels
or localization of sPLA

2
-V between POAG and ExG samples

(Figure 3C,D). Staining for sPLA
2
-V was weakly positive. The

expression pattern of iPLA
2
 was different in POAG and ExG

tissues. In POAG eyes, iPLA
2
 reactivity was strong in par-

ticular areas of tissue where some macrophages also stained
positive (Figure 3E). In ExG samples, the staining intensity of
trabecular tissue was lower compared to POAG eyes (Figure
3F), and the strongest staining was in few macrophage-like
cells. cPLA

2
 immunoreactivity was barely detectable in tra-

becular tissue. cPLA
2
 was stained in few macrophages in

POAG (Figure 3G) and ExG samples (Figure 3H).
Photoshop-based image analysis of sPLA

2
-IIA, sPLA

2
-V,

iPLA
2
, and cPLA

2
:  Because there were semiquantitative dif-

ferences in PLA
2
s levels between POAG and ExG samples,

we analyzed the samples via Photoshop-based image analysis
[55]. Cryostat sections obtained from healthy donor eyes served
as controls. The level of sPLA

2
-IIA was significantly higher

in POAG samples compared to those in ExG (p<0.001) or in
control (p<0.001; Figure 4). Expression of sPLA

2
-IIA in ExG

was also statistically higher (p=0.001) compared to control
group. The immunostaining of sPLA

2
-V was slightly higher

in POAG samples compared to ExG patients or control, but
there were no significant differences between each experimen-
tal group (POAG versus ExG, p=0.997; POAG versus con-
trol, p=0.301; ExG versus control patients, p=0.317). Expres-
sion of iPLA

2
 was the highest in control group when com-

pared to POAG (p=0.012) or ExG (p<0.001). In POAG, iPLA
2

level was also significantly higher (p=0.015) compared to ExG.
Analysis of cPLA

2
 levels showed no significant differences

between each experimental group (POAG versus ExG,
p=0.367; POAG versus control, p=0.841; ExG versus control
patients, p=0.368).

Confocal microscopy:  Immunohistochemical studies
showed increased number of macrophages in POAG samples
when compared to ExG or control (Figure 5). Furthermore,

©2007 Molecular VisionMolecular Vision 2007; 13:408-17 <http://www.molvis.org/molvis/v13/a44/>

Figure 2. Surgical site.  Shown in this schematic line drawing of the
chamber angle is the location of the surgical site (dashed line). SC,
Schlemm’s canal
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Figure 3. Immunostaining for PLA
2
s in POAG and ExG.  Immunoreaction for sPLA

2
-IIA is heavier in POAG (A) compared to ExG (B). In

trabecular meshwork tissue, immunoreactivity was found near the stained macrophages. PLA
2
-V staining was weak in POAG (C) and ExG

(D). In POAG (E) trabecular meshwork staining for iPLA
2
 is near positively stained macrophages. In ExG samples (F) iPLA

2
 staining is in

macrophages. Cellular staining of cPLA
2
 was low in POAG (G) and ExG (H) samples. The scale bar was equal to 50 µm.
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our results showed clear differences in expression levels of
sPLA

2
-IIA and iPLA

2
 in POAG and ExG samples, and immu-

nohistochemical stainings gave indication that both enzymes
might also be present in macrophages. Therefore, we next
evaluated whether sPLA

2
-IIA could be in macrophages. We

carried out confocal microscopy experiments with double an-
tibody staining for sPLA

2
-IIA and macrophages to demon-

strate their colocalization and to provide further support for
the macrophage derived sPLA

2
-IIA, especially in POAG speci-

mens (Figure 6). Close examination revealed that some of the
macrophages showed no colocalization with sPLA

2
-IIA. In-

terestingly, immunoreactivity of sPLA
2
-IIA positive macroph-

ages was unevenly distributed in POAG samples. In contrast,
the number of macrophages was lower, and sPLA

2
-IIA posi-

tive macrophages were rarely found in ExG tissue (Figure 6).
Western blot analysis of PLA

2
s in normal human trabe-

cular meshwork:  No expression of sPLA
2
-IIA or sPLA

2
-V

was detected in normal human TM, while about 85 kDa band
corresponding to cPLA

2
 was detected (Figure 7). Furthermore,

we detected a minor (about 80 kDa) band corresponding to
full-length iPLA

2
 and two major (about 55 and 50 kDa) forms.

A weak expression of the 40- and 30 kDa forms was also de-
tected. These bands were probably products of alternative splic-
ing or proteolytic degradation.

DISCUSSION
 In the present study, we performed immunohistochemistry to
determine the expression of PLA

2
s in chamber angles from

normal eyes and in surgical specimens from POAG and ExG
patients. To our knowledge, this is the first study to examine
this expression. Our results demonstrated significant differ-
ences in PLA

2
 levels. We found (1) sPLA

2
-IIA or sPLA

2
-V

was not present in normal TM; (2) iPLA
2
 predominated in

normal human TM; (3) labeling was strong in the uveal and
corneoscleral meshwork; and (4) staining of juxtacanalicular
meshwork was only moderate in density. cPLA

2
 was also ex-

pressed in normal human TM, and the staining intensity of
cPLA

2
 was considerably weaker when compared to iPLA

2
.

Furthermore, expression of macrophage-derived sPLA
2
-IIA

was highly expressed in POAG patients compared to normal
controls, and expression of iPLA

2
 was significantly decreased

in ExG (Table 1).

©2007 Molecular VisionMolecular Vision 2007; 13:408-17 <http://www.molvis.org/molvis/v13/a44/>

Figure 4. Photoshop-based image analysis of sPLA
2
-IIA, PLA

2
-V,

iPLA
2
, and cPLA

2
 levels in TM.  Cryostat sections were obtained

from POAG patients (red bars), ExG patients (blue bars), or from
healthy donor eyes (green bars). The results are mean (arbitrary
units)±SEM of six POAG patients, six ExG patients or three healthy
donor eyes. Each set of experiments was performed in triplicate.

Figure 5. Immunostaining of macrophages.  The number of mac-
rophages is increased in POAG (A) when compared to ExG (B) or
control samples (C). The scale bar is equal to 50 µm.
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Our results showed that sPLA
2
-IIA was significantly in-

creased in glaucomatous tissue compared to normal human
TM. sPLA

2
-IIA has an important role in pathological condi-

tions. Accumulation of sPLA
2
-IIA has been demonstrated in

human inflammatory diseases such as rheumatoid arthritis,
ulcerative colitis, and sepsis [56-58]. The reaction products of
sPLA

2
-IIA are lysophospholipids and AA, which are precur-

sors of potent inflammatory mediators such as platelet-acti-
vating factor and eicosanoids. Moreover, sPLA

2
-IIA has a high

affinity for several proteoglycans such as glypican, decorin,
and versican [59]. The biological actions of sPLA

2
-IIA might

be governed by interactions with these proteoglycans in the
ECM of the TM. We found the expression of sPLA

2
-IIA was

significantly higher in POAG samples when compared to ExG
or to control. It seems likely that the sPLA

2
-IIA detected in

the TM of POAG patients was primarily macrophage derived
because it was not present in healthy TM and expression was
seen in macrophages present in the TM. It is well established

©2007 Molecular VisionMolecular Vision 2007; 13:408-17 <http://www.molvis.org/molvis/v13/a44/>

Figure 6. Colocalization of
sPLA

2
-IIA and macrophages in

POAG and ExG.  The first col-
umn shows nuclear staining
(far red shown in blue) with
SYTO 62. The second column
shows sPLA

2
-IIA staining

(green), and the third column
shows macrophages (red).
Combined image (sPLA

2
-IIA +

macrophage) in the fourth col-
umn shows the colocalization
of sPLA

2
-IIA and macrophage

(yellow). The scale bar is equal
to 50 µm.

Figure 7. Western blot analy-
sis.  Human normal TM
samples (10 µg protein) were
subjected to SDS-PAGE fol-
lowed by Western blot analy-
sis using sPLA

2
-IIA, sPLA

2
-V,

iPLA
2
, or cPLA

2
 antibody. Re-

combinant human sPLA
2
-IIA

(rh-sPLA
2
-IIA; 200 ng) and

sPLA
2
-V (rh-sPLA

2
-V; 200 ng)

were used as positive controls.
Molecular mass markers are
indicated on the right. Results
are representative of at least
three separate experiments.

TABLE  1. CHANGES IN PLA
2
 LEVELS  AND MACROPHAGE  NUMBER IN POAG AND EXG WHEN COMPARED TO NORMAL  TISSUE
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that macrophages have a great secretory capacity for sPLA
2
-

IIA at certain stages of activation [60]. Furthermore, in ath-
erosclerosis, macrophage-specific sPLA

2
-IIA has been shown

to increase oxidative stress [61]. Thus our results are in con-
cordance with the growing evidence that inflammation and
oxidative stress play an important role in the pathogenesis of
glaucoma [51,62,63]. In ExG, the lower expression of sPLA

2
-

IIA in ExG does not exclude the role of inflammation in the
pathogenesis of ExG; it is different because expression and
the number of sPLA

2
-IIA positive macrophages are lower when

compared to POAG (Table 1).
Histological and morphologic studies have demonstrated

that POAG differs from ExG histopathologically. Loss of struc-
tural stability and flexibility of the TM, disorganization of the
normal juxtacanalicular tissue structure, and increased trabe-
cular pigmentation are typical histopathologic clinical find-
ings in ExG [14,15], whereas POAG is characterized by in-
creased juxtacanalicular plaque and decreased cellularity in
the TM [64]. However, mechanisms responsible for these dif-
ferences in the TM are still unknown. Pathophysiological dif-
ferences in patients with POAG or ExG was supported further
by our finding that expression of iPLA

2
 was significantly lower

in ExG samples compared to POAG.
Aqueous humor leaves the eye by passing through

intratrabecular spaces in the TM before entering Schlemm’s
canal [50]. Endothelial cells lining Schlemm’s canal and the
juxtacanalicular tissue of the TM are expected to be the prin-
cipal site of outflow resistance [50,65,66]. The physiological
functions of trabecular cells are essential for maintaining a
normal IOP. It is believed that changes in trabecular ECM,
contractility, and cell density may interfere with the normal
function of the TM, thereby leading to glaucoma [50,64,67].
It is interesting that iPLA

2
 may have the potential to partici-

pate in monocyte chemotaxis, relaxation, contraction,
apoptosis, and calcium entry [45,46,48,49,68]. Therefore,
iPLA

2
 has many functional characteristics that are important

for normal TM cells. Our results showed that iPLA
2
 was ex-

pressed in normal human TM, and therefore, we speculate that
iPLA

2
 may have a function to maintain normal physiological

functions in the TM. The molecular mass of full-length iPLA
2

is about 80 kDa, and it is present predominantly as 50- and 55
kDa forms, which are most likely ankyrin-iPLA

2
 splice vari-

ants [69]. Traditionally, iPLA
2
 has been regarded as a house-

keeping enzyme for remodeling and maintenance of membrane
phospholipids [42]. Therefore, in ExG eyes, phospholipids
remodeling may be dramatically reduced in TM cells. Based
on the biological functions proposed for iPLA

2
 it is tempting

to speculate that dramatic decrease of the enzyme levels in
TM cells may enhance the development of these pathological
conditions.

During recent years another sPLA
2
, sPLA

2
-V has been

implicated in inflammatory signaling. sPLA
2
-V has been

shown to be expressed in a species-dependent manner in mouse
cells [70]. In humans, sPLA

2
-V appears to substitute for sPLA

2
-

IIA in airway epithelium cells [71]. cPLA
2
 is the only PLA

2

known to date that is specific for AA at sn-2 position of phos-
pholipids [40]. The activity of cPLA

2
 is important during in-

flammation because AA is the substrate for the production of
prostaglandins and leukotrienes. We show in the present study
that normal expression of sPLA

2
-V or cPLA

2
 is low, and there

are no significant differences in levels of sPLA
2
-V or cPLA

2

between healthy, POAG, and ExG tissue. Furthermore, we
demonstrated that in normal human TM, cPLA

2
 is a protein

with molecular weight about 85 kDa, which is a value typi-
cally reported for cPLA

2
 [18].

In summary, we have studied the expression of sPLA
2
-

IIA, sPLA
2
-V, iPLA

2
, and cPLA

2
 in the TM of POAG and

ExG and compared these levels to healthy controls. The present
study provides new information about the expression of PLA

2
s

in glaucoma. Distinct levels of sPLA
2
-IIA and iPLA

2
 in POAG

and ExG further support the hypothesis that POAG and ExG
have different pathogenic mechanisms. During oxidative stress
iPLA

2
 recognizes and removes oxidized phospholipids from

cell membranes. Due to low expression of iPLA
2
 in ExG the

protection against oxidative stress is much worse compared
to that in POAG, enhancing the loss of cell function. IOP tends
to be greater in ExG than in POAG, and therefore, decreased
expression of iPLA

2
 may be a link between increased IOP and

loss of structural stability and flexibility of TM cells in ExG.
sPLA

2
-IIA has been proposed as an inflammatory marker of

cardiovascular disease, and therefore, higher expression of
macrophage-derived sPLA

2
-IIA in POAG compared to nor-

mal controls supports the view that vascular diseases and
POAG may have common pathophysiological mechanisms.
Our findings may provide a biochemical basis for the devel-
opment of new therapeutic agents for POAG and ExG.
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