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Global Sensitivity Analysis with Mixtures: A Generalized
Functional ANOVA Approach

Emanuele Borgonovo ,1,∗ Genyuan Li ,2 John Barr ,3 Elmar Plischke ,3

and Herschel Rabitz 3

This work investigates aspects of the global sensitivity analysis of computer codes when alter-
native plausible distributions for the model inputs are available to the analyst. Analysts may
decide to explore results under each distribution or to aggregate the distributions, assign-
ing, for instance, a mixture. In the first case, we lose uniqueness of the sensitivity measures,
and in the second case, we lose independence even if the model inputs are independent un-
der each of the assigned distributions. Removing the unique distribution assumption impacts
the mathematical properties at the basis of variance-based sensitivity analysis and has conse-
quences on result interpretation as well. We analyze in detail the technical aspects. From this
investigation, we derive corresponding recommendations for the risk analyst. We show that
an approach based on the generalized functional ANOVA expansion remains theoretically
grounded in the presence of a mixture distribution. Numerically, we base the construction
of the generalized function ANOVA effects on the diffeomorphic modulation under observ-
able response preserving homotopy regression. Our application addresses the calculation of
variance-based sensitivity measures for the well-known Nordhaus’ DICE model, when its in-
puts are assigned a mixture distribution. A discussion of implications for the risk analyst and
future research perspectives closes the work.
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1. INTRODUCTION

Uncertainty quantification and global sensitivity
analysis are an integral part of quantitative risk as-
sessments (Apostolakis, 2004; Helton & Davis, 2002;
Saltelli, 2002). Applications range from the quan-
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tification of early radiation exposure (Helton, John-
son, Shiver, & Sprung, 1995), to nuclear probabilistic
safety assessment (Iman & Helton, 1991), to the per-
formance assessment of waste repositories (Helton &
Johnson, 2011; Helton & Sallaberry, 2009), to food
safety assessment (Frey, 2002; Patil & Frey, 2004),
and to the reliability analysis of mechanical systems
(Urbina, Mahadevan, & Paez, 2011). The literature
evidences the use of both local and global methods.
Under model input uncertainty, global methods are
recommended as part of best practice (Oakley &
O’Hagan, 2004). Among global methods, variance-
based techniques play an important role since works
such as Iman and Hora (1990) and Saltelli, Tarantola,
and Chan (1998). In particular, the use of variance as
a reference measure of variability coupled with the
use of the functional ANOVA expansion allows one
to obtain information about the individual and the
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interactive contributions of the model inputs to the
output variability (Saltelli, 2002).

Example 1 (Classical variance decomposition). Con-
sider the case of a model with two inputs (we shall be
more formal later on). Let us denote by G the uncer-
tain model output and by V[G] its variance. By the
classical functional ANOVA expansion, one can ap-
portion the variance into

V[G] = V1 + V2 + V1,2, (1)

where V1, V2, and V1,2 are, respectively, the individual
contributions of the two model inputs, and the contri-
bution due to their interaction.

The tidy decomposition in Equation (1) holds
under the assumption that the model inputs are in-
dependent and that the distribution is unique (Oak-
ley & O’Hagan, 2004). However, in several applica-
tions, available information does not allow the ana-
lyst to assign a unique distribution to the model in-
puts. This situation has been intensively studied in
risk analysis (Apostolakis, 1990; Aven, 2010, 2016;
Flage, Baraldi, Zio, & Aven, 2013; Paté-Cornell,
1996), but less addressed in global sensitivity analy-
sis studies. In fact, for most global sensitivity anal-
ysis studies, one assumes to have information about
the factors’ probability distribution, either joint or
marginal, with or without correlation, and that this
knowledge comes from measurements, estimates, ex-
pert opinion, and physical bounds (Saltelli & Taran-
tola, 2002, p. 704). The consequences of removing this
unique distribution for current practice of sensitivity
analysis are several and have not been systematically
explored yet.

Let us highlight that, in the case the data were
insufficient to assign a unique distribution, an option
for the analyst is to refrain from an uncertainty quan-
tification, postponing the quantification to the gath-
ering of additional information. However, if the state
of information allows the analyst to assign compet-
ing distributions, what is the best way to proceed?
Recent literature shows that analysts do proceed at
least with the purpose of obtaining preliminary and
exploratory insights on the model behavior. For in-
stance, Paleari and Confalonieri (2016) and Gao et al.
(2016) address the variability of sensitivity analysis
results for well-known environmental models when
their inputs are assigned alternative distributions.

In this work, we examine and compare two possi-
ble approaches (paths). We call the first one the mul-
tiple scenario path. In this path, the analyst applies a
classical functional ANOVA expansion for each dis-

tribution and computes the corresponding sensitivity
indices. This approach is intuitive and practical (see
Paleari & Confalonieri, 2016 and Gao et al., 2016 ).
It answers the question of what are the results of a
sensitivity analysis across each of the inspected dis-
tributions. If the calculations provide the same rank-
ing, then results are robust and there is no need for
further analysis. Conversely, if indications are dif-
ferent under the alternative distributions, then one
has a multiplicity of functional ANOVA decompo-
sitions and variance-based sensitivity indices of the
model inputs. Then, analysts can opt for a “max-
imin”approach, in which, for each variance-based
index, the maximum over the available indices is con-
sidered (this is proposed in Gao et al., 2016), or she
can opt for a mean value approach in which the re-
sults are averaged according to some weight assigned
to the plausible distributions. The idea of weighting
the possible distributions leads to the second strat-
egy, which we call mixture path.

In the mixture path, the analyst assigns a mix-
ture of the plausible distributions. Several possibil-
ities have been studied to aggregate a set of plau-
sible distributions into a mixture. A mixture distri-
bution can be assigned through the use of Bayesian
model averaging Nannapaneni and Mahadevan (see
2016), or, as in Nelson, Wan, Zou, Zhang, and Jiang
(2021), by finding the weights that ensure a best fit
to the data, or through a linear aggregation rule if
the analyst elicits prior information on the simula-
tor inputs from expert opinions. (The aggregation
of expert opinions is a vast subject and we refer to
O’Hagan et al. (2006), Oakley and O’Hagan (2007),
Cooke (2013), and Oppenheimer, Little, and Cooke
(2016), on alternative methodologies.)

In the mixture path, even if independence holds
under each possible distribution, it is lost at the ag-
gregate level and Equation (1) does not hold (Bor-
gonovo, Morris, & Plischke, 2018). We then carry out
a theoretical as well as a numerical analysis. We start
discussing general aspects related to the properties
of the functional ANOVA expansion when one re-
moves the unique distribution and the independence
assumptions simultaneously. The theoretical analysis
reveals that several properties of the classical func-
tional ANOVA expansion do not hold when input
distributions are mixed and an approach based on the
mixture of functional ANOVA expansions might not
be feasible, especially when the distributions have
different supports. Conversely, an approach based
on the generalized functional ANOVA expansion
remains valid (Hooker, 2007; Li & Rabitz, 2012;
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Rahman, 2014). We can then obtain an expression
that generalizes Equation (1) and that relates the
overall model output variance to: (i) covariance-
based sensitivity indices estimated under a unique
mixture of distributions and (ii) the variance-based
sensitivity indices estimated under each distribution
in the mixture.

Furthermore, the presence of multiple distri-
butions creates numerical challenges, because the
analyst has to generate samples coming from several
distributions to properly quantify uncertainty in the
model output Chick (see 2001) for a detailed discus-
sion). A global sensitivity approach then may be hin-
dered by computational burden. However, we show
that coupling the generalized functional ANOVA
decomposition with the “diffeomorphic modulation
under observable response preserving homotopy”
(D-MORPH) regression allows one to estimate all
relevant quantities from a single Monte Carlo sam-
ple, thus maintaining computational burden under
control.

We report results of a series of numerical ex-
periments, starting with the Ishigami function, a
well-known test case in global sensitivity analysis.
As a realistic case study, we discuss the identifica-
tion of the key-uncertainty drivers for DICE model
of William Nordhaus. Since its introduction in Nord-
haus (1992), DICE has served in several scientific
investigations, and is one of the three most widely
used integrated assessment models (Glotter, Pierre-
humbert, Elliott, Matteson, & Moyer, 2014; van den
Bergh & Botzen, 2015). We focus on the determi-
nation of variance-based sensitivity indices calcu-
lated through the generalized functional ANOVA
from a sample that follows the distributions used
by Hu, Cao, and Hong (2012) in the context of
robust optimization of climate policies through the
DICE model.

The reminder of the work is organized as follows.
Section 2 presents a concise review on the methods,
with focus on the generalized functional ANOVA
expansion. Section 3 analyzes the consequences of
the removal of the unique and independent assump-
tion on the properties of the terms of the functional
ANOVA expansion and on the variance decom-
position. Section 4 reviews concisely the numerical
aspects of the D-MORPH regression and presents
results for the Ishigami function. Section 6 presents
results for the well-known DICE model. Section 7
contains a discussion of our findings. Quantita-
tive details and technical aspects are presented in
the appendices.

2. VARIANCE-BASED METHODS: A
CONCISE REVIEW

2.1. Variance-Based Sensitivity Measures with
Dependent and Independent Inputs

In risk assessment, the importance of uncer-
tainty quantification and sensitivity analysis has been
recognized early. Cox and Baybutt (1981) review
methods for uncertainty and sensitivity analysis for
early applications of probabilistic risk assessment.
The applied methods include differential sensitiv-
ity and Monte Carlo simulation. Iman (1987) pro-
poses a matrix-based approach for sensitivity anal-
ysis of fault trees, while Iman and Helton (1988)
consider methods such as Latin hypercube sampling
for uncertainty analysis, and differential sensitivity
and regression-based methods for sensitivity anal-
ysis Helton and Davis (see also 2002). Iman and
Hora (1990) introduce variance-based importance
measures. Since then, variance-based sensitivity mea-
sures have been employed in several quantitative risk
assessment studies. In risk analysis, several works
have used variance-based sensitivity measures after
Ishigami and Homma (1990). We recall, among oth-
ers, the works of Manteufel (1996), Saltelli et al.
(1998), Saltelli (2002), Mokhtari and Frey (2005),
Borgonovo (2006), Lamboni, Iooss, Popelin, and
Gamboa (2013), and Oddo et al. (2020). The frame-
work is as follows. Let G denote a risk metric of in-
terest and let G be computed through a risk assess-
ment model, which is encoded in some computer sim-
ulation program. This program receives n uncertain
quantities X = (X1, X2, . . . , Xn) as inputs. The input–
output mapping is denoted with g(X) and we write

G = g(X). (2)

Under uncertainty, we assign a distribution to X
whose cumulative distribution function we denote by
FX. According to Iman and Hora (1990), the inputs
that contribute the most to the variance of G are con-
sidered as the most important inputs. The sensitivity
measure of input Xi is then defined as

Vi = V[E(G|Xi)], (3)

where E(G|Xi) is the conditional expectation of G
given Xi. Frequently, these values are expressed rela-
tive to the total variance. One writes

Si = Vi

V[G]
. (4)
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It is worth noting that Si in Equation (4) coincides
with the Pearson’s correlation ratio (Pearson, 1905)
and with the first-order Sobol’ sensitivity index. As
Iman and Hora (1990) show, Vi is the expected re-
duction in the variance of G associated with learning
the true value of Xi. To illustrate, we make use of a
well-known analytical case study.

Example 2 (Ishigami Function). The Ishigami func-
tion (Ishigami & Homma, 1990) is a three-variate
input–output mapping whose analytical form is given
by

g(x) = sin(x1)
(
1 + bx4

3

)+ a sin2(x2), (5)

with b = 0.1 and a = 7. The mapping is a function of
three uncertain inputs, X1, X2, X3. Traditionally, each
of the inputs is assigned a uniform distribution on the
interval [−π, π ] and the inputs are regarded as in-
dependent. With this assignment, we register the fol-
lowing values of Iman and Hora sensitivity measures:
V1 = 4.44,V2 = 6.20, and V3 = 0. Relative to the total
variance, we have S1 = 0.31, S2 = 0.44, S3 = 0. Note
that the sum of the first-order indices equals 75% of
the output variance. The remaining part of the vari-
ance is explained by the interaction among the inputs.
In particular, we have the following three possible in-
teractions: {1, 2}, {1, 3}, and {2, 3}. As seen from Equa-
tion (5), the second combination is the only interaction
present in the input–output mapping. Thus, in percent-
age, we have S1,3 ≈ 25%.

These sensitivity indices defined thus far concern
the decomposition of the model output variance (as a
reference, let us say that we are at the variance level).
They find their interpretation as part of the func-
tional ANOVA expansion, a central tool in statisti-
cal uncertainty quantification. Works such as Efron
and Stein (1981), Sobol’ (1993), and Rabitz and Alis
(1999) show that, if the model inputs are indepen-
dent, then the input–output mapping g can be decom-
posed into a unique sum of component functions of
increasing dimensionality:

g(x) = gF
0 +
∑

i

gF
i (xi) +

∑
i, j

gF
i, j(xi, j ) + · · · + gF

1,2,...,n(x), (6)

where we let gF
0 = gF

∅ = E[G] and where the super-
script (·)F denotes that the expansion is carried out
under the input probability law whose joint cdf is FX

(with the marginal cdf of input Xi denoted by Fi). For
independent inputs, the terms in Equation (6) satisfy
two equivalent conditions called the strong orthogo-

nality and annihilating conditions. These conditions
are written as∫

Xi

gF
z (xz)dFi(xi) = 0, for all i ∈ z, (7)

and ∫
X

gF
u (xu)gF

v (xv)dFX(x) = 0, for u �= v, (8)

where X and Xi are the supports for X and Xi, respec-
tively, which imply that the function gF

u (xu), u �= ∅,
has null expectation when the measure is FX. We
report them because they have particular relevance
for our discussion. In fact, under these conditions,
the variance of G can be decomposed in a series of
ANOVA terms:

V
F [G] =

∑
∅�=z∈2Z

V F
z =
∑

i

V F
i +
∑

i, j

V F
i, j + · · · + V F

1,2,...,n, (9)

where the term of the variance decomposition is in
one-to-one correspondence with the terms of the
functional decomposition, i.e., V F

z = ∫ (gF
z (xz))2dFz.

To illustrate, thanks to the strong annihilating condi-
tions, we can write

V F
i =
∫
Xi

(
gF

i (xi)
)2

dFi(xi). (10)

That is, we have two ANOVA expansions: (i) one
that acts at the function level, Equation (6), called
classical functional ANOVA expansion;1and (ii) one
that acts at the variance level in Equation (9), called
ANOVA decomposition or variance decomposition.
The terms of the expansions are in one-to-one corre-
spondence when inputs are independent.

Example 3 (Example 2 continued). For the Ishigami
function, the component functions of the classical
functional ANOVA expansion can be found analyti-
cally and are given by:

gF
0 = a

2
; gF

1 (x1) = sin(x1)
(

1 + b
π4

5

)
;

gF
2 (x2) = a sin2(x2) − a

2
;

gF
1,3(x1, x3) = b sin(x1)

(
x4

3 − π4

5

)
. (11)

1The adjective functional refers here to the fact that we are ex-
panding the function g(·), and classical refers to the fact that it is
carried out under input independence.
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Then, by Equation (10), with b = 0.1, we have:

V F
1 =
∫ π

−π

(
gF

1 (x1)
)2

dF1(x1) =
∫ π

−π

(
sin(x1)

(
1 + bπ 4

5

))2

dF1(x1) = 4.4. (12)

The framework we are discussing is variance-
based. In this respect, the conditional variance of the
model output for getting to know the group of inputs
Xz, denoted by V(E[G|Xz]), plays an important role
in the analysis. Under independence, this conditional
variance is the sum of all the terms in the variance
decomposition of Equation (9) whose indices are in-
cluded in index group z. Formally,

V(E[G|Xz]) =
∑
v⊆z

Vv. (13)

Thus, variance-based sensitivity indices consider the
importance of an input based on its contribution
to the model output variance. Previous works have
shown that using the functional ANOVA framework,
a risk analyst can gain the following insights on the
behavior of the risk metric:

• factor prioritization: identify the most important
inputs;

• interaction quantification: identify the relevance
of interactions; and

• trend determination: determining the marginal
behavior of the output with respect to one or
more of the inputs.

For factor prioritization, the first-order sensitivity in-
dices Vi are appropriate sensitivity measures. For in-
teraction quantification, higher order variance-based
sensitivity measures (e.g., V1,2 in Equation (1)) pro-
vide the desired indication. (Moreover, note that the
difference between the output variance and the sum
of the first-order indices, in Example 1, this would
be the quantity I = V[G] − V1 − V2, is a measure of
the relevance of interactions). For trend identifica-
tion, the graphs of the one-way functions gi(xi) pro-
vide an average indication about the marginal behav-
ior of g as a function of Xi. Note that the univariate
functions gi(xi) possess the property that, under inde-
pendence, if g is increasing or convex in Xi, then the
graph of gi(xi) is increasing or convex (Borgonovo
et al., 2018).

In risk analysis, works that have used variance-
based sensitivity measures for obtaining insights
within the above-mentioned settings in climate ap-
plications are, among others, Anderson, Borgonovo,

Galeotti, and Roson (2014) and Oddo et al. (2020).
In the former, insights are obtained for the DICE cli-
mate model, regarding all three settings mentioned
above. Specifically, in Anderson, Borgonovo, Gale-
otti, and Roson (2014), first-order variance-based
sensitivity measures together with distribution-based
sensitivity measures are used for factor prioritiza-
tion, the first-order terms of the functional ANOVA
expansion for trend determination, and higher or-
der variance-based indices for interaction quantifi-
cation. Oddo et al. (2020) use variance-based sensi-
tivity measures for factor prioritization and interac-
tion quantification.

Obtaining the above-mentioned insights with a
sensitivity method based on the functional ANOVA
expansion is nowadays straightforward when inputs
are independent. When inputs are dependent, some
aspects need to be taken into consideration and are
the subject of ongoing research. First, it is still pos-
sible to obtain a functional ANOVA representation
for g that can still be expanded as in Equation (6).
However, the one-to-one correspondence between
the terms in the expansion of the function g in Equa-
tion (6) and the terms in the expansion of V[G] in
Equation (9) needs to be considered in more general
terms. We report the main implications, while refer-
ring to the works of Hooker (2007), Li et al. (2010),
Chastaing, Gamboa, and Prieur (2012, 2015), and Li
and Rabitz (2017), for a wider treatment.

Under dependence, one needs different orthog-
onalization conditions than the ones in Equations (7)
and (8) called weak annihilation or hierarchical or-
thogonality conditions. At the function level, with
these conditions, it is still possible to obtain a decom-
position of the form of Equation (6) (see Appendix A
for greater technical details). This decomposition is
called generalized functional ANOVA expansion. At
the variance level, one writes

V
F [g(X)] =

∑
∅�=z∈2Z

⎡⎣V F
z + Cov

⎛⎝gF
z (Xz),

∑
z�=v∈2Z

gF
v (Xv)

⎞⎠⎤⎦, (14)

where V
F
z and Cov(·, ·) are called structural and cor-

relative contributions, respectively. Equation (14) al-
lows us to define corresponding structural and correl-
ative sensitivity analysis (SCSA) indices by normal-
ization as

1 =
∑

∅�=z∈2Z

⎡⎣VF
z /VF [G] + Cov

⎛⎝gF
z (Xz),

∑
z�=v∈2Z

gF
v (Xv)

⎞⎠/VF [G]

⎤⎦
=
∑

∅�=z∈2Z

[
Sa,F

z + Sb,F
z

]
=
∑

∅�=z∈2Z

SF
z . (15)
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The indices Sa,F
z represent the contribution of Xz to

V
F [G] related to its marginal distribution Fz(xz) and

are called structural indices. The indices Sb,F
z rep-

resent the contribution of the correlation between
Xz with other variables (correlative contributions,
henceforth). The sensitivity measure

SF
z = Sa,F

z + Sb,F
z (16)

is referred to as the SCSA index for Xz. When the
total contribution of Xi to the output variance is con-
cerned, one defines the total SCSA index, T F

i , as the
normalized sum of all the terms in (14) for which z
includes i

T F
i =

∑
i∈z∈2Z

SF
z . (17)

Similarly, we can define total indices for the sole
structure or correlative contributions (T a,F

i and T b,F
i ,

respectively).
Regarding interpretation, we note that, under

dependence, Equation (13) does not hold anymore.
Thus, the indices Sa

z and Sb
z cannot be interpreted

in terms of expected (conditional) variance reduc-
tion. In fact, Equation (13) holds in the framework
of the classical ANOVA decomposition; such de-
composition involves conditional expectations. How-
ever, when inputs are dependent, the expansion
(now called generalized ANOVA) is obtained using
marginal probability measures. Under input depen-
dence, it becomes more natural to interpret variance
decomposition in terms of structural and correlative
terms (Li et al., 2010). Consider that z is an indi-
vidual input, z = {i}. The Sa

i has a similar interpre-
tation as the Sobol’ indices under independence, in-
sofar it quantifies the structural contribution of Xi to
the model output variance. However, Sa

i cannot be
interpreted as the expected variance reduction in the
model output following from fixing of Xi, when xi is
correlated to other inputs. The indices Sb

i quantify the
contribution to the output variance due to the cor-
relation of Xi with the remaining inputs. The larger
the magnitude of Sb

i , the larger the contribution de-
riving from the correlation between Xi and the other
inputs. Note that the correlative indices can have pos-
itive and negative signs signaling a positive or nega-
tive effect of correlations.

Example 4 (Example 1 continued). Let us consider
again the variance-decomposition of a model output
G depending on two inputs. If the inputs are depen-

dent, then the variance decomposition generalizes into

1 = V a,F
1 + V b,F

1 + V a,F
2 + V b,F

2 + V a,F
1,2 + V b,F

1,2

VF [G]
, (18)

with corresponding sensitivity indices for the first in-
put

SF
1 =
(
Va,F

1 + Vb,F
1

)
VF [G]

, T F
1 =

(
Va,F

1 + Vb,F
1

)
+ Va,F

1,2 + Vb,F
1,2

VF [G]
(19)

and similar sensitivity indices for the second input.

The implications of the above analysis for the
risk analyst are as follows: When we assign a unique
distribution to the inputs, we get a unique set of
global sensitivity indices. If the inputs are inde-
pendent, the sensitivity analysis can be carried out
as usual, following the framework, for instance, of
Saltelli et al. (1998). All sensitivity indices are struc-
tural. If the inputs are dependent, the sensitivity anal-
ysis needs to be carried out under the generalized
ANOVA general framework, and the calculated sen-
sitivity indices have a structural as well as a correla-
tive component.

2.2. Variance-Based Sensitivity Analysis with
Multiple Distributions

In this section, we report a first exploration of
methodological aspects that a risk analyst needs to
take into account for performing a global sensitivity
analysis when she is unable to assign a unique distri-
bution to the inputs or, simple, she wishes to explore
the robustness of her sensitivity findings to the choice
of the input distribution. The starting point is that the
analyst expresses her uncertainty about the inputs
through a collection of candidate input distributions.
Let us assume that the analyst is considering Q pos-
sible input distributions, and let us denote the collec-
tion of these distributions with F = {F 1

X, F 2
X, . . . , F Q

X }.
We discuss two main ways with which the analyst
can proceed in the investigation in this case. She can
inspect results of the sensitivity analysis under each
possible distribution in F (the multiple distributions
path). This is the approach followed, for instance, in
Paleari and Confalonieri (2016) or Gao et al. (2016).
Suppose that the analyst uses this approach. Then,
the analyst will find Q possible functional ANOVA
decompositions (generalized or classical), with one
decomposition corresponding to a distributions F q

X ,
q = 1, 2, . . . , Q in the set. To illustrate, let us consider
again the two input case in Equation (1). Then, let us
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denote with V
q[G] the variance of the output when

the input distribution is F q
X .

Example 5 (Example 1 continued). If the inputs are
dependent, then the analyst would apply the general-
ized ANOVA expansion, obtaining

V
q[G] = V a,q

1 + V b,q
1 + V a,q

2 + V b,q
2 + V a,q

1,2 + V b,q
1,2 .(20)

Otherwise, if the inputs are independent under F q
X ,

then we have the classical ANOVA expansion and can
write

V
q[G] = V q

1 + V q
2 + V q

1,2. (21)

With either one of these equations holding for
each of the chosen distributions, the analyst winds up
with one decomposition per distribution. Note that
because each decomposition leads to a set of global
sensitivity indices, the analyst has a collection of Q
global sensitivity indices. For instance, for the first
model input, we have Q first-order sensitivity indices
Sq

1 and Q total order indices T q
1 . We address later on

the impact on a risk analysis interpretation associated
with the presence of multiple sensitivity indices.

An alternative path (the mixture path) con-
sists of combining the available distributions in
one unique distribution. In order to do so, the
analyst assigns a probability mass function � =
{p1, p2, . . . , pQ} over the distributions in F . Each of
the probabilities pq(q = 1, 2, . . . , Q) is greater than
zero and their sum is unity. An interpretation of these
probabilities is that they represent the degree of be-
lief of the analyst about the fact that F q

X is the true
distribution.2 Under these conditions, the probabil-
ity distribution that represents the uncertainty of the
analyst about the inputs becomes the mixture of the
distributions in F with weights pq, that is:

PX =
Q∑

q=1

pqF q
X . (22)

If the mixture PX is used instead of each of the in-
dividual distributions F q

X , there are a number of con-
sequences for the analyst. Some of these have been
recently examined in Borgonovo et al. (2018). First,
let us examine the impact on the expansion of the
function g itself (the classical or generalized func-
tional ANOVA expansion). We illustrate first a result

2The weights do not necessarily have the interpretation of a
second-order distribution over (F ,B(F )). In Nelson et al. (2021),
the probabilities represent the optimal weight of a convex combi-
nation of the F q

X distributions, so that the resulting mixture is opti-
mal with respect to a quadratic score when fitted to available data.

proven in Borgonovo et al. (2018). If we assume that,
for each of the Q distributions, independence holds
and the support of the inputs is the same (X ), and
that g is square-integrable, then g can be expanded
into a functional ANOVA form. The expansion is:

g =
∑
z∈2Z

g̃z, (23)

where the component functions are now g̃z, a mixture
of the component functions with the weights given
by p1, p2, . . . , pQ. That is, each component function
is written as the weighted average of the component
functions obtained under each distribution:

g̃z(xz) =
Q∑

q=1

pqgq
z(xz), (24)

and gq
z is the classical ANOVA effect function of

g when F q
X is the assigned distribution (Borgonovo

et al., 2018). The right-hand side in Equation (23)
is called mixture functional ANOVA expansion and
the functions g̃z are called mixture effect functions.
In this case, an analyst can still confidently use the
mixed effects g̃z as trend indicators. In fact, if the g
is increasing or decreasing, then g̃i is increasing or
decreasing in xi. However, the mixture component
functions g̃z are no longer orthogonal. Thus, they can-
not be used as bases for the ANOVA decomposition
of the variance of G as in the unique distribution case.

One interesting aspect about the functional
ANOVA decomposition with multiple distribution
is that, under independence, one obtains the mix-
ture representation in Equations (23) and (24) in two
equivalent ways (Borgonovo et al., 2018). In the first,
the analyst decomposes g under each distribution in
F separately and then mixes the resulting Q expan-
sions with the weights in �. In the second, the an-
alyst starts with the mixture distribution PX and ap-
plies the strong orthogonality conditions. The result
is the same. As we are to see, the equivalence of these
two procedures is lost when the inputs are dependent
under some distribution F q

X .
Let us now come to variance decomposition un-

der the mixture path. PX in Equation (22) is the refer-
ence probability distribution, and the analyst relaxes
the unique distribution assumption while maintain-
ing the independence assumption under each distri-
bution. Then, we ask whether the variance decom-
position is the weighted average of the variance de-
compositions in Equation (1); that is, we ask whether
a result similar to the one in place for the functional
decomposition holds for the variance decomposition.
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In particular, under the conditions of square integra-
bility for g under each of the Q distributions, one reg-
isters

V
PX [G] =

∑
∅�=z∈2Z

Q∑
q=1

pqV q
z +

Q∑
q=1

pq(Eq[G] − E[G])2,(25)

where V
PX [G] is the variance of the simulator out-

put, V q
z is the term of the variance decomposition

related to the group of inputs Xz, and V�{E[G]} =∑Q
q=1 pq(Eq[G] − E[G])2 is the variance of the ex-

pectation of the model output across the distributions
in F . Note that if the expectation of G is the same
(that is, if the analyst is certain about the expected
value of G), then the variance decomposition of G
becomes equal to

V
PX [G] =

∑
∅�=z∈2Z

Q∑
q=1

pqV q
z . (26)

This equality can also be written as

V
PX [G] =

∑
∅�=z∈2Z

Bz, (27)

where

Bz =
Q∑

q=1

pqV q
z . (28)

Equations (27) and (28) indicate that the variance of
G can be expanded in an ANOVA decomposition in
which each term Bz is a mixture of the terms obtained
under each distribution. We recall that this holds un-
der the conditions that (i) independence holds un-
der each distribution and (ii) G has the same ex-
pected value under each distribution. From Equation
(28), one can define the total mixture index associ-
ated with Xi as the sum of all terms in Equation (27)
that contain

BTi =
∑

i∈z,∅�=z∈2Z

Bi. (29)

Example 6 (Example 1 continued). Consider that the
analyst assigns two possible probability distributions
to the inputs of our starting example, with weights � =
( 1

3 , 2
3 ). Then, the variance decomposition in Equation

(1) is written as:

V
q[G] = 1

3

(
V 1

1 + V 1
2 + V 1

1,2

)+ 2
3

(
V 2

1 + V 2
2 + V 2

1,2

)
+1

3
(E1[G] − E[G])2 + 2

3
(E2[G] − E[G])2. (30)

This variance decomposition cannot be obtained by
integration of corresponding mixture components.
Note that if E1[G] = E2[G], then

V
q[G] = 1

3

(
V 1

1 + V 1
2 + V 1

1,2

)+ 2
3

(
V 2

1 + V 2
2 + V 2

1,2

)
,(31)

that is, indeed, the variance decomposition is the
weighted average of the variance decompositions un-
der each probability distribution. The mixture indices
for Xi are

B1 = 1
3

V 1
1 + 2

3
V 2

1 , BT1 = 1
3

(
V 1

1 + V 1
1,2

)+ 2
3

(
V 2

1 + V 2
1,2

)
. (32)

In the next section, we consider the case in which
the independence and multiple distribution assump-
tions are simultaneously removed.

3. REMOVAL OF THE INDEPENDENCE
AND UNIQUE DISTRIBUTION
ASSUMPTIONS

In this section, we examine the consequences
of removing both the unique distribution and the
independence assumptions simultaneously. Remov-
ing these assumptions impacts several of the con-
ditions under which variance-based global sensitiv-
ity analysis is performed in risk analysis. We discuss
the technical consequences in Subsection 3.1. Note
that these consequences are analytically derived in
Appendix A, where technical results are stated and
proved. We discuss the implications for result inter-
pretation in Subsection 3.2.

3.1. Consequences of a Technical Nature

We start with the consequences on the functional
decomposition of the input–output mapping. The si-
multaneous removal of the independence and unique
distribution assumption still allows one to expand
g in an ANOVA-like decomposition with 2n terms.
Thus, even under general conditions, we have a rep-
resentation that expresses each term of the functional
ANOVA as a mixture of the terms obtained from the
functional ANOVA under each distribution. How-
ever, the result does not lead to a straightforward rule
for practical implementation. In fact, the involved
weights turn out to depend on the point x. Moreover,
the mixture effect functions g̃z in the new expan-
sion are not the effect functions of a generalized or a
classical ANOVA decomposition under PX, and thus,
cannot be used for variance and covariance decom-
position. Another theoretical aspect that pertains the
functional ANOVA expansion is orthogonality. Once
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again, there is incompatibility between expressing
the functional ANOVA components as mixtures of
the components under each measure and orthogo-
nality. That is, orthogonality may not be preserved
for a mixture of generalized functional ANOVA ex-
pansions with respect to the mixture measure PX (see
Proposition A.2 in Appendix A).

A further aspect that is impacted by the relax-
ation of the independence assumption is the preser-
vation of properties such as monotonicity and con-
vexity. Specifically, if g(x) is monotonic in x, then the
first-order effect functions of the classical functional
ANOVA expansion retain the monotonicity of the
original mapping. Thus, if the independence assump-
tion is maintained for each assigned distribution, the
(eventual) monotonicity of g in Xi is retained by the
first-order effect functions under any distribution F q

X
(see also Borgonovo et al. (2018)). Then the ques-
tion is whether, under a mixture path, this occurs for
the effects of the generalized functional ANOVA ex-
pansion under the mixture PX. Under PX, we have
no reassurance that the first-order effect functions of
the expansion will retain the monotonicity of g, be-
cause the inputs are no longer independent (see Ap-
pendix A).

Regarding variance, the technical analysis of Ap-
pendix A shows the following. First of all, it turns
out that the variance of the model output is the sum
of three components (see Proposition A.4 in Ap-
pendix A):

V
PX [G] = Ṽ a + Ṽ b + Ṽ c. (33)

That is, the variance of the model output in the case
of mixtures of generic distributions is equal to the
contribution provided by the mixture of structural
variance contributions, Ṽ a, the mixture of the correl-
ative contributions, Ṽ b, and the residual fraction re-
lated to the variation of the expected value of G over
the distributions in F , Ṽ c. Note that: (1) If the distri-
butions in F agree on the mean of G, then the term
Ṽ c in Equation (33) is null and we have V

PX [G] =
Ṽ a + Ṽ b; (2) If, in addition, independence holds un-
der all distributions, then V

PX [G] = Ṽ a.
Overall, the following equality holds for the vari-

ance decomposition of the model output, when we
allow for the presence of multiple distributions and
correlations:

Q∑
q=1

pq

[ ∑
∅�=z∈2Z

[
V q

z + Cov

(
gq

z(Xz ),
∑

z �=v∈2Z

gq
v(Xv )

)]]
+ V�{E[G]}

= ∑
∅�=z∈2Z

[
V

PX
z + Cov

(
gPX

z (Xz),
∑

z �=v∈2Z

gPX
v (Xv)

)]
.

(34)

The left-hand side dissects the variance decomposi-
tion across the measures in PX, while the right-hand
side equals the covariance decomposition treating PX

as the resulting (unique) probability distribution. The
equality in Equation (34) results in a generalization
of Equation (25), and thus of Equation (1), with the
appearance of correlative terms in the variance de-
composition. From Equation (34), it is possible to de-
fine generalized mixture indices as

BCorr
z =

Q∑
q=1

pq

⎛⎝V q
z + Cov

⎛⎝gq
z(Xz),

∑
z�=v∈2Z

gPX
v (Xv)

⎞⎠⎞⎠. (35)

Note that Equation (28) is a particular case
of (35) for the case in which inputs are in-
dependent. In that case, in fact, the correlative
terms Cov(gq

z(Xz),
∑

z�=v∈2Z gPX
v (Xv)) in Equation

(35) are null.

3.2. Consequences on Result Interpretation:
Sensitivity Settings

Saltelli and Tarantola (2002) and Saltelli (2002)
have introduced the notion of sensitivity analysis set-
ting as a way for clarifying the goal of a sensitivity
analysis and, correspondingly, helping the analyst in
framing a sensitivity analysis upfront, so that a clear
insight is produced by the analysis and, relevantly, the
proper sensitivity measure is chosen. For variance-
based sensitivity measures, one formulates the well-
known sensitivity analysis setting: We are asked to
bet on the factor that, if determined (i.e., if fixed to
its true value), would lead to the greatest reduction in
the [output] variance (Saltelli & Tarantola, 2002, p.
705). This setting provides the conceptual support for
the use of variance-based sensitivity indices in several
subsequent studies (Durrande, Ginsbourger, Rous-
tant, & Carraro, 2013; Liu & Owen, 2006; Oakley &
O’Hagan, 2004; Storlie et al., 2013).

In our analysis, we have seen two other relevant
settings, namely, trend determination and interac-
tion quantification. Trend determination regards the
derivation of insights concerning the marginal behav-
ior of the simulator input–output mapping. Typically,
an analyst is interested in knowing whether an input
increase leads to an increase in the value of the out-
put, or whether the output is convex/concave in the
input. Interaction quantification regards the deriva-
tion of insights about whether the response of the
model differs from the superimposition of the indi-
vidual effects associated with each input.
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Traditional sensitivity analysis settings hold un-
der the unique distribution assumption. With multi-
ple distributions, the interpretation of results within a
setting depends on the path chosen by the analyst. If
the analyst has chosen the multiple distribution path,
as it has been done in Paleari and Confalonieri (2016)
and Gao et al. (2016), then, for factor prioritization,
one needs to modify Saltelli and Tarantola’s setting
into: We are asked to bet on the factor that, if de-
termined (i.e., if fixed to its true value), would lead
to the greatest reduction in the ouput variance un-
der all the Q-assigned input distributions. That is, a
model input is robustly the most important if it is
ranked first by variance-based sensitivity indices un-
der all assigned distributions. This occurs if the mini-
mum over q of Sq

i is greater than the maximum of Sq
j ,

for all j �= i. This is equivalent to a minimax search
(Gao et al., 2016). It is the second most important
if it is ranked second under all distributions, etc. We
call this a robust factor prioritization setting. A simi-
lar generalization holds for the remaining settings. In
a robust trend determination setting, one says that G
is increasing in Xi if it is increasing in this variable un-
der all distributions. In a robust interaction identifica-
tion setting, one can say that there are no interactions
if g(X) is additive under each of the Q assigned dis-
tributions.

A robust extension of the settings is not needed,
if a mixture of the candidate distributions is posed.
In this case, one regains uniqueness of the sensitiv-
ity measures, because the mixture distribution PX be-
comes the unique reference distribution. However, if
PX is a linear mixture, we have seen that several of
the properties of global sensitivity analysis are lost,
because PX can never be a product measure. In the
reminder of the work, we illustrate that a general-
ized ANOVA approach applied in the presence of PX

can still lead the analyst to regain several of the in-
sights that are delivered under independence by the
classical functional ANOVA expansion. For factor
prioritization, natural sensitivity measures are then
the SCSA indices. The corresponding numerical ap-
proach is discussed in the next section.

4. D-MORPH REGRESSION AND THE
GENERALIZED FUNCTIONAL ANOVA
EXPANSION

In this section, we discuss the construction of
a numerical approach to perform global sensitiv-
ity analysis in the presence of mixture distributions.
From a theoretical viewpoint, the development can

be found in a series of works, such as Hooker (2007),
Li and Rabitz (2012), Chastaing et al. (2012, 2015),
and Rahman (2014). These works show that the
generalized functional ANOVA expansion remains
unique under suitable conditions for the component
functions and the model input distributions. How-
ever, the resulting weak orthogonality conditions
make the system of equations nested and one needs
a way to disentangle these equations. (Please refer to
Appendix A.2 for greater details on the mathemat-
ical aspects.) This problem has been addressed in a
series of works such as Li and Rabitz (2012) and Rah-
man (2014). The intuition is to approximate the com-
ponent functions of the ANOVA expansion of g as
combinations of appropriately chosen auxiliary ba-
sis functions. Rahman (2014) focuses on multivariate
orthogonal polynomials, while Li and Rabitz (2012)
and Li and Rabitz (2017) use the D-MORPH regres-
sion, in which more general auxiliary basis functions
are allowed. We use this latter approach and refer the
reader to Li et al. (2010), Li and Rabitz (2010, 2012),
Rahman (2014), and Li and Rabitz (2017), as well as
to Appendix B in this work where the material is dis-
cussed much more extensively than what space per-
mits here. We briefly summarize the principles. Con-
sider that the analyst has assigned probability mea-
sure PX to the inputs. Then, y = g(x) can be decom-
posed in the unique functional ANOVA expansion

g(x) =
∑
z∈2Z

gPX
z (xz) = gPX

0 +
∑

i

gPX
i (xi) +

∑
i, j

gPX
i, j (xi, j )

+ · · · + gPX
Z (x), (36)

where the terms have been defined in Equations (7)
and (8). The variance-based sensitivity indices of sub-
set xz ⊂ x can then be written as

Sa,PX
z = V

PX
z

V
F [g(x)]

= 〈gz(xz), gz(xz)〉PX〈
g(x) − gPX

0 , g(x) − gPX
0

〉
PX

,(37)

SPX
z = Cov(gz(xz), g(x))

V
F [g(x)]

=

〈
gPX

z (xz), g(x) − gPX
0

〉
PX〈

g(x) − gF
0 , g(x) − gF

0

〉
PX

,(38)

Sb,PX
z = SPX

z − Sa,PX
z . (39)

The indices Sa,PX
z and SPX

z can be estimated via Monte
Carlo numerical approximation from equations of



314 Borgonovo et al.

the type

Sa,PX
z ≈

∑N

s=1
g2

z

(
x(s)

z

)
/N∑N

s=1

(
g(x(s)) − gPX

0

)2
/N

, (40)

SPX
z ≈

∑N

s=1
gz

(
x(s)

z

)(
g(x(s)) − gPX

0

)
/N∑N

s=1

(
g(x(s)) − gPX

0

)2
/N

, (41)

where x(s)
z is the sth realization of the inputs, s =

1, 2, . . . , N. Note that E[gz(xz)] = 0. Then, to calcu-
late the sensitivity indices, one needs to determine
the effect functions gz(x(s)

z ). To this aim, one explains
the effect functions with respect to suitable polyno-
mial basis functions ϕ

( j)
r (x j ) :

gPX
i (xi) ≈

k∑
r=1

α
(0)i
r ϕ

(i)
r (xi),

gPX
j (x j ) ≈

k∑
r=1

α
(0) j
r ϕ

( j)
r (x j ),

gPX
i, j (xi, x j ) ≈

k∑
r=1

[
α

(i j)i
r ϕ

(i)
r (xi) + α

(i j) j
r ϕ

( j)
r (x j )

]
+

l∑
p=1

l∑
q=1

β
(0)i j
pq ϕ

(i)
p (xi)ϕ

( j)
q (x j ), . . .

(42)

where k, l are integers that determine the order of
the polynomial expansion. The above expressions are
referred to as extended baseswhere the basis func-
tions (e.g., ϕ

(i)
r (xi)) used for the lower order compo-

nent functions (e.g., gPX
i (xi)) are subsets of the ba-

sis functions for the higher order component func-
tions (e.g., gPX

i, j (xi, x j )). In general, the requirement
for choosing a basis is that the highest degree of the
basis functions should be equal to or larger than the
highest degree of the corresponding function (if any)
in g(x). In the case of independent inputs, we have

gPX
i (xi) ≈

k∑
r=1

αi
rϕ

(i)
r (xi), gPX

j (x j ) ≈
k∑

r=1

α j
r ϕ

( j)
r (x j )(43)

gPX
i, j (xi, x j ) ≈

l∑
p=1

l∑
q=1

β (i j)
pq ϕ(i)

p (xi)ϕ( j)
q (x j ), . . . (44)

and all basis functions are mutually orthonormal.
Furthermore, Sb

z = 0, Sz = Sa
z. It is then easy to prove

the simple relationships

Si =
k∑

r=1

(
αi

r

)2
/V (g(x)), (45)

Si j =
l∑

p=1

l∑
q=1

(
β (i j)

pq

)2
/V (g(x)), . . . (46)

In the case of dependent inputs, the basis functions
are not mutually orthonormal, the indices Sa

z, Sb
z, and

Sz are functions of the coefficients {α}, {β}, . . . and
the inner products of the effect functions. Thus, the
expression that links these indices to the coefficients
is more complicated; however, the indices can be es-
timated by combining Equations (40)–(42). The D-
MORPH regression is then a device for determining
the coefficients {α}, {β}, . . . such that the resulting ef-
fect functions given in Equations (B2)–(B3) satisfy
the hierarchical orthogonality conditions condition
of the functional ANOVA expansion. The starting
point is an input output data set generated for un-
certainty analysis. The reference distribution is PX.
The analyst samples the inputs from this distribu-
tion through a Monte-Carlo or quasi-Monte Carlo
generator and runs the model in correspondence of
this sample. If we have n inputs and generate an in-
put sample of size N, the available input data set
will be of size N × n. In correspondence, the ana-
lyst will have a data set of N output realizations.
In Equation (42), at each realization of the inputs
x(s), s = 1, 2, . . . , N, the values of the basis functions
ϕ

(i)
r (xi) are known. The unknowns are the coeffi-

cient sets {α} and {β}. These can be determined from
the input–output sample by minimizing a square loss
function. Because the equations are linear in the
coefficients {α} and {β}, the resulting problem can
be solved through least-square method. Combining
the extended bases, D-MORPH regression is capa-
ble to seek a least squares solution such that the
resulting component functions satisfy the weak an-
nihilating conditions in the generalized functional
ANOVA expansion. Then, as usual in metamodel-
ing, one can evaluate fitting accuracy through follow-
ing performance measures such as the coefficient of
model determination, the root mean squared error
and others—see Appendix B for details. The value
of these performance measures can be used by the
analyst to decide whether to proceed with further
processing, or whether additional model runs are
needed before using the resulting parameter values
to compute global sensitivity measures and obtain
additional insights. In particular, once the unknown
coefficient sets {α} and {β} are determined, the ana-
lyst has full knowledge about the first- and second-
order effects of the generalized functional ANOVA
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expansion and of the SCSA sensitivity indices up to
order 2.

All in all, the procedure to compute the sensitiv-
ity indices is (1) to generate a set of random data of x
according to the distribution PX and compute the cor-
responding g(x) output values; (2) use D-MORPH
regression to determine the coefficient sets {α} and
{β} and consequently the effect functions; and (3)
compute the sensitivity indices from Equations (42)
and (40).

We observe that the above-mentioned frame-
work makes the approach a given-data approach.
That is, a single Monte Carlo loop is needed, and the
cost of the analysis is N model evaluations. This is
a notable reduction with respect to the brute force
computation of global sensitivity measures, whose
numerical cost is of the order of n × N2 model eval-
uations (see Li and Rabitz (2017) for further discus-
sion).

5. NUMERICAL EXPERIMENTS: THE
ISHIGAMI FUNCTION

The purpose of this section is to illustrate the
determination of the sensitivity indices when the in-
put distribution is a mixture by means of an analyt-
ical example. We use the well-known Ishigami func-
tion (Ishigami & Homma, 1990), whose expression is
found in Equation (5) of Example 2. Suppose that the
analyst also wishes to test three alternative distribu-
tional assignments for the inputs. For reproducibil-
ity of our results, we consider the sensitivity analy-
sis of g in Equation (5) assigning the same distribu-
tions as in Borgonovo et al. (2018). In such work, in
a second distribution assignment, the Ishigami inputs
are considered as standard normal and independent
random variables, and in a third assignment, they are
considered as uniform independent random variable
on [0, π ]. Overall, we have F = {F 1

X, F 2
X, F 3

X} with
F 1

X : X1, X2, X3 ∼ U [−π, π ], i.i.d., F 2
X : X1, X2, X3 ∼

N(0, 1), i.i.d., and F 3
X : X1, X2, X3 ∼ U [0, π ], i.i.d.

With this assignment, we can follow any of two paths:
the multiple distribution path or the mixture path.
If we follow the multiple distribution path, we have
three classical ANOVA expansions, with correspond-
ing function effects that can be computed analyti-
cally under each distribution and are reported in Ap-
pendix C.

Let us consider the multiple distribution path.
Three samples of size N = 3, 000 are generated from
each distribution, for an overall sample size of N =
9, 000. The three densities of the model inputs F 1

X,

F 2
X, and F 3

X are reported in the first panel of Fig. 1
as continuous lines. These lines denote the shape of
the corresponding classical families, uniform for F 1

X,
F 3

X, although with different support, and normal for
F 2

X. The corresponding output densities are displayed
in the second panel of Fig. 1.

For each distribution F 1
X, F 2

X, F 3
X, we register a

respective variance decomposition. Because the in-
puts are independent under the three distributions,
we obtain the variance decomposition applying the
classical ANOVA expansion. The three variance de-
compositions are reported in Fig. 2. Note that X2 is
consistently the most important input under the three
assigned distributions and that the term S3 becomes
nonnull under F 3

X.
Let us consider now the mixture path. The first

step is the assignment of the distribution weights, �.
If the analyst poses the three distributions as equally
likely, i.e., � = { 1

3 , 1
3 , 1

3 }, by Equation (22), we ob-
tain the mixture distribution PX =∑3

q=1
1
3 F q

X . Nu-
merically, for the mixture sample, we randomly mix
the data generated under each distribution to obtain
a unique (mixture) sample of size 9,000. In this way,
we follow the two-step procedure illustrated, among
others, in Chick (2001). The marginal density of Xi

under PX is reported in the first panel of Fig. 1 as
a dotted line. Note that the shape of the mixture
marginal density does not belong to any of the as-
signed family of parametric distributions. Also, under
the mixture distribution, the model inputs become
dependent, with a correlation coefficient of about
24%—given the symmetric distribution assignment,
the pairwise correlations are equal for the three in-
puts. The corresponding density of the model output
is reported as a dotted line in the second panel of
Fig. 1.

Because with this assignment, the inputs have
different supports, the results concerning the gener-
alized functional ANOVA of g are governed by The-
orem A.1 in Appendix A. The mixture effect func-
tions can be computed analytically and their analyt-
ical expressions are reported in Appendix C. To ob-
tain them, we follow the approach reported in Ap-
pendix B. Let us start with the choice of the basis
function. For the Ishigami function, the following is
a natural selection:

ϕ
(1)
1 = 1, ϕ

(1)
2 = sin x1; ϕ

(2)
1 = 1, ϕ

(2)
2 = sin2 x2;

ϕ
(3)
1 = 1, ϕ

(3)
2 = x4

3. (47)

Note that for X1 and X2, we do not choose a poly-
nomial basis, but opt for sin(·). This choice profits
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Fig 1. Upper panel: Ishigami output den-
sities under F 1

X, F 2
X, F 3

X, PX. Lower panel:
Corresponding variances: V1[G] = 13.82,
V

2[G] = 7.07, V
3[G] = 10.30, V

PX [G] =
11.42.

Fig 2. Variance decompositions (classical ANOVA) under F 1
X, F 2

X,
F 3

X.

Table I. D-MORPH Performance Measures for the Ishigami
Function at ntrain = 300 (ntest = 2, 700) and ntrain = 8, 000

(ntest = 1, 000)

Data ntrain = 300 ntrain = 8, 000

R2 RAAE RMAE R2 RAAE RMAE
Training 1.0000 0.0003 0.0019 1.0000 0.0003 0.0029
Testing 1.0000 0.0003 0.0033 1.0000 0.0003 0.0025

from our knowledge of the analytical expression of
g and allows for a compact expression of the nu-
merically obtained effect functions listed in Equation
(47). For comparison purposes, we also run experi-
ments fully polynomial basis functions; however, this
choice, while yielding a comparable numerical accu-
racy, leads to much less compact expressions that are
not reported for brevity.

Once the basis functions are identified, we em-
ploy the input–output sample to fit the D-MORPH
polynomial. Fitting accuracy is evaluated at alterna-
tive testing and training sizes. Table I reports the
values of R2, RAAE, and RMAE for n train = 300,
ntest = 2, 700 and ntrain = 8, 000, and n test = 1, 000 to
provide a comparison. Given the small estimation

Table C1. The Mean Values of the Effect Functions

g1 g2 g3 g13

gpX
z (300 points) 0.0000 0.0000 0.0006 −0.0005

gpX
z (8,000 points) −0.0002 0.0000 0.0005 −0.0005

g̃z (300 point) 0.2637 0.3351 −0.0073 0.1076
g̃z (8,000 point) 0.2497 0.0288 −0.0107 0.1321

errors, it is safe to proceed with the calculation of
the generalized functional ANOVA effect functions.
Appendix C reports the approximated analytical ex-
pressions of gPX

z at ntrain = 8, 000. These expressions
can be compared against the analytical expressions of
the mixture effect functions g̃z. Fig. 3 offers a graph-
ical comparison. (To compare the second-order ef-
fect function g1,3(x1, x3), we plot the truth plot for
g̃1,3(x1, x3) with respect to gPX

1,3(x1, x3)).
Fig. 3 shows that in spite of gPX

z being a continu-
ous function, the mixture effect functions g̃z are the
union of three functions whose expression is valid
on three disjoint domains. Some functions have large
differences (e.g., g̃1, g̃3), and some do not (e.g., g̃2).
Moreover, the three functions g̃i, i ∈ {1, 2, 3}, are not
smoothly connected to one another. However, their
sum is still exactly equal to g(x) that demonstrates the
validity of Theorem A.1. Moreover, the results in Ap-
pendix A imply that the generalized ANOVA effect
functions gPX

z satisfy the zero mean and the hierar-
chical orthogonality conditions, and we have proven
that the mixture effect functions g̃z do not (Proposi-
tion A.2). Tables C1 and C2 in Appendix C provide
numerical evidence of these facts for the Ishigami ex-
ample.
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Fig 3. The comparison of the ANOVA
effect functions of gPX

z constructed from
8,000 points with the effect functions of
g̃z.

Table C2. The Inner Product of Effect Functions

gpX
z g̃z

300 points 8,000 points 300 points 8,000 points

〈g1, g2〉 −0.0094 0.0613 −0.0119 0.0314
〈g1, g3〉 0.0699 0.0879 0.0045 −0.0047
〈g1, g13〉 −0.0001 −0.0002 0.1001 0.1785
〈g2, g3〉 0.0533 0.0462 0.0049 −0.0002
〈g2, g13〉 −0.1029 0.0086 −0.0634 0.0536
〈g3, g13〉 −0.0004 −0.0006 0.2561 0.2422

Regarding variance decomposition for the mix-
ture path, we have the following results. Let us start
with the overall variance decomposition in Equa-
tion (33). The estimated simulator output variance
is V̂[G] = 11.46 and the mean values under the
three distributions are Ê1[G] = 3.50, Ê2[G] = 3.02,
and Ê3[G] = 5.38, respectively. This leads to an es-

timated ̂̃V c = 1.55. This value indicates that at about
13% of the simulator output variance is due to vari-
ations in the simulator output mean value. To as-
sess the structural and correlative contributions, we
compute the SCSA sensitivity indices. Using covari-
ance decomposition from the generalized functional
ANOVA expansion, we obtain the values reported in
Table II.

Table II. SCSA and Mixture Sensitivity Indices Computed Using
ntrain = 8, 000

z Sa
i Sb

i Si Bi Ti BTi

1 0.21 0.01 0.22 0.17 0.40 0.29
2 0.53 0.01 0.54 0.62 0.54 0.71
3 0.04 0.01 0.05 0.09 0.23 0.12
First-order sum 0.77 0.03 0.81
(1, 3) 0.19 −0.01 0.18 0.12
Total sum 0.96 0.035 1.00 0.89

The second and third columns of Table II dis-
play the values of the structural Sa

z and the correl-
ative Sb

z contributions to the sensitivity indices. The
values indicate a small effect of correlations. Over-
all, the values of Si show that X2 is the most im-
portant simulator input, with S2 = 0.54. This input is
not involved in interactions and T2 = S2. The second
most important input is X1, followed by X3. These
two inputs are involved in a significant interaction,
with S1,3 = 0.18. Table II also reports, for compari-
son, the mixture indices in Equation (28) (see Ap-
pendix A.2) normalized dividing by V[g(X)]. These
values are in column 5 of Table II, while column 7
reports the total mixture indices. The ranking agree-
ment between the SCSA and mixture indices in Ta-
ble II is reassuring for an analyst wishing to know
the most important input. However, the mixture in-
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dices do not account for the contribution of the in-
puts to the overall model output variance (see Equa-
tion (25)), because they exclude the portion of the
variance associated with the variation in the model
output mean. In the present analysis, the fraction of
variance unexplained by these indices is estimated
at about 87%, with the remaining 13% explained
by the variation in the mean value across the three
distributions. Thus, they do not fully convey the in-
put variance-based importance under PX, which is in-
stead univocally yielded by the SCSA indices.

6. A REALISTIC APPLICATION: THE DICE
SIMULATOR DATA SET

The DICE 2007 model has been the basis of sev-
eral computer experiments for uncertainty and sen-
sitivity analysis, with the first uncertainty quantifica-
tion performed in Nordhaus (2008). Starting point of
these investigations has been the assignment of dis-
tributions for eight relevant model inputs identified
after a screening analysis: these distributions are in-
deed judgmental and have been estimated by the au-
thor. Other researchers would make, and other studies
have made different assessments of the values of these
parameters (Nordhaus, 2008, p. 126). In fact, subse-
quent works such as Millner, Dietz, and Heal (2013),
Hu et al. (2012), Butler, Reed, Fisher-Vanden, Keller,
and Wagener (2014), Anderson, Borgonovo, Gale-
otti, and Roson (2014) perform uncertainty analy-
sis of the DICE model assigning distributions to the
model inputs different from the ones originally as-
signed by Nordhaus (2008).

The DICE model has undergone several revi-
sions and updates over the years. The data set avail-
able here contains realizations drawn from the 2007
version. Specifically, the available data are the input–
output runs of the DICE simulator under the 19 dis-
tributions taken from the uncertainty analysis per-
formed in (Hu et al., 2012, p. 34, Section 4.3). In Hu
et al. (2012), uncertainty in the DICE input distribu-
tions is modeled allowing the standard deviations a
50% decrease and a 20% increase. The 19 distribu-
tions are as follows: (1) the first distribution is Nord-
haus’ original distribution; (2) distributions F q

X (x)
(q = 2, . . . , 17) are normal with one of the input
variances shifted to its lower (q = 2, . . . , 9)/upper
value (q = 10, . . . , 17), respectively, with the remain-
ing fixed at the reference values given in Table III;
(3) F 18

X (x), and F 19
X (x) are normal distributions with

all model input variances at their lowest and highest

Table III. Distributions Assigned in the Original Uncertainty
Analysis of the DICE Model Performed by Nordhaus (2008) and

Variations Ranges (Lower and Upper Values) for the Model
Input Standard Deviations (σi). See Nordhaus (2008, p. 127,

table 7–1)

Xi Model input name Mean σi Lower Upper

X1 Total factor productiv. growth 0.0092 0.004 0.0020 0.0048
X2 Initial sigma growth 0.007 0.002 0.0010 0.0024
X3 Climate sensitivity 3 1.11 0.5550 1.332
X4 Damage function exponent 0.0028 0.0013 0.0006 0.00156
X5 Cost of backstop in 2005 1170 468 234 561.6
X6 POPASYM 8600 1892 946 2270.4
X7 b12 in carbon trans. matrix 0.189 0.017 0.0085 0.0204
X8 Cumulative fossil fuel extr. 6,000 1,200 600 1,440

values, respectively. We assign � = {p1, p2, . . . , p19},
with p1 = p18 = p19 = 1

5 , and pi(i �= 1, 18, 19) = 1
40 .

The DICE model produces forecasts for several
outputs. As quantity of interest, we consider atmo-
spheric temperature in 2105. We start with the mul-
tiple scenario approach. The numerical cost of the
analysis is 19, 000 model runs, with samples of N =
1, 000 generated quasi-Monte Carlo for each distri-
bution. In a multiple scenario approach, the analyst
obtains a set of 8 × 19 global sensitivity indices esti-
mates Ŝq

i , i = 1, 2, . . . , 8 and q = 1, 2, . . . , 19. The re-
sults must then be analyzed under a robust sensitivity
setting (see Section 3.2). In our case, Ŝq

3 > Ŝq
i for all

i = 1, 2, . . . , 8, i �= 3, and all q. That is, X3 is consis-
tently ranked first across all 19 scenarios, with sen-
sitivity indices varying from a minimum of S4

3 = 0.7
under F 4

X(x) to a maximum of S6
3 = 0.86 under F 6

X(x).
However, no robust ranking is registered for the sec-
ond, third, fourth, and fifth most important model in-
puts, while X7, X1, and X8 robustly rank sixth, sev-
enth, and eight under all distributions.

We then consider the case in which the analyst
posits � and uses a linear mixture. In this case, the
distribution is PX as discussed above and the model
output variance is V

PX [G] = 0.3260. Once � is as-
signed, the analyst can use the mixture sensitivity
indices. The cost for estimating these indices is the
same as that for a multiple scenario approach. In
fact, these indices are just an average of the variance-
based contributions obtained under each of the 19
distributions. Fig. 4 reports the values of B̃T i and
compares them to the corresponding total SCSA in-
dices, whose computation we are to discuss shortly.
As one notes, the mixture indices deliver a unique
ranking of the inputs. If we compare this ranking to
the ranking produced under the multiple scenario ap-



Global Sensitivity Analysis with Mixtures 319

Fig 4. Graph (a): B̃T i and STi; graph (b)
corresponding input ranks.

proach, we observe that the rankings are generally
consistent; for instance, the rankings of X3, X7, X1,
and X8 coincide. However, the rankings cannot be
completely compared, because the multiple scenario
analysis does not provide a unique ranking. Again,
the mixture indices provide a quick way to synthe-
size the multiple scenario information, but they re-
main exposed to the limitations discussed previously.

We finally come to the SCSA indices. For
their calculation, a data set of size 5, 000 is ob-
tained by randomly mixing 1, 000 realizations from
F 1

X(x),F 18
X (x)„ and F 19

X (x) and 125 realizations for
each of F q

X (x)(q �= 1, 18, 19). From Table III, we see
that the magnitudes of the model inputs are on differ-
ent scales, with differences up to 107. For numerical
stability, we therefore standardize the model input
realizations (by subtracting the means and dividing
by their standard deviations) before applying the D-
MORPH regression to the mixed data set. As poly-
nomial basis for the DMORPH regression, we use
monomials of order lower than or equal to 2 for each
input. Sample sizes of 500 are used for training and
testing, respectively. To study the accuracy of the re-
sults, the regression is replicated 100 times with ran-
domly drawn training and testing sets from the avail-
able sample of size 5,000. The results are reported in
Table IV.

Because the accuracy level is satisfactory, we can
trust the D-MORPH estimates of the generalized
functional ANOVA effect functions and global sen-
sitivity indices. We start with the results for the first-
order generalized ANOVA effect functions. Results
show that only the first-order effect functions (see
Appendix D for the analytical expressions) are rele-
vant, while the second-order effect functions are neg-

Table IV. The Mean and Standard Deviations of the Accuracy
and Error Measures R2, RAAE, and RMAE with 100 Replicates

Data R2 RAAE RMAE
mean std mean std mean std

Training 0.9996 0.0000 0.0144 0.0007 0.0730 0.0073
Testing 0.9990 0.0002 0.0215 0.0012 0.1988 0.0578

ligible, and not reported. These facts show that the
response of the DICE output is mainly additive, with
quadratic dependence on all eight model inputs.

Regarding variance decomposition and the cal-
culation of global sensitivity indices, we have the fol-
lowing results. Starting with Proposition A.4, we reg-
ister Ṽ c = 7.10 × 10−4. Thus, the contribution coming
from the variance of the mean of the model output is
negligible. Then, V[G] is determined mainly by the
remaining two components in Equation (33), Ṽ a and
Ṽ b. These are estimated, respectively, at Ṽ a = 0.3322
and Ṽ b = −0.0069. These estimates show an appar-
ent negligible contribution from the correlative part
of the variance decomposition. The calculation of
the SCSA indices helps us in further understanding
this result. Table V reports the values of all eight
first-order and the six most relevant second-order
SCSA indices. To evaluate accuracy, the estimation
of the SCSA indices was replicated 100 times with
randomly chosen training realizations. Fig. 5 reports
the boxplots of the Sa

i and ST a
i indices.

The results in Fig. 5 show little variation in the
estimates across the replicates, indicating that the
values in Table V can be trusted in ranking the in-
puts. In this respect, most Sb

z are smaller than 10−2,
with the exception of Sb

3 and Sb
6 that have magnitudes
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Fig 5. The boxplots of Sa
i and the total sensitivity indices ST a

i under PX obtained from 100 replicates.

Table V. First- and Second-Order SCSA Sensitivity Indices for
the DICE Model under PX

Rank Xj or (Xi, Xj) Sa
z Sb

z Sz

1 X3 0.8431 −0.0113 0.8317
2 X5 0.0561 −0.0033 0.0528
3 X4 0.0225 0.0057 0.0282
4 X6 0.0341 −0.0191 0.0150
5 X7 0.0066 0.0056 0.0122
6 X2 0.0124 −0.0040 0.0084
7 X1 0.0013 −0.0015 −0.0003
8 X8 0.0001 0.0002 0.0003
First-order sum 0.9761 −0.0278 0.9483
1 (X3, X5) 0.0136 0.0038 0.0175
2 (X3, X4) 0.0134 0.0018 0.0152
3 (X4, X6) 0.0045 0.0050 0.0095
4 (X5, X6) 0.0040 −0.0004 0.0036
5 (X4, X5) 0.0042 −0.0035 0.0007
6 (X2, X5) 0.0005 −0.0009 −0.0004
Second-order sum 0.0427 0.0067 0.0493
Total sum 1.0188 −0.0211 0.9976

0.0113 and 0.0191, respectively. These values signal
that the presence of the mixture causes weak correla-
tions among X3, X6 and the remaining model inputs.
Fig. 4 shows that while the ranking between the mix-
ture of indices and the generalized indices is the same
for the first and second most important inputs, there
are differences in the ranking of the remaining inputs.
The fact that the two key drivers of uncertainty are
identified by both indices is reassuring, but the coin-
cidence is not guaranteed by an underlying theory. It
is also interesting to observe that the disagreement
concerns the inputs for which the multiple distribu-
tion path does not produce a unique ranking.

Overall, the insights of the multiple scenario path
as well as of the SCSA indices show that even if
we are uncertain in the model input distributions, X3

stands out as the input on which temperature in 2105
is most sensitive.

7. DISCUSSION

How to represent uncertainty has been a sub-
ject of intense investigation in the risk analysis lit-
erature, since early works such as Iman and Hora
(1990), Iman and Helton (1991), Kaplan and Garrick
(1981), Paté-Cornell (1996), and Apostolakis (1990).
These works have spurred a scientific discussion con-
tinued in works such as Garrick (2010), Aven (2010),
North (2010), Paté-Cornell (2012), and Flage et al.
(2013) in which nonprobabilistic representations of
uncertainty are also discussed (see Aven (2020) for
a recent critical review). From such works, the lit-
erature has discussed several aspects, among which
we recall the distinction between aleatory and epis-
temic uncertainty. Within this context, the probability
distribution of the inputs is the first-level (aleatory)
distribution. At the aleatory level, the analyst as-
signs distributions to the uncertain model inputs (any
of these distributions is F q

X ). Uncertainty about the
aleatory distribution is called epistemic uncertainty
(in economics, uncertainty about the true probability
distribution is call ambiguity; (Borgonovo & Mari-
nacci, 2015)). The analyst may express epistemic un-
certaint yassigning a second-order distribution. In a
global sensitivity analysis context, if the analyst is not
sure about the distribution, then she may regard the
step of assigning alternative distributions as a pre-
liminary step: the analyst wishes to explore results
produced by the model under alternative assump-
tions concerning the input distribution. This choice
is what we called the multiple distribution path. This
path is, from a technical viewpoint, closer to the tra-
ditional unique distribution analysis. It is, in fact, a
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Fig 6. Selection path for sensitivity anal-
ysis when the analyst is uncertain about
the input distribution.

repetition of the analysis carried out under a unique
distribution as many times as many are the plausi-
ble distributions that the analyst wishes to explore.
The analyst can derive insights on any of the sen-
sitivity analysis settings under each of the assigned
distributions. Should one or more of the model in-
puts constantly emerge as important in the various
assignments, then the analyst may robustly conclude
that these inputs are important and represent ar-
eas where further modeling/information collection is
more worth.

If the analyst assigns a second-order distribution
or has fitted a unique distribution that is the mix-
ture of Q plausible distributions, then she is follow-
ing a mixture path. Here, we have a number of con-
sequences. Several of them are technical and involve
items such as whether the component functions of
the functional ANOVA expansion remain orthogo-
nal or whether global sensitivity indices can be re-
constructed from the component functions that one
obtains under each distribution (see Appendix A for
technical details). We point out that even if inputs are
independent under each of the assigned distributions,
they become dependent once these distributions are
linearly mixed. Also, further technical complications
emerge if alternative support (ranges) is assigned to
the inputs under these alternative distributions.

Then, to obtain variance-based global sensitiv-
ity measures, the analyst needs to use a generalized

ANOVA approach, in general. In this case, natural
sensitivity measures become the SCSA sensitivity in-
dices that convey information about the structural
and the correlative contributions of the inputs. Com-
putationally, the implementation builds on the steps
of a traditional uncertainty analysis. It requires the
analyst to generate a sample from the mixture distri-
bution (this step would be performed anyway as part
of the uncertainty analysis) and then to process such
a sample with a numerical technique that allows the
estimation of the terms of the generalized functional
ANOVA expansion and of the generalized variance-
based sensitivity indices. For this task, the analyst can
resort to the D-MORPH regression, which we have
used here.

Overall, the analyst has to consider a number of
aspects before performing a global sensitivity anal-
ysis when she is uncertain about the input distribu-
tion (let us refer to the qualitative decision diagram
in Fig. 6).

The first item to consider is whether the analyst
feels that she is in a position to carry out an uncer-
tainty quantification. We may foresee two main alter-
natives. In the first, the analyst does not feel that the
current state of information allows her/him to assign
one or more distributions (downward path in the first
node of the tree in Fig. 6). This is typical in a prelim-
inary modeling phase or might be the case for prob-
lems in which a distribution cannot be assigned due
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to lack of data. The analyst can then either opt for
running the model over some deterministic scenarios
of interest (see, among others [Tietje, 2005] on the
creation and definition of scenarios) or may wish not
to run the model at all. In that case, we would be in a
position in which the whole quantitative risk assess-
ment exercise cannot be carried out or the numbers
communicated to the policymaker are not meaning-
ful.

Consider now the upper branch in the qualitative
tree of Fig. 6. The analyst may be in a position to as-
sign one or more distributions. If the analyst is satis-
fied with (can assign) a unique distribution, then, for
a variance-based sensitivity analysis: (i) if the inputs
are independent, she can adopt the classical func-
tional ANOVA approach; and (ii) if the inputs are
dependent, she needs to adopt a generalized func-
tional ANOVA approach. In the case the analyst is
uncertain about the distribution, then she can follow
the multiple distribution path. In this case, if inde-
pendence holds, then the analyst can proceed by per-
forming one classical ANOVA experiment per dis-
tribution, otherwise by performing one generalized
ANOVA experiment per distribution. Finally, if the
analyst adopts a mixture path and recovers a unique
distribution, then a generalized ANOVA approach is
needed for the computation of global sensitivity in-
dices, in general.

However, there are ways in which an analyst
can assign mixture distributions that preserve in-
dependence. A first way is to mix only marginal
distributions. Suppose that an analyst assigns Qi

marginal distributions to the uncertain input Xi

(Qi ≥ 1). We denote these distributions with Fi,1(xi),
Fi,2(xi), . . ., Fi,Qi (xi). Then, if these distributions are
mixed marginally, the analyst obtains the marginal
distribution of each input as

Fi(xi) =
Qi∑

s=1

αi,s fi,s(xi) (48)

with weights
∑m

s=1 αi,s = 1 and αi,s ≥ 0 for all i =
1, 2, . . . , n and s = 1, 2, . . . , Qi. Then, assigning the
product distribution FX(x) =∏n

i=1 Fi(xi) leads to the
overall distribution

FX(x) =
n∏

i=1

Fi(xi) =
n∏

i=1

Qi∑
s=1

αi,s fi,s(xi)

=
Q1+Q2+···+Qn∑

t=1

qt

n∏
i=1

hi(xi) (49)

with the weights qs and hi(xi) defined by appropriate
combinations of the αi,s and the marginal densities as-
signed to Xi, respectively. The resulting distribution
FX(x) is unique and still a product measure. A sec-
ond way of combining distributions that maintains in-
dependence is the logarithmic opinion pool (see also
Borgonovo et al., 2018 for further discussion). In this
case, the analyst assigns Q possible product measures
to all inputs, that is, F q

X (x) =∏n
i=1 F q

i (xi), and then
combines these Q distributions via

F LogPool
X (x) = k

Q∏
q=1

(
F q

X (x)
)wq = k

Q∏
q=1

(
n∏

i=1

F q
i (xi)

)wq

(50)

with wq such that
∑Q

q=1 wq = 1 and wq ≥ 0. Note

that F LogPool
X (x) is still a product measure and thus

preserves independence. If either marginal mixing
or logpool mixing is a choice that accommodates
the risk analyst degree of belief about the inputs,
then one obtains a mixture distribution that pre-
serves independence. Then, to obtain variance-based
sensitivity measures, one can resort to the classical
ANOVA expansion.

In the multiple choice path, an interesting ques-
tion is whether we may have some a priori knowl-
edge that there will be no rank reversals when consid-
ering the alternative distributions. Experiments car-
ried out by the authors suggest that this might be the
case when the assigned distributions and supports do
not differ significantly. However, the analysis can be
made rigorous only if there is some analytical result
for a specific form of the input–output mapping and
for specific distributions. Indeed, the following coun-
terexample shows that there cannot be a universal re-
sult. Consider the case in which Xi is the most impor-
tant input when the distribution is F q

X . If, in an alter-
native scenario, say q + 1, Xi is assigned a Dirac-delta
measure, then any global sensitivity measure associ-
ated with Xi would be equal to zero under F q+1

X , caus-
ing Xi to join the group of the least important inputs.
Such a “q + 1” scenario would represent when the
analyst is certain in the exact value of parameter Xi.

Example 7 (Example 2 continued). For the Ishigami
model, consider a fourth distributional assignment in
which X2 is assigned a Dirac-delta measure and X1

and X3 are kept uniform in [−π, π ]. Then X2 would
become the least important input under this distribu-
tional assignment.
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8. CONCLUSIONS

The presence of competing model input distribu-
tions creates issues in the global sensitivity analysis
of computer codes concerning the theory, the imple-
mentation, as well as the interpretation of variance-
based results.

We have seen that (i) an approach looking at re-
sults under each alternative distribution may not lead
to definitive conclusions due to ranking variability;
(ii) when independence does not hold under each
distribution, an approach based on the mixture of
functional ANOVA expansions loses interpretability;
(iii) if the analyst assigns a mixture of the plausible
distributions, an approach based on the generalized
functional ANOVA expansion allows her to regain
uniqueness in the expansion and to estimate global
sensitivity indices.

While our work has evidenced and addressed
some of the main issues that are open by the simulta-
neous removal of the independence and unique dis-
tribution assumptions, further research is needed. On
the one hand, the performance of additional numeri-
cal experiments can lead further insights on the pro-
posed approach. It is not excluded that the use of a
variance-based approach simultaneously with other
global methods such as distribution-based methods
could lead to additional relevance insights, main-
taining the same computational burden. Also, in the
present work, we have principally focused on a factor
prioritization setting. The exploration of the conse-
quences of removing the unique distribution assump-
tion on other settings, such as trend identification and
interaction quantification, is a relevant problem that
may result in a further research avenue.
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APPENDIX A: DETAILED QUANTITATIVE
TREATMENT OF THE CLASSICAL AND
GENERALIZED FUNCTIONAL ANOVA
EXPANSION

A.1.. Generalized Functional ANOVA

The functional ANOVA expansion is a cen-
tral tool in uncertainty quantification. It provides
a formal background for applications ranging from
smoothing spline ANOVA models (Lin et al., 2000;
Ma & Soriano, 2018), generalized regression models
(Kaufman & Sain, 2010; Huang, 1998), and global
sensitivity analysis (Durrande et al., 2013). Owen
(2013) accurately reviews its historical development,
highlighting its origin in Fisher and Mackenzie (1923)
and Hoeffding (1948) and the alternative proofs that
have been provided over the years (Efron & Stein,
1981; Sobol’, 1993; Takemura, 1983). These proofs
rely on the assumption that the model inputs are in-
dependent. The proof of the existence and unique-
ness of a functional ANOVA representation under
input dependence is due to Hooker (2007), Li et al.
(2010), and Chastaing et al. (2012). Let

g : X → R, x = (x1, . . . , xn) �→ y = g(x) (A1)

denote the simulator input–output mapping, where
X ⊂ R

n and n is the number of inputs. Under un-
certainty, let (X ,B(X ),P), P : B(X ) → [0, 1] denote
the simulator input probability space. The symbol
FX(x) = P ◦ X−1(ξ ∈ X : ξ ≤ x) denotes the joint in-
put cumulative distribution function (cdf), the sym-
bol fX(x) denotes the probability density function
(pdf). For simplicity in the remainder, we shall also
use the abbreviated notation F = FX(x) to denote
the distribution of the model inputs. Uncertainty in X
reverberates in the simulator output, which becomes
a function of random variable G = g(X). We assume
throughout that g ∈ L2(X ). Then, let us consider the
set Z = {1, 2, . . . , n} of the n model input indices, and
let 2Z denote the associated power set. Here, z ∈ 2Z

denotes a generic subset of indices. Hooker (2007)
proves that g(x) has a uniquefunctional ANOVA ex-
pansion as presented in Equation (6). In Equation
(6), the effect functions gF

z (xz) are determined by
the weak annihilating conditions (Li & Rabitz, 2012;
Rahman, 2014)∫

Xi

gF
z (xz) fz(xz)dxi = 0, for all i ∈ z, (A2)
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where fz(xz) is the marginal density of Xz, or equiv-
alently by the hierarchical orthogonality conditions∫

Xz

gF
z (xz)h(xv)dFz(xz) = 0, for all h ∈ L2(Xv),

v ⊂ z, z �= ∅. (A3)

The functions gF
z are called the effect functions of the

generalized functional ANOVA expansion and can
be retrieved from the nested equations ∼ z denotes
the subset Z \ z. To illustrate, for z = {i}

gF
i (xi) =

∫
X∼i

g(x)dF∼i(x∼i) − gF
0

−
∑

{i}⊂v∈2Z

∫
X∼i

gF
v (xv)dF∼i(x∼i). (A5)

Therefore, the determination of the generalized func-
tional ANOVA expansion requires the solution of a
system of nested equations. If the model inputs are
independent, then the last term in Equation (A4)
vanishes, and Equation (A4) reduces to

gF
z (xz) =

∫
X∼z

g(x)dF∼z(x∼z) −
∑
v⊂z

gF
v (xv). (A6)

In this case, the effect functions of the expansion
given in Equation (6) are no longer nested and can be
computed sequentially starting from gF

0 (Li & Rabitz,
2012). For independent inputs, the weak annihilating
condition of Equation (A2) becomes the strong anni-
hilating condition of Equation (7) and the hierarchi-
cal orthogonality condition of Equation (A3) then re-
duces to the strong (mutual) orthogonality condition
of Equation (8). One calls Equation (6) the general-
ized functional ANOVA expansion of g, if the weak
orthogonality conditions in Equation (A3) apply; one
calls Equation (6) the classical expansion if the mea-
sure FX(x) is a product measure and the strong or-
thogonality conditions in Equation (8) apply.

The generalized functional ANOVA expansion
leads to a corresponding generalized decomposition
of the model output variance, VF [G] (Li & Rabitz,
2012) presented in Equation (14). One then defines
the classical variance-based sensitivity indices by nor-
malization (Homma & Saltelli, 1996; Sobol’, 1993):

SF
z = V F

z /VF [G]. (A7)

The sensitivity index in Equation (A7) is called the
variance-based sensitivity index of group z for all z ∈
2Z, z �= ∅, and represents the contribution to V[G] of
the residual interaction of variables with indices in
z. For independent inputs, all covariances and conse-
quently all Sb,F

z are zero, and the indices SF
z in Equa-

tion (15) coincide with the classical variance-based
sensitivity indices in Equation (A7).

A.2.. Functional ANOVA with Multiple
Distributions

We first investigate the properties of the func-
tional ANOVA effect functions, starting with the
two-path coincidence mentioned in Section 2.2. For
generality, we also remove the assumption that the
supports of the distributions are the same and con-
sider F q

X , q = 1, 2, . . . , Q, with corresponding mea-
sure spaces (Xq,B(Xq), F q

X ), with Xq ⊆ X for all q =
1, 2, . . . , Q. This situation can arise in an expert elici-
tation if two or more experts provide different opin-
ions about the ranges in which a given quantity may
lay. We may have X1 ∩ X2 ∩ · · · ∩ XQ = ∅, as well as
all other possible intersections, and the union of the
supports may not exhaust the domain X ,

⋃Q
q=1 Xq ⊂

X . Of course, the analyst may decide to restrict the
support to

⋃Q
q=1 Xq, so that the overall X is indeed

the union of the supports provided by the experts.
However, in the following mathematical treatment,
this assumption is not essential.

The next results concern the question of whether,
when we relax the independence and unique distri-
bution assumptions, we can still obtain the same rep-
resentation in Equation (23), given that we follow
the two paths discussed before (all proofs are in Ap-
pendix A.3).

Theorem A.1. Suppose that the analyst has posed
F = {F 1

X, F 2
X, . . . , F Q

X } with supports X1,X2, . . . ,XQ

and a prior � = (p1, . . . , pQ) on F . Let g(x) be
square integrable under any F q

X ∈ F . Denote the joint
support of x ∈ X with Q(x) = {q : x ∈ Xq}. Then,

g(x) =
∑
z∈2Z

g̃z(xz), (A8)

where

g̃z(xz) =
∑

q∈Q(x)

pq∑
j∈Q(x) pq j

gq
z( xz). (A9)

In the case where the distributions have identical
supports, the following holds.

Corollary A.1. If X1 = X2 = · · · = XQ, then at any
point x ∈ X , it holds

g̃z(xz) =
Q∑

q=1

pqgq
z(xz). (A10)

For the second path, we have the following.



Global Sensitivity Analysis with Mixtures 325

Proposition A.1. Let PX =∑Q
q=1 pqF q

X . Then:

g =
∑
z∈2Z

˜̃gz, (A11)

where

˜̃gz =
Q∑

p=1

pqgPX,q
z (xz), (A12)

where gPX,q
z (xz) are given as integrals of the effect func-

tion gPX
z under PX.

The functions ˜̃gz in Proposition A.1 are different
from the functions g̃z in Theorem A.1. Thus, the co-
incidence of the two paths discussed in Section 2.2
is not valid under general distributional assumptions.
More in detail, the coincidence under independence
is possible because we can proceed in the functional
ANOVA decomposition by induction. For nonprod-
uct measures F , however, the generalized functional
ANOVA expansion terms contains the higher order
effect functions∑

v∩z�=∅,v�⊂z

∫
X∼z

gPX
v (xv)dP∼z(x∼z),

and induction cannot be applied.
Concerning orthogonality, we have the following

result.

Proposition A.2. Let X1 = X2 = · · · = Xq = X , and
let PX =∑Q

q=1 pqF q
X be a mixture measure and

g(x) =
∑
z∈2Z

gq
z(xz) (A13)

be a generalized functional ANOVA expansion of g
with respect to F q

X . Then, a mixture of generalized
functional ANOVA expansions of g with respect to
each measure F q

X

g(x) =
Q∑

q=1

pq

⎛⎝∑
z∈2Z

gq
z(xz)

⎞⎠ =
∑
z∈2Z

⎛⎝ Q∑
q=1

pqgq
z(xz)

⎞⎠
=
∑
z∈2Z

g̃z(xz)

does not satisfy the hierarchical orthogonality con-
ditions and is generally not a generalized functional
ANOVA expansion of g with respect to every possible
mixture measure PX consistent with g.

To address the consequences on monotonicity
formally, let us recall that a multivariate mapping

g : X → R is nonincreasing (nondecreasing) if g(x +
t) ≤ (≥)g(x) for all x, x + t ∈ X , t ≥ 0.

Proposition A.3. Let X1 = X2 = · · · = Xq = X . If g is
nondecreasing, PX =∑Q

q=1 pqF q
X and

g(x) =
∑
z∈2Z

gPX
z (xz) (A14)

is the generalized functional ANOVA expansion of
g with respect to PX, the first-order effect functions
gPX

i (i = 1, 2, . . . , n) may not retain the monotonicity
of g.

For gPX
i (xi) to respect the monotonic-

ity of g with respect to xi, one needs to add
conditions on the behavior of the last term∑

v∩z�=∅,v�⊂z

∫
X∼z

gPX
v (xv)dP∼z(x∼z) in Equation (A4).

We have the following consequences on variance
decomposition.

Proposition A.4. Let V
PX [G] denote the variance

of the simulator output. Under the mixture PX =∑Q
q=1 pqF q

X , we have

V
PX [G] =

Q∑
q=1

pq

⎛⎝ ∑
∅�=z∈2Z

⎡⎣V q
z + Cov

⎛⎝gq
z(Xz ),

∑
z �=v∈2Z

gq
v(Xv )

⎞⎠⎤⎦
+ (Eq[G] − E[G])2) , (A15)

so that

V
PX [G] = Ṽ a + Ṽ b + Ṽ c, (A16)

where

Ṽ a =
Q∑

q=1

pq

∑
∅�=z∈2Z

V q
z =

∑
∅�=z∈2Z

B̃z, (A17)

Ṽ b =
Q∑

q=1

pq

∑
∅�=z∈2Z

Cov

⎛⎝gq
z(Xz),

∑
z �=v∈2Z

gq
v(Xv)

⎞⎠, (A18)

Ṽ c =
Q∑

q=1

pq(Eq[G] − E[G])2 = V�{E(G)}. (A19)

The equality in Equation (A15) results in a gen-
eralization of Equation (25), and thus of Equation
(1), with the appearance of correlative terms in the
variance decomposition. That is, the variance of the
model output in the case of mixtures of nonproduct
distributions is equal to the contribution provided by
the mixture of structural variance contributions, Ṽ a,
the mixture of the correlative contributions, Ṽ b, and
the residual fraction related to the variation of the
expected value of Y over the distributions in F , Ṽ c.
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Note that the fractions differ from the mixture of the
normalized structural and correlative sensitivity in-
dices, as

Ṽa

VPX [G]
�=

Q∑
q=1

pq
Ṽa,q

Vq[G]
, and

Ṽb

VPX [G]
�=

Q∑
q=1

pq
Ṽb,q

Vq[G]
. (A20)

A.3.. Proofs

Proof of Theorem A.1. First, on the entire X and for
q = 1, 2, . . . , Q, let us define the functions

gq(x) =
{∑

z∈2Z
gq

z, if x ∈ Xq,

g(x), otherwise,

and

h(x) =
Q∑

q=1

pqgq(x).

Then, we show that h(x) = g(x). We have the fol-
lowing cases. Case A): X1 ∩ X2 ∩ · · · ∩ XQ = ∅; in this
case, the supports of the distributions are disjoint.
Note that it is not necessarily true that

⋃Q
q=1 Xq = X .

Consider a point x ∈ X . Then, it is either x ∈ Xq for
some q, or x ∈ X \ ∪Q

q=1Xq. If x ∈ Xq, then

h(x) =
Q∑

q=1

pqgq(x) = pq

∑
z∈2Z

gq
z(x)

+g(x)
Q∑

s=1,s�=q

ps = pqg(x) + g(x)(1 − pq) = g(x).

Conversely, if x ∈ X \ ∪Q
q=1Xq, then h(x) =∑Q

q=1 pqg(x) = g(x)
∑Q

q=1 pq = g(x). Thus, in Case
A) h(x) = g(x) for all points x ∈ X . Case B), there
are some nonnull intersections among some (or all)
of the supports. In particular, consider x belonging
to a support Xq = Xq1 ∩ Xq2 · · · ∩ Xqk �= ∅. Then, at x,
we have

h(x) =
Q∑

q=1

pqgq(x) =
∑

q∈{q1,q2,...,qk}
pqgq(x)

+g(x)
∑

q/∈{q1,q2,...,qk}
pq. (A21)

Then, because for each generalized functional
ANOVA expansion, we have gq(x) = g(x), and this

equality becomes

h(x) = g(x)

⎛⎝ ∑
q∈{q1,q2,...,qk}

pq

⎞⎠+ g(x)

⎛⎝ ∑
q/∈{q1,q2,...,qk}

pq

⎞⎠
= g(x)

⎛⎝ ∑
q∈{q1,q2,...,qk}

pq +
∑

q/∈{q1,q2,...,qk}
pq

⎞⎠
= g(x), (A22)

because, by construction,
∑

q∈{q1,q2,...,qk} pq +∑
q/∈{q1,q2,...,qk} pq = 1. Then, note that at any other

point x ∈ X , the point is either belonging to a sup-
port that intersects with other supports (Case B) or
that does not intersect (Case A); thus, h(x) = g(x).

Then, suppose x ∈ Xq, for some value of q ∈
{q1, q2, . . . , qk} and that Xq1 ∩ Xq2 ∩ · · · ∩ Xqk �= ∅.
Then, by item 1, we have h(x) = g(x) at all x, and by
Equation (A22), we have:

∑
q∈{q1,q2,...,qk}

pqgq(x) + g(x)

⎛⎝ ∑
q/∈{q1,q2,...,qk}

pq

⎞⎠ = g(x).

Then, rearranging, we can write

∑
q∈{q1,q2,...,qk}

pqgq(x) = g(x) − g(x)

⎛⎝ ∑
q/∈{q1,q2,...,qk}

pq

⎞⎠
= g(x)

⎛⎝1 −
∑

q/∈{q1,q2,...,qk}
pq

⎞⎠
= g(x)

⎛⎝ ∑
q∈{q1,q2,...,qk}

pq

⎞⎠, (A23)

which leads to

g(x) =
∑

q∈{q1,q2,...,qk} pqgq(x)∑
q∈{q1,q2,...,qk} pq

=
∑

q∈{q1,q2,...,qk} pq
∑

z∈2Z gq
z(xz)∑

q∈{q1,q2,...,qk} pq

=
∑

z∈2Z

∑
q∈{q1,q2,...,qk} pqgq

z(xz)∑
q∈{q1,q2,...,qk} pq

,

whence

g(x) =
∑
z∈2Z

∑
q∈{q1,q2,...,qk}

pq∑
q∈{q1,q2,...,qk} pq

gq
z(xz) =

∑
z∈2Z

g̃z(xz),

where

g̃z(xz) =
∑

q∈{q1,q2,...,qk}

pq∑
q∈{q1,q2,...,qk} pq

gq
z(xz)

is the reweighted mixture in Equation (A9). �
Proof of Corollary A.1. If X1 = X2 = · · · = XQ, then
Xq1 ∩ Xq2 ∩ · · · ∩ Xqk = Xq for all q = 1, 2, . . . , Q
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so that in Equation (A9), we have k = Q and∑
q∈{1,2,...,Q} pq = 1, so that

g̃z(xz) =
Q∑

q=1

pqgq
z(xz).

�

Proof of Proposition A.1. First, the supports of the Q
distributions need not to be the same. For simplicity,
suppose that under the F q

X , X is a continuous random
vector. We can write

Pz =
∫

· · ·
∫ Q∑

q=1

pq f q
X(x)dx∼z

=
Q∑

q=1

pq

∫
· · ·
∫

f q
Xdx∼z =

Q∑
q=1

pqF q
z ,

and similarly, P∼z =∑Q
q=1 pqF q

∼z, from which dP∼z =∑Q
q=1 pqdF q

∼z. Then, let us consider the first compo-
nent of the generalized functional ANOVA decom-
position of a three-variate mapping:

gPX
i (xi) =

∫
X∼i

g(x)dP∼i(x∼i) − gPX
0

−
∫
X j

gPX
i, j (xi, x j )dPj(x) (A24)

−
∫
Xk

gPX
i,k(xi, xk)dPk(x)

−
∫
X j,k

gPX
i, j,k(xi, x j, xk)dPj,k(x) (A25)

where gPX
i, j (xi, x j ), gPX

i,k(xi, xk) and gPX
i, j,k(xi, x j, xk) are

the effect functions of the generalized functional
ANOVA expansion of g(x) under PX(x). For clarity,
it is useful to introduce the functions

hPX
i (xi) =

∫
X∼i

g(x)dP∼i(x∼i), (A26)

hPX
i| j (xi) =

∫
X j

gPX
i, j (xi, x j )dPj(x j ) (A27)

and

hPX
i| j,k(xi) =

∫
X j,k

gPX
i, j,k(xi, x j, xk)dPj,k(x). (A28)

We can then rewrite the previous equation as:

gPX
i (xi) = hPX

i (xi) − hPX
i| j (xi) − hPX

i|k (xi) − hPX
i| j,k(xi) − gPX

0 . (A29)

Because at x, PX(x) =∑Q
q=1 pqF q

X (x), one can write

hPX
i (xi) =

∫
X∼i

g(x)
Q∑

q=1

pqdF q
∼i =

Q∑
q=1

pq

∫
X q

∼i

g(x)dF q
∼i

=
Q∑

q=1

pqhq
i (xi). (A30)

Similarly, for hPX
i| j (xi) one finds:

hPX
i| j (xi) =

Q∑
q=1

pq

∫
X q

j

gPX
i, j (xi, x j )dF q

j

=
Q∑

q=1

pqhP,q
i| j (xi), (A31)

where hP,q
i| j (xi) = ∫X q

j
gPX

i, j (xi, x j )dF q
j . A similar ex-

pression holds for hPX
i|k (xi). For hPX

i| j,k(xi), one has

hPX
i| j,k(xi) =

∫
X j,k

gPX
i, j,k(xi, x j, xk)dPj,k(x)

=
∫
X j,k

gPX
i, j,k(xi, x j, xk)

Q∑
q=1

pqdF q
j,k(x j, xk)

=
Q∑

q=1

pq

∫
X q

j,k

gPX
i, j,k(xi, x j, xk)dF q

j,k(x)

=
Q∑

q=1

pqhP,q
i| j,k(xi), (A32)

where hP,q
i| j,k(xi) = ∫X q

j,k
gPX

i, j,k(xi, x j, xk)dF q
j,k(x j, xk). Fi-

nally, for g0 one has:

g0 =
Q∑

q=1

pqgq
0, (A33)

with

gq
0 =
∫
X

g(x)dF q
X (x). (A34)

In summary, one obtains:

gPX
i (xi) =

Q∑
q=1

pq

[
hq

i (xi) − gq
0 − hP,q

i|k (xi) − hP,q
i| j (xi)

− hP,q
i| j,k(xi)

]
. (A35)



328 Borgonovo et al.

Then, letting gPX,q
i (xi) = hq

i (xi) − gq
0 − hPX,q

i| j (xi) −
hPX,q

i|k (xi) − hPX,q
i| j,k (xi), one can write

gPX
i (xi) =

Q∑
q=1

pqgPX,q
i (xi). (A36)

The procedure can be repeated for any subset of in-
dices z. Then,

g =
∑
z∈2Z

Q∑
p=1

pqgPX,q
z (xz), (A37)

and letting˜̃gz =∑Q
p=1 pqgPX,q

z (xz), one has

g =
∑
z∈2Z

˜̃gz. (A38)

�

Proof of Proposition A.2. For the proof, we only
need to prove that each g̃z(xz) may not satisfy the
weak annihilating condition for every possible mix-
ture measure PX consistent with g. The weak annihi-
lating condition requires that

∫
g̃z(xz)pxz (xz)dxir =

∫ Q∑
q=1

pqgq
z(xz)pxz (xz)dxir

= 0, ir ∈ z (A39)

where |z| is the cardinality of z = {i1, i2, . . . , i|z|}, and
pxz (xz) is the marginal pdf of PX for xz.

∫
g̃z(xz)pxz (xz)dxir =

Q∑
q=1

pq

∫
gq

z(xz)pxz (xz)dxir

=
Q∑

q=1

pq

∫
gq

z(xz)
Q∑

q′=1

pq′ f q′
xz (xz)dxir

=
Q∑

q=1

pq

⎛⎝ Q∑
q′=1

pq′
∫

gq
z(xz) f q′

xz (xz)dxir

⎞⎠,

(A40)

where f q′
xz (xz) is the marginal pdf of F q′

X for xz. Since
gq

z(xz) is an effect function of the generalized func-
tional ANOVA expansion of g with respect to F q

X , the
weak annihilating condition∫

gq
z(xz) f q

xz
(xz)dxir = 0 (A41)

holds. Substituting Equation (A41) into Equation
(A40) yields∫

g̃z(xz)pxz (xz)dxir =
Q∑

q=1

pq

⎛⎝ Q∑
q′=1,q′ �=q

pq′
∫

gq
z(xz) f q′

xz (xz)dxir

⎞⎠.

(A42)

Due to Equation (A41), there must exist measures
F q′

X different from F q
X such that∫

gq
z(xz) f q′

xz
(xz)dxir �= 0. (A43)

If this were not true, i.e.,∫
gq

z(xz) f q′
xz

(xz)dxir = 0 (A44)

holds for all possible (it can be infinite) measures F q′
X

consistent with g, then

gq
z(xz) ≡ 0. (A45)

This is true for any subset z. If all gq
z(xz) ≡ 0, then

g(x) is a constant, which contradicts to that g(x) is an
arbitrary square integrable function. Therefore, the
weak annihilating condition may not hold for g̃q

z(xz),
and

g(x) =
∑
z∈2Z

g̃z(xz)

may not be a generalized functional ANOVA
expansion. �
Proof of Proposition A.3. When the simulator inputs
distribution is a mixture of the model input distri-
butions, the resulting distribution PX is not a prod-
uct measure, no matter whether each of the F q

X ’s is a
product measure or not. Therefore, Equation (A14)
is a generalized functional ANOVA expansion. The
generic first order effect function is given by

gPX
i (xi) =

∫
X∼i

g(x)dPx∼i (x∼i) − f0

−
∑

{i}⊂v⊆2Z

∫
X∼i

gPX
v (xv)dPx∼i (x∼i).

Even if the first term on the right hand
side is non-decreasing, the subtraction of the∑

{i}⊂v∈2Z

∫
X∼i

gPX
v (xv)dPx∼i (x∼i) term does not guar-

antee that

gPX
i (xi) ≤ gPX

i (xi + hi), for all hi > 0. (A46)

Hence, the first order effect functions gPX
i (i =

1, 2, . . . , n) may not retain the monotonicity of g. �
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Proof of Proposition A.4. By the law of total vari-
ance we have:

V
PX [G] = E�{Vq[G]} + V�{E[G]} (A47)

=
Q∑

q=1

pqVq[G] + V�{E[G]} (A48)

where the inner variances and expectations are taken
with X being distributed according to F q

X
∈ F . If the

measures in F are generic then by Equations (14)
and (A48) we can write

V
PX [G] =

Q∑
q=1

pq

⎡⎣Vq
z + Cov

⎛⎝gq
z(Xz),

∑
z�=v∈2Z

gq
v(Xv)

⎞⎠⎤⎦
+ V�{E[G]}. (A49)

Then, rewriting the above equation, one obtains

V
PX [G] =

Q∑
q=1

pqV
q
z +

Q∑
q=1

pqCov

⎛⎝gq
z(Xz),

∑
z�=v∈2Z

gq
v(Xv)

⎞⎠
+ V�{E[G]}. (A50)

Notice that

V�{E[G]} =
Q∑

q=1

pq(Eq[G] − E[G])2, (A51)

so, it is also a weighted average over the measures in
F . One therefore obtains

V
PX [G] = Ṽ a + Ṽ b + Ṽ c. (A52)

�

APPENDIX B: DETAILS ON THE D-MORPH
REGRESSION

A sufficient condition for respecting hierarchical
orthogonality of the effect functions of a generalized
functional ANOVA expansion is that the basis func-
tions of any lower order effect function span a sub-
space normal to the subspace spanned by the basis
functions of the nested higher order effect functions.
Specifically, consider that V is a Hilbert subspace
spanned by {v1, v2, . . . , vk}, and a larger subspace
U (⊃ V ) is spanned by {v1, v2, . . . , vk, vk+1, . . . , vm},
m > k. Then, we have the decomposition U = V ⊕
V⊥, where V⊥ and V are orthogonal. Note that there
always exists a vector in V⊥ (i.e., a linear combina-
tion of v1, v2, . . . , vk, vk+1, . . . , vm) orthogonal to all
vectors in V . Then, let g ∈ L2(X ,B(X ), F ). Note that

if the basis functions of a first order effect function
are a subset of the basis functions in the nested sec-
ond order ones the generalized ANOVA effect func-
tions meet the hierarchical orthogonality conditions.
Using the approximation scheme in Equation (42),
one obtains the second order generalized functional
ANOVA expansion for g(x) as

g(x) ≈ gF
0 +

n∑
i=1

k∑
r=1

α
(0)i
r ϕ

(i)
r (xi) +

∑
1≤i< j≤n

[
k∑

r=1

α
(i j)i
r ϕ

(i)
r (xi)

+
k∑

r=1

α
(i j) j
r ϕ

( j)
r (x j ) +

l∑
p=1

l∑
q=1

β
(0)i j
pq ϕ

(i)
p (xi)ϕ

( j)
q (x j )

⎤⎦.

(B1)

The unknown parameters {α}, {β} can be obtained
through a least-squares regression from an input-
output sample (x(s), g(x(s))), s = 1, 2, . . . , N, in which
the input realizations follow the distribution F .
Equation (B1) can be written in vector form as

φ(x(s))T c = g(x(s)) − gF
0 , (s = 1, 2, . . . , N) (B2)

where c is a t-dimensional vector composed of all the
unknown parameters {α}, {β}. In matrix form we can
write Equation (B2) as �c = b, and by least-squares
we obtain

�T �c = �T b. (B3)

Because the basis functions of the first order effect
functions are also used in the second order effect
functions, some equations in (B3) are duplicate and
can be removed to obtain a rectangular algebraic
equation system Ac = d. Such a system is consistent
and has an infinite number of solutions for c with the
general form

c = A+d + (I − A+A)u, (B4)

where u is an arbitrary vector, I is an identity ma-
trix and A+ is the generalized inverse of A satisfy-
ing all four Penrose conditions (Rao & Mitra, 1971).
The infinite number of solutions for c produced by
the arbitrary vector u compose a convex set M which
provides a possibility to search for a specific solution
satisfying an extra requirement along an exploration
path c(s) with a single parameter s ∈ [0,∞) within
M. This search process can be characterized by a dif-
ferential equation obtained by differentiating both
sides of Equation (B4) with respect to s

dc(s)
ds

= (I − A+A)
du(s)

ds
= Pv(s) (B5)
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where P = (I − A+A) is an orthogonal projector sat-
isfying P = P2 = PT P. The function vector v(s) may
be chosen so that a specified cost function K(c(s))
(e.g., model variance, fitting smoothness, or par-
ticularly here the hierarchical orthogonality of the
ANOVA effect functions) is minimized along the ex-
ploration path. Setting

v(s) = −∂K(c(s))
∂c

, (B6)

yields (Li & Rabitz, 2012)

dK(c(s))
ds

=
(

∂K(c(s))
∂c

)T dc(s)
ds

=
(

∂K(c(s))
∂c

)T

Pv(s)

= −
(

P
∂K(c(s))

∂c

)T(
P

∂K(c(s))
∂c

)
≤ 0, (B7)

i.e., the K is continuously lowered as s �→ ∞ system-
atically refining the generalized functional ANOVA
expansion. Therefore,

c∞ = lim
s→∞ c(s) (B8)

not only is a solution of the system Ac = d, but also
minimizes K (Li & Rabitz, 2012). If the cost function
is a quadratic form in c, K = 1

2 cT Bc, where B is sym-
metric and non-negative definite, c∞ can be found an-
alytically as (Li & Rabitz, 2012):

c∞ = Vt−r
(
U T

t−rVt−r
)−1

U T
t−rA

+d, (B9)

where Ut−r, and Vt−r are the last t − r columns of ma-
trices U and V obtained from the singular value de-
composition of matrix PB, where

PB = U
[

Sr 0
0 0

]
V T (B10)

with Sr being a diagonal matrix composed of the r
non-zero singular values of PB. Equation (B9) is the
key formula implementation of the D-MORPH re-
gression. The solution c∞ is a special linear combi-
nation of the elements of c = A+d obtained by the
least-squares regression. Note that to determine c∞
one only needs to determine A+ and perform the sin-
gular value decomposition of matrix PB. Finally, we
observe that the construction of matrix B defining the
hierarchical orthogonality condition of different or-
der ANOVA effect functions is straightforward, but
the formulas take a large space. We refer to Li and
Rabitz (2012) for the detailed formulation. To evalu-

ate fit, the analyst can use one or more of the follow-
ing performance measures:

1. The coefficient of model determination,

R2 = 1 −
1
N

∑N
s=1(g(x(s)) − ĝ(x(s)))2

σ 2(g(x))
, (B11)

where ĝ(x(s)) is the D-MORPH prediction value
of g(x(s)) and

σ 2(g(x)) ≈ 1
N

N∑
s=1

(g(x(s)) − ḡ(x))2, (B12)

with ḡ(x) being the mean value of g(x) for the
training or testing data;

2. The relative average absolute error (RAAE),

RAAE =
1
N

∑N
s=1 |g(x(s)) − ĝ(x(s))|

σ (g(x))
, (B13)

3. The relative maximum absolute error (RMAE),

RMAE = maxs |g(x(s)) − ĝ(x(s))|
σ (g(x))

. (B14)

Accurate fit is registered when R2 � 1 and the values
of the remaining performance measures close to zero.

APPENDIX C: DETAILED CALCULATIONS
FOR THE ISHIGAMI TEST FUNCTION

Given the input-output mapping of the Ishigami
function and the distributions/supports assigned in
Section 4.2, one obtains the following analytical ex-
pressions of the functional ANOVA expansion also
reported in Borgonovo et al. (2018):

1. Under F 1
X on X1 = [−π, π ]3:

gF 1

0 = a
2
;

gF 1

1 = sin(x1)
(

1 + b
π4

5

)
;

gF 1

2 = a sin2(x2) − a
2
;

gF 1

1,3 = b sin(x1)
(

x4
3 − π4

5

)
;

(C1)

2. Under F 2
X on X2 = (−∞,∞)3:

gF 2

0 = a
2

(1 − e−2);
gF 2

1 = sin(x1)(1 + 3b);
gF 2

2 = a sin2(x2) − a
2

(1 − e−2);
gF 2

1,3 = b sin(x1)
(
x4

3 − 3
)
.

(C2)
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3. Under F 3
X on X3 = [0, π ]3:

gF 3

0 = a
2

+ 2
π

(
1 + b

π4

5

)
;

gF 3

1 =
(

sin(x1) − 2
π

)(
1 + b

π4

5

)
;

gF 3

2 = a sin2(x2) − a
2
;

gF 3

3 = 2b
π

(
x4

3 − π4

5

)
;

gF 3

1,3 = b
(

sin(x1) − 2
π

)(
x4

3 − π4

5

)
.

(C3)

Then, with �F = { 1
3 , 1

3 , 1
3 }, by Equation (A9) in

Theorem A.1 a mixture ANOVA representation of g
on R

3 is given by:

1. If x ∈ X2 \ X1 with the single distribution F 2
X:

g̃0 = a
2

(1 − e−2);
g̃1(x1) = sin(x1)(1 + 3b);
g̃2(x2) = a sin2(x2) − a

2
(1 − e−2);

g̃1,3(x1, x3) = b sin(x1)
(
x4

3 − 3
)
.

(C4)

2. If x ∈ X1 \ X3 with the two distributions F 1
X, F 2

X :

g̃0 = a
(

1
2

− e−2

4

)
;

g̃1(x1) = sin x1

(
3
2

b + 1
10

π4b + 1
)

;

g̃2(x2) = a
(

sin2 x2 − 1
2

+ e−2

4

)
;

g̃1,3(x1, x3) = b sin x1

10

(
10x4

3 − π4 − 15
);

3. If x ∈ X3 with all the three distributions:

g̃0 = 1
2

a + 2
15

π3b − ae−2

6
+ 2

3π
;

g̃1(x1) = sin x1

(
1 + b − 2b

15
π4

)
− 2

3π
− 2b

15
π3;

g̃2(x2) = a
(

sin2 x2 − 1
2

+ e−2

6

)
;

g̃3(x1) = 2b
3π

(
x4

3 − π4

5

)
;

g̃1,3(x1, x3) = 2
15

π3b − b sin x1 + bx4
3 sin x1

− 2
3π

bx4
3 − 2

15
π4b sin x1.

The generalized functional ANOVA effect func-
tions at ntrain = 8000 points have the expressions:

gPX
0 = 3.9550,

gPX
1 (x1) = 2.3180 sin(x1) − 0.4776,

gPX
2 (x2) = 7 sin2(x2) − 3.3241,

gPX
3 (x3) = 0.0277x4

3 − 0.3868,

gPX
1,3(x1, x3) = 0.1x4

3 sin(x1) − 0.0277x4
3

− 1.3182 sin x1 + 0.2335.

(C5)

For comparison, with the assigned parameterization
of the Ishigami model used in these numerical exper-
iments, the mixture ANOVA effects g̃z are:

1. If x ∈ X2 \ X1 with the single distribution F 2
X:

g̃0 = 3.0263,

g̃1(x1) = 1.3 sin x1,

g̃2(x2) = 7 sin2 x2 − 3.0263,

g̃3(x3) = 0,

g̃1,3(x1, x3) = 0.1 sin x1x4
3 − 0.3 sin x1.

(C6)

2. If x ∈ X1 \ X3 with the two distributions F 1
X, F 2

X :

g̃0 = 3.2632,

g̃1(x1) = 2.1241 sin x1,

g̃2(x2) = 7 sin2 x2 − 3.2632,

g̃3(x3) = 0,

g̃1,3(x1, x3) = 0.1 sin x1x4
3 − 1.1241 sin x1.

(C7)

3. If x ∈ X3 with all the three distributions:

g̃0 = 3.9677,

g̃1(x1) = 2.3988 sin x1 − 0.6256,

g̃2(x2) = 7 sin2 x2 − 3.3421,

g̃3(x3) = 0.0212x4
3 − 0.4134,

g̃1,3(x1, x3) = 0.1 sin x1x4
3 − 1.3988 sin x1

− 0.0212x4
3 + 0.4134.

(C8)

Note that the sum of three ANOVA expansions
at any x ∈ X is exactly equal to g(x), which demon-
strates the theoretical validity of Theorem A.1. Fig. 3
in main text allows a visual comparison.

Tables C1 and C2 report results of numerical
tests concerning the “zero mean” and orthogonality
properties of the generalized ANOVA and mixture
effect functions. They show that all effect functions
obtained under the generalized functional ANOVA
decomposition of Equation (C5) satisfy the zero
mean (bold face numbers in Table C1) and hierar-
chical orthogonality conditions (bold face numbers
in Table C2), while the corresponding mixture effect
functions do not.
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APPENDIX D: ADDITIONAL DETAILS ON
THE DICE TEST CASE

The first-order generalized ANOVA effect func-
tions for the DICE model, when the reference dis-
tribution is PX, are approximated by the following
second-order polynomials:

gPX
1 (x1) ≈ −0.0019 + 0.0199 x1 + 0.0019 x2

1,

gPX
2 (x2) ≈ −0.0069 + 0.0628 x2 + 0.0070 x2

2,

gPX
3 (x3) ≈ 0.0945 + 0.4706 x3 − 0.0947 x2

3,

gPX
4 (x4) ≈ −0.0296 − 0.0645 x4 + 0.0296 x2

4,

gPX
5 (x5) ≈ 0.0706 + 0.0790 x5 − 0.0708 x2

5,

gPX
6 (x6) ≈ 0.0095 + 0.1029 x6 − 0.0095 x2

6,

gPX
7 (x7) ≈ −0.0023 − 0.0451 x7 + 0.0023 x2

7,

gPX
8 (x8) ≈ 0.0023 − 0.0059 x8 − 0.0023 x2

8.
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