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Human brain performs remarkably well in segregating a particular speaker from interfering

ones in a multispeaker scenario. We can quantitatively evaluate the segregation capability

by modeling a relationship between the speech signals present in an auditory scene, and

the listener’s cortical signals measured using electroencephalography (EEG). This has

opened up avenues to integrate neuro-feedback into hearing aids where the device can

infer user’s attention and enhance the attended speaker. Commonly used algorithms

to infer the auditory attention are based on linear systems theory where cues such

as speech envelopes are mapped on to the EEG signals. Here, we present a joint

convolutional neural network (CNN)—long short-term memory (LSTM) model to infer

the auditory attention. Our joint CNN-LSTM model takes the EEG signals and the

spectrogram of the multiple speakers as inputs and classifies the attention to one of

the speakers. We evaluated the reliability of our network using three different datasets

comprising of 61 subjects, where each subject undertook a dual-speaker experiment.

The three datasets analyzed corresponded to speech stimuli presented in three different

languages namely German, Danish, and Dutch. Using the proposed joint CNN-LSTM

model, we obtained a median decoding accuracy of 77.2% at a trial duration of 3 s.

Furthermore, we evaluated the amount of sparsity that the model can tolerate by means

of magnitude pruning and found a tolerance of up to 50% sparsity without substantial

loss of decoding accuracy.

Keywords: EEG, cocktail party effect, auditory attention, long short term memory networks, hearing aids, speech

enhancement, speech separation, convolutional neural network

1. INTRODUCTION

Holding a conversation in presence of multiple noise sources and interfering speakers is a task that
people with normal hearing carry out exceptionally well. The inherent ability to focus the auditory
attention on a particular speech signal in a complex mixture is known as the cocktail party effect
(Cherry, 1953). However, an automatic machine based solution to the cocktail party problem is
yet to be discovered despite the intense research for more than half a century. Such a solution
is highly desirable for a plethora of applications such as human-machine interface (e.g., Amazon
Alexa), automatic captioning of audio/video recordings (e.g., YouTube, Netflix), advanced hearing
aids etc.

In the domain of hearing aids, people with hearing loss suffer from deteriorated speech
intelligibility when listening to a particular speaker in a multispeaker scenario. Hearing aids
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currently available in the market often do not provide sufficient
amenity in such scenarios due to their inability to distinguish
between the attended speaker and the ignored ones. Hence,
additional information about the locus of attention is highly
desirable. In visual domain, selective attention is explained in
terms of visual object formation where an observer focuses
on a certain object in a complex visual scene (Feldman,
2003). This was extended to auditory domain where it was
suggested that phenomena such as cocktail party effect could
be better understood using auditory object formation (Shinn-
Cunningham, 2008). In other words, brain forms objects based
on the multiple speakers present in an auditory scene and
selects those objects belonging to a particular speaker during
attentive listening (top-down or late selection). However, flexible
locus of attention theory was concurrently proposed where the
late selection is hypothesized to occur at low cognitive load
and early selection is hypothesized to occur at high cognitive
load (Vogel et al., 2005). This has inspired investigation into
whether cortical signals could provide additional information
that helps to discriminate between the attended speaker and
interfering speakers. In a dual-speaker experiment, it was
observed that the cortical signals measured using implanted
electrodes track the salient features of the attended speaker
stronger than the ignored speaker (Mesgarani and Chang, 2012).
Similar results were obtained using magnetoencephalography
and electroencephalography (EEG) (Ding and Simon, 2012;
O’Sullivan et al., 2014). In recent years, EEG analyses have
become the commonly used methodology in attention research
which is lately known as auditory attention decoding (AAD).

Both low level acoustic features (speech envelope or speech
spectrogram) and high level features (phonemes or phonetics)
have been used to investigate the speech tracking in cortical
signals (Aiken and Picton, 2008; Lalor and Foxe, 2010; Di Liberto
et al., 2015; Broderick et al., 2019). State-of-the-art AAD
algorithms are based on linear systems theory where acoustic
features are linearly mapped on to the EEG signals. This mapping
can be either in the forward direction (Lalor and Foxe, 2010;
Fiedler et al., 2017; Kuruvila et al., 2020) or in the backward
direction (O’Sullivan et al., 2014; Mirkovic et al., 2015; Biesmans
et al., 2017). These algorithms have been successful in providing
insights into the underlying neuroscientific processes through
which brain suppresses the ignored speaker in a dual-speaker
scenario. Using speech envelope as the input acoustic feature,
linear algorithms could generate system response functions that
characterize the auditory pathway in the forward direction. These
system response functions are referred to as temporal response
function (TRF) (Lalor and Foxe, 2010). Analysis of the shape of
TRFs has revealed that the human brain encodes the attended
speaker different to that of the ignored speaker. Specifically,
TRFs corresponding to the attended speaker have salient peaks
around 100 and 200 ms which are weaker in TRFs corresponding
to the ignored speaker (Fiedler et al., 2019; Kuruvila et al.,
2021). Similar attention modulation effects were observed when
the acoustic input was modified to using speech spectrogram
or higher level features such as phonetics (Di Liberto et al.,
2015). Likewise using backward models, the input stimulus can
be reconstructed from EEG signals (stimulus reconstruction

method) and a listener’s attention could be inferred by comparing
the reconstructed stimulus to the input stimuli (O’Sullivan et al.,
2014). These findings give the possibility of integrating AAD
algorithms into hearing aids which in combination with robust
speech separation algorithms could greatly enhance the amenity
provided to the users.

It has been well-established that the human auditory system
is inherently non-linear (Zwicker and Fastl, 2013) and AAD
analysis based on linear systems theory addresses the issue of
non-linearity to a certain extend in the preprocessing stage. For
example, during speech envelope extraction. Another limitation
of linear methods is the longer time delay required to classify
attention (Fuglsang et al., 2017; Geirnaert et al., 2019), although
there were attempts to overcome this limitation (Miran et al.,
2018; Kuruvila et al., 2021). In the last few years, deep neural
networks have become popular especially in the field of computer
vision and natural language processing. Since neural networks
have the ability to model non-linearity, they have been used
to estimate the dynamic state of brain from EEG signals
(Craik et al., 2019). Similarly in AAD paradigm, convolutional
neural network (CNN) based models were proposed where the
stimulus reconstruction algorithm was implemented using the
CNN model to infer attention (Ciccarelli et al., 2019; de Taillez
et al., 2020). A direct classification of attention which bypasses
the regression task of stimulus reconstruction, instead classifies
whether the attention is to speaker 1 or speaker 2 directly
was proposed in Ciccarelli et al. (2019) and Vandecappelle
et al. (2021). In a non-competing speaker experiment, classifying
attention as successful vs unsuccessful or match vs mismatch was
further addressed inMonesi et al. (2020) and Tian andMa (2020).

All aforementioned neural network models either did not use
speech features or made use of only speech envelope as the input
feature. As neural networks are data driven models, additional
data/information about the speech stimuli may improve the
performance of the network. In speech separation algorithms
based on neural networks, spectrogram is used as the input
feature to separate multiple speakers from a speech mixture
(Wang andChen, 2018). Inspired by the joint audio-visual speech
separation model (Ephrat et al., 2018), we present a novel neural
network framework that make use the speech spectrogram of
multiple speakers and the EEG signals as inputs to classify the
auditory attention.

The rest of the paper is organized as follows. In section 2,
details of the datasets that were used to train and validate the
neural network are provided. In section 3, the neural network
architecture is explained in detail. The results are presented in
sections 4, 5 provides a discussion on the results.

2. MATERIALS AND METHODS

2.1. Examined EEG Datasets
We evaluated the performance of our neural network model
using three different EEG datasets. The first dataset was collected
at our lab and it will be referred to as FAU_Dataset (Kuruvila
et al., 2021). The second and third datasets are publicly available
and they will be referred to as DTU_Dataset (Fuglsang et al.,
2018) and KUL_Dataset (Das et al., 2019), respectively.
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2.1.1. FAU_Dataset

This dataset comprised of EEG collected from 27 subjects who
were all native German speakers. A cocktail party effect was
simulated by presenting two speech stimuli simultaneously using
loudspeakers and the subject was asked to attend selectively
to one of the two stimuli. Speech stimuli were taken from
the slowly spoken news section of the German news website
www.dw.de and were read by two male speakers. The experiment
consisted of six different presentations with each presentation
being approximately fiveminutes longmaking it a total of 30min.
EEG was collected using 21 AgCl electrodes placed over the scalp
according to the 10–20 EEG format. The reference electrode was
placed at the right mastoid, the ground electrode was placed at
the left earlobe and the EEG signals were sampled at 2,500 Hz.
More details of the experiment could be found in Kuruvila et al.
(2021).

2.1.2. DTU_Dataset

This is a publicly available dataset that was part of the work
presented in Fuglsang et al. (2017). The dataset consisted of 18
subjects who selectively attended to one of the two simultaneous
speakers. Speech stimuli were excerpts taken from Danish
audiobooks that were narrated by a male and a female speaker.
The experiment consisted of 60 segments with each segment
being 50 s long making it a total of 50 min. EEG were recorded
using 64 electrodes and were sampled at 512 Hz. The reference
electrode was chosen either as the left mastoid or as the right
mastoid after visual inspection. Further details can be found in
Fuglsang et al. (2017, 2018).

2.1.3. KUL_Dataset

The final dataset that was analyzed is another publicly
available dataset where 16 subjects undertook selective attention
experiment. Speech stimuli consisted of four Dutch stories
narrated by male speakers. Each story was 12 min long which
was further divided into two 6 min presentations. EEG was
recorded using 64 electrodes and were sampled at 8,196 Hz. The
reference electrode was chosen either as TP7 or as TP8 electrode
after visually inspecting the quality of the EEG signal measured
at these locations. The experiment consisted of three different
conditions namely HRTF, dichotic and repeated stimuli. In this
work, we analyzed only the dichotic condition which was 24 min
long. Additional details about the experiment and the dataset can
be found in Das et al. (2016, 2019).

Details of the datasets are summarized again in Table 1. A
total of 34.9 h of EEG data were examined in this work. However,
the speech stimuli used were identical across subjects per dataset
and they totalled 104 min of dual-speaker data. In all the three
datasets that were analyzed, the two speakers read out different
stimuli. Moreover, the stimuli were presented only once to the
subject in order to avoid any learning effect. For each subject, the
training and the test data were split as 75–25% and we ensured
that no part of the EEG or the speech used in the test data was part
of the training data. The test data were further divided equally
into two halves and one half was used as a validation set during
the training procedure.

2.2. Data Analysis
As EEG signals analyzed were collected at different sampling
frequencies, they were all low pass filtered at a cut off frequency
of 32 Hz and downsampled to 64 Hz sampling rate. Additionally,
signals measured at only 10 electrode locations were considered
for analysis and they were F7, F3, F4, F8, T7, C3, Cz, C4, T8, Pz.
We analyzed four different trial durations in this study namely
2, 3, 4, and 5 s. For 2 s trials, an overlap of 1 s was applied. Thus,
there were 118,922 trials in total for analysis. In order to maintain
the total number of trials constant, 2 s of overlap was used in case
of 3 s trial, 3 s of overlap was used in case of 4 s trial and 4 s overlap
was used in case of 5 s trial. EEG signals in each trial were further
high pass filtered with a cut off frequency of 1 Hz and the filtered
signals were normalized to have zero mean and unit variance at
each electrode location.

Speech stimuli were initially low pass filtered with a cut off
frequency of 8 kHz and were downsampled to a sampling rate
of 16 kHz. Subsequently, they were segmented into trials with
a duration of 2, 3, 4, and 5 s at an overlap of 1, 2, 3, and 4 s,
respectively. The speech spectrogram for each trial was obtained
by taking the absolute value of the short-time Fourier transform
(STFT) coefficients. The STFT was computed using a Hann
window of 32 ms duration with a 12 ms overlap. Most of the
analysis in our work was performed using 3 s trial and other trial
durations were used only for comparison purposes. A summary
of the dimensions of EEG signals and speech spectrogram
after preprocessing for different trial durations is provided
in Table 2.

3. NETWORK ARCHITECTURE

A top level view of the proposed neural network architecture
is shown in Figure 1. It consists of three subnetworks namely
EEG_CNN, Audio_CNN, and AE_Concat.

TABLE 1 | Details of the EEG datasets analyzed.

Name Number of

subjects

Duration

per subject

(minutes)

Total

duration

(hours)

Experiment

type

Language

FAU_Dataset 27 30 13.5 Male +

Male

German

DTU_Dataset 18 50 15 Male +

Female

Danish

KUL_Dataset 16 24 6.4 Male +

Male

Dutch

TABLE 2 | Trial duration vs. dimension of the input.

Trial duration (sec) EEG data

(time × num_electrodes)

Speech data

(time × freq)

2 128 × 10 101 × 257

3 192 × 10 151 × 257

4 256 × 10 201 × 257

5 320 × 10 251 × 257
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3.1. EEG_CNN
The EEG subnetwork comprised of four different convolutional
layers as shown in Table 3. The kernel size of the first layer was
chosen as 24 and it corresponded to a latency of 375 ms in
the time domain. A longer kernel was chosen because previous
studies have shown that the TRFs corresponding to attended
and unattended speakers differ around 100 and 200 ms (Fiedler
et al., 2019; Kuruvila et al., 2021). Therefore, a latency of 375
ms could help us to extract features that modulate the attention
to different speakers in a dual-speaker environment. All other
layers were initialized with kernels of shorter duration as shown
in Table 3. All convolutions were performed using a stride of 1
× 1 and after the convolutions, max pooling was used to reduce
the dimensionality. To prevent overfitting on the training data
and improve generalization, dropout (Srivastava et al., 2014),
and batch normalization (BN) (Ioffe and Szegedy, 2015) were
applied. Subsequently, the output was passed through a non-
linear activation function which was chosen as rectified linear
unit (ReLU). The dimension of the input to EEG_CNN varied
according to the length of the trial (Table 2) but the dimension of
the output was fixed at 48 × 32. The max pooling parameter was
slightly modified for different trial durations to obtain the fixed
output dimension. The first dimension (48) corresponded to the
temporal axis and the second dimension (32) corresponded to
the number of convolution kernels. The dimension of the output
that mapped the EEG signals measured at different electrodes was
reduced to one by the successive application ofmax pooling along
the electrode axis.

3.2. Audio_CNN
The audio subnetwork that processed the speech spectrogram
consisted of five convolution layers whose parameters are shown
in Table 4. All standard procedures such as max pooling, batch
normalization, dropout, and ReLU activation were applied to the
convolution output. Similar to the EEG_CNN, dimension of the
input to the Audio_CNN varied according to the trial duration
(Table 2) but the dimension of the output feature map was always

TABLE 3 | CNN parameters of the EEG subnetwork.

Number of kernels Kernel size Dilation Padding Maxpool

Layer 1 32 24 × 1 1.1 12.0 2.1

Layer 2 32 7 × 1 2.1 6.0 1.2

Layer 3 32 7 × 5 1.1 3.2 2.5

Layer 4 32 7 × 1 1.1 3.0 1.1

TABLE 4 | CNN parameters of the Audio subnetwork.

Number of kernels Kernel size Dilation Padding Maxpool

Layer 1 32 1 × 7 1.1 0.3 1.1

Layer 2 32 7 × 1 1.1 0.0 1.4

Layer 3 32 3 × 5 8.8 0.16 1.2

Layer 4 32 3 × 3 16.16 0.16 1.1

Layer 5 1 1 × 1 1.1 0.0 2.2

FIGURE 1 | The architecture of the proposed joint CNN-LSTM model. Input to the audio stream is the spectrogram of speech signals and input to the EEG stream is

the downsampled version of EEG signals. Number of Audio_CNNs depends on the number of speakers present in the auditory scene (here two). From the outputs of

Audio_CNN and EEG_CNN, speech and EEG embeddings are created which are concatenated together and passed to a BLSTM layer followed by FC layers.
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fixed at 48 × 16. As the datasets considered in this study were
taken from dual-speaker experiments, the Audio_CNN was run
twice resulting in two sets of output.

3.3. AE_Concat
The feature maps obtained from EEG_CNN and Audio_CNN
were concatenated along the temporal axis and the dimension of
the feature map after concatenation was 48 × 64. In this way,
we ensured that half of the feature map was contributed from
the EEG data and half of the feature map was contributed from
the speech data. This also provides the flexibility to extend to
more than two speakers such as the experiment performed in
Schäfer et al. (2018). The concatenated feature map was passed
through a bidirectional long short-term memory (BLSTM) layer
(Hochreiter and Schmidhuber, 1997; Schuster and Paliwal, 1997)
which was followed by four fully connected (FC) layers. For the
first three FC layers, ReLU activation was used and for the last FC
layer, softmax activation was applied which helps us to classify
the attention to speaker 1 or speaker 2.

The total number of EEG samples and audio samples (trials)
available was 118,922 and 75% of the total available samples
(89,192) were used to train the network and the rest of the
available samples (29,730) were equally split as validation and
test data. The network was trained for 80 epochs using a mini
batch size of 32 samples and with a learning rate of 5 ∗ 10−4.
The drop out probability was set to 0.25 for the EEG_CNN
and the AE_Concat subnetworks but it was increased to 0.4 for
the Audio_CNN subnetwork. A larger drop out probability was
used for the Audio_CNN because speech stimuli were identical
across subjects for a particular dataset. Hence, when trained on
data from multiple subjects, the speech data remain identical
and the network may remember the speech spectrogram of the
training data. The network was optimized using Adam optimizer
(Kingma and Ba, 2014) and the loss function used was binary
cross entropy. As neural network training can result in random
variations from epoch to epoch, the test accuracy was calculated
as the median accuracy of the last five epochs (Goyal et al., 2017).
The network was trained using an Nvidia Geforce RTX-2060 (6
GB) graphics card and took ∼36 h to complete the training. The
neural network model was developed in PyTorch and the python
code is available at: https://github.com/ivine-GIT/joint_CNN_
LSTM_AAD.

3.4. Sparse Neural Network: Magnitude
Pruning
Despite neural network learning being a sophisticated algorithm,
it is still not widely used in embedded devices due to the
high memory and computational power requirements. Sparse
neural networks have been recently proposed to overcome
these challenges and enable running these models on embedded
devices (Han et al., 2015). In sparse networks, majority of the
model parameters are zeros and zero-valued multiplications can
be ignored thereby reducing the computational requirement.
Similarly, only non-zero weights need to be stored on the device
and for all the zero-valued weights, only their position needs to
be known reducing the memory footprint. Empirical evidences

have shown that neural networks tolerate high level of sparsity
(Han et al., 2015; Narang et al., 2017; Zhu and Gupta, 2017).

Sparse neural networks are found out by using a procedure
known as network pruning. It consists of three steps. First, a
large over-parameterized network is trained in order to obtain
a high test accuracy as over-parameterization has stronger
representation power (Luo et al., 2017). Second, from the trained
over-parameterized network, only important weights based on
certain criterion are retained and all other weights are assumed
to be redundant and reinitialized to zero. Finally, the pruned
network is fine-tuned by training it further using only the
retained weights so as to improve the performance. Searching
for the redundant weights can be based on simple criteria such
as magnitude pruning (Han et al., 2015) or based on complex
algorithms such as variational dropout (Molchanov et al., 2017)
or L0 regularization (Louizos et al., 2017). However, it was shown
that introducing sparsity using magnitude pruning could achieve
comparable or better performance than complex techniques such
as variational dropout or L0 regularization (Gale et al., 2019).
Hence, we will present results based on only magnitude pruning
in this work.

4. RESULTS

4.1. Attention Decoding Accuracy
To evaluate the performance of our neural network, we trained
the model under different scenarios using a trial duration of 3 s.
In the first scenario (Ind set train), attention decoding accuracies
were calculated per individual dataset. In other words, to obtain
the test accuracy of subjects belonging to FAU_Dataset, themodel
was trained using training samples only from FAU_Dataset
leaving out DTU_dataset and KUL_Dataset. Similarly, to obtain
the test accuracy for DTU_Dataset, the model was trained
using training samples only from DTU_Dataset. The same
procedure was repeated for KUL_Dataset. The median decoding
accuracy was 72.6% for FAU_Dataset, 48.1% for DTU_Dataset,
and 69.1% for KUL_Dataset (Figure 2). In the second scenario
(Full set train), accuracies were calculated by combining training
samples from all the three datasets together. The median
decoding accuracies obtained in this scenario were 84.5, 52.9,
and 77.9% for FAU_Dataset, DTU_Dataset, and KUL_Dataset,
respectively. The results from the second scenario showed a
clear improvement over the first scenario (p_FAU < 0.001;
p_DTU < 0.05; p_KUL < 0.01) suggesting that the model
generalizes better in the Full set train. Furthermore, to evaluate
the cross-set training performance, we trained the model using
one dataset and tested it on the other two datasets. For example,
the training would be performed using FAU_Dataset and testing
would be performed on both DTU and KUL datasets. The
same procedure was repeated by training using the DTU dataset
and the KUL dataset. The decoding accuracies obtained were
all at chance level across the three cross-set training scenarios
(Figure 3). Consequently, all results presented further in this
paper are based on Full set train. The statistical analyses are based
on paired Wilcoxon signed-rank test with sample sizes given in
Table 1.
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FIGURE 2 | Boxplot depicting the decoding accuracies obtained using two different training scenarios. In the first scenario (Ind set train), individual dataset accuracies

were obtained by using training samples only from that particular dataset. For example, to calculate the test accuracy of FAU_Dataset, training samples were taken

only from FAU_Dataset. In the second scenario (Full set train), individual dataset accuracies were obtained using training samples from all the three datasets

combined. As a result, there are more training samples in the second scenario compared to the first (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 based on paired Wilcoxon

signed-rank test).

FIGURE 3 | Boxplot showing the decoding accuracies obtained for cross-set training scenario. The accuracies obtained were all at chance level.

4.2. Decoding Accuracy vs. Trial Duration
To analyse the effect of trial duration on the attention decoding
accuracy, the model was trained using trials of length 2, 3, 4, and

5 s. For every trial, only 1 s of new data were added and the
remaining data were populated by overlapping to the previous
trial using a sliding window. Specifically, for 2 s trial, 1 s of
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FIGURE 4 | Comparison of the decoding accuracies calculated for different trial durations per dataset. Statistical analysis based on paired Wilcoxon signed-rank test

and pooled over all subjects together from the three datasets (∗p < 0.05; ∗∗∗p < 0.001).

overlap was used and for 3 s trial, 2 s of overlap was used, and
so on. In this way, total number of training samples remained
constant for different trial durations considered in our analysis.
The mean decoding accuracy across all subjects and all datasets
in case of 2 s trial duration was 70.9± 13.2%. The mean accuracy
improved to 73.9 ± 14.8% when the trial duration was increased
to 3 s (p < 0.001, r = 0.60). Using a trial duration of 4 s,
the mean accuracy obtained was 75.2 ± 14.3% which is a slight
improvement over 3 s trials (p < 0.05, r = 0.31). For 5 s trials,
our neural network model resulted in a mean accuracy of 75.5
± 15.7% that was statistically identical to the accuracy obtained
using 4 s trials (p > 0.05, r = 0.10). Figure 4 depicts the accuracy
calculated for individual datasets.

4.3. Ablation Analysis
In order to gain further insights into the architecture and
understand the contribution of different parts of our neural
network, we performed ablation analysis using a trial duration
of 3 s. To this end, we modified the neural network architecture
by removing specific block such as the BLSTM layer or the
FC layers one at a time and retrained the modified network.
Similarly, to understand the importance of the audio input
feature, decoding accuracies were calculated by zeroing out the
EEG input and to understand the importance of the EEG input
feature, decoding accuracies were calculated by zeroing out
the audio input. As shown in Figure 5, the median decoding
accuracy by zeroing out the EEG input was 48.6% whereas
zeroing out the audio input resulted in an accuracy of 53.6%
resulting in no significant difference (p > 0.05). When the
network was retrained by removing the BLSTM layer only,
the median decoding accuracy obtained was 68.3% and on
removing the FC layers only, median decoding accuracy was
74.7%. Hence, the BLSTM layer contributes more toward the
network learning than the FC layer (p < 0.001). To compare, the

FIGURE 5 | Boxplots showing the decoding accuracies obtained by ablating

the different blocks such as FC layer or BLSTM layer. To obtain the test

accuracies after ablating, the ablated network was trained from scratch in

case of FC_rem and BLSTM_rem. However, in case of Audio_rem and

EEG_rem, accuracies were calculated by zeroing out the corresponding input

features before passing them to a fully trained network. The obtained accuracy

did not demonstrate a statistically significant difference between Audio_rem

and EEG_rem (p > 0.05). For all other cases, there was a significant difference

(∗∗∗p < 0.001 based on paired Wilcoxon signed-rank test).

median decoding accuracy calculated using the full the network
was 77.2%.

4.4. Sparse Neural Network Using
Magnitude Pruning
To investigate the degree of sparsity that our neural network can
tolerate, we pruned the model at 40, 50, 60, 70, and 80% sparsity
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using the 3 s trial duration. In order to fine-tune the pruned
neural network, there are two options: (1) sequential or (2) one-
shot. In sequential fine-tuning, weights of the trained original
model are reinitialized to zero in smaller steps per epoch until the
required sparsity is attained. In one-shot fine-tuning, weights of
the trained original model are reinitialized to zero at one shot in
the first epoch and the sparse model is further trained to improve
performance. We observed that the sequential fine-tuning is less
efficient than one-shot fine-tuning in terms of training time
budget. Therefore, all results presented here are based on one-
shot fine-tuning. We achieved a median decoding accuracy of
76.9% at a sparsity of 40% which is statistically identical to the
original model at 77.2% (p > 0.05). When the sparsity was
increased to 50%, the median decoding accuracy decreased to
75.7% which was lower than the original model (p < 0.001).
Increasing the sparsity level further resulted in deterioration of
decoding accuracy reaching 63.2% at a sparsity of 80% (Figure 6).
Total number of learnable parameters in our model was 416,741
and to find the sparse network, we pruned only the weights
leaving the bias and BN parameters unchanged.

5. DISCUSSION

People with hearing loss suffer from deteriorated speech
intelligibility in noisy acoustic environments such as
multispeaker scenarios. Increasing the audibility by means
of hearing aids has not shown to provide sufficient improvement
to the speech intelligibility. This is because the hearing aids are
unable to estimate apriori to which speaker the user intends
to listen. Hence, hearing aids amplify both the wanted signal
(attended speaker) and interfering signals (ignored speakers).
Recently, it has been shown that the cortical signals measured

FIGURE 6 | Plots comparing the trade off between decoding accuracies and

sparsity level (*p < 0.05; ***p < 0.001 based on paired Wilcoxon signed-rank

test).

using EEG could infer the auditory attention by discriminating
between the attended speaker and the ignored speaker in a
dual-speaker scenario (O’Sullivan et al., 2014). Linear system
analysis has been the commonly used methodology to analyse
the EEG signals measured from a listener performing selective
attention. However, in recent years, non-linear analyses based
on neural networks have become prominent, thanks to the
availability of customized hardware accelerators and associated
software libraries.

In this work, we developed a joint CNN-LSTM model to
infer the auditory attention of a listener in a dual-speaker
environment. CNNs take the EEG signal and spectrogram
of the multiple speakers as inputs and extract features
through successive convolutions. These convolutions generate
an intermediate embeddings of the inputs which are then
given to a BLSTM layer. As LSTMs fall under the category
of recurrent neural networks, they can model the temporal
relationship between the EEG embedding and the multiple
spectrogram embeddings. Finally, the output of the BLSTM is
processed through FC layers to infer the auditory attention. The
effectiveness of the proposed neural network was evaluated with
the help of three different EEG datasets collected from subjects
who undertook dual-speaker experiment.

There are many choices for the acoustic cues of speech
signal that could be given as input to the neural network.
They are speech onsets (Howard and Poeppel, 2010), speech
envelopes (Aiken and Picton, 2008), speech spectrograms (Pasley
et al., 2012), or phonemes (Di Liberto et al., 2015). Due to the
hierarchical processing of speech, all of the aforementioned cues
could be tracked from the cortical signals measured using EEG
(Hickok and Poeppel, 2007; Ding and Simon, 2014). Speech
envelope is the most commonly used acoustic cues in the
linear system analysis of EEG signal. However, we decided to
use spectrogram due to its rich representational power of the
corresponding speech signal and the ability of neural networks
to index these multidimensional inputs efficiently.

5.1. Attention Decoding Accuracy
We analyzed the performance of our neural network in two
different training scenarios. In the first scenario, individual
dataset accuracy was found out by training the network using
samples taken only from that particular dataset. In the second
scenario, individual dataset accuracy was found out by training
using samples combined from all three datasets together. The
accuracies obtained in the second scenario were higher than the
first scenario by 10.8% on average, which is in agreement with
the premise of neural network learning that larger the amount
of training data, the better the generalization. The decoding
accuracies obtained for subjects belonging to the DTU_Dataset
were markedly lower than the other two datasets similar to the
observation made in Geirnaert et al. (2020). While the exact
reason for the lower performance is unclear, a major difference
of the DTU_Dataset compared to the other two datasets was that
the former consisted of attention to male and female speakers
whereas the latter consisted of attention to only male speakers.
Therefore, training with additional EEG data that consist of
attention to female speakers can provide more insights into
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the lower performance. Additionally, we investigated the cross-
set performance by training the model using one dataset and
testing using the other two datasets. The accuracies obtained
were all at chance level as seen in Figure 3. This is not against
our expectation because if the underlying training set is not
representative, neural networks will not generalize. Specifically,
features in the training set and the test set are different since
they were recorded in different audio settings, languages, and
EEG devices. This further affirms the importance of having
a large and diverse training set for the neural networks to
function efficiently.

5.2. Decoding Accuracy vs. Trial Duration
One of the major challenges that AAD algorithms based on linear
system theory faces is the deteriorated decoding performance
when the trial duration is reduced. To this end, we calculated the
accuracies using our neural network for different trial durations
of 2, 3, 4, and 5 s. We observed a clear performance improvement
when trial duration was increased from 2 to 3 s whereas for all
other trial durations, accuracies did not improve substantially
(Figure 4). However, increasing the trial duration will result in
larger latency needed to infer the auditory attention that can
adversely affect applications which require real-time operation.
Hence, 3 s trial duration may be an optimal operation point
as it is known from a previous study that human brain tracks
the sentence phrases and phrases are normally not longer than
3 s (Vander Ghinst et al., 2019). Similarly, our analysis made
use of 10 electrodes distributed all over the scalp but future
work should investigate the effect of reducing the number
of electrodes. This will help in integrating algorithms based
on neural networks into devices such as hearing aids. We
anticipate that the current network will require modifications
with additional hyperparameter tuning in order to accommodate
for the reduction in number of electrodes, as the fewer is the
number of electrodes, the lower is the amount of data available
for training.

5.3. Ablation Analysis
Performing ablation analysis gives the possibility to evaluate the
contribution of different inputs andmodules in a neural network.
To our model, when only the speech features were given as input,
the median decoding accuracy was 48.6% whereas only EEG
features as input resulted in an accuracy of 53.6% (Figure 5).
However, statistical analysis revealed that there is no significant
difference between the two. This is contrary to our anticipation
because we expected the model to learn more from the EEG
features than from the audio features, as the EEG signal is unique
to the subject while the audio stimulus was repeated among
subjects per dataset. Nevertheless, in future care must be taken
to design the experiment in such a way as to incorporate diverse
speech stimuli. Further analysis ablating the BLSTM layer and the
FC layers revealed that the BLSTM layer was more important
than the FC layers. This is probably due to the ability of the
LSTM layer tomodel the temporal delay between speech cues and
the EEG. However, we anticipate that when the training datasets
become larger and more dissimilar, FC layers will become more

important due to the improved representation and optimization
power of dense networks (Luo et al., 2017).

5.4. Sparse Neural Networks
Although neural networks achieve state-of-the-art performances
for a wide range of applications, they have large memory
footprint and require extremely high computation power. Over
the years, neural networks were able to extend their scope of
applications was by scaling up the network size. In 1998, the CNN
model (LeNet) that was successful in recognizing handwritten
digits consisted of under a million parameters (LeCun et al.,
1998), whereas AlexNet that won the ImageNet challenge in
2012 consisted of 60 million parameters (Krizhevsky et al., 2017).
Neural networks were further scaled up to the order of 10 billion
parameters and efficient methods to train these extremely large
networks were presented in Coates et al. (2013).While these large
models are very powerful, running them on embedded devices
poses huge challenges due to the large memory and computation
requirements. Sparse neural networks are a novel architecture
search where redundant weights are reinitialized to zero thereby
reducing the computation load.

Investigation into the amount of sparsity that our neural
network can tolerate revealed a tolerance of upto 50% sparsity
without substantial loss of accuracy (Figure 6). However,
standard benchmarking on sparsity has found that deep networks
such as ResNet-50 can tolerate upto 90% sparsity (Gale et al.,
2019). One of the potential reasons for the lower level of sparsity
in our model is due to its shallow nature. That is, our model
is comprised of less than half a million learnable parameters
while deep networks such as ResNet-50 is comprised of over 25
million learnable parameters. It is also interesting to note that
the accuracy obtained by removing the FC layer in our ablation
analysis was 74.6% compared to the full network accuracy of
77.2%. And the ablated network consisted of 105,605 parameters
which is approximately only a quarter of the total number
of parameters (416,741) of the original network. This shows
that by careful design choices, we can reduce the network size
considerably compared to an automatic sparse network search
using magnitude pruning.

Sparsification of neural network has also been investigated
as a neural network architecture search rather than merely
as an optimization procedure. In the lottery ticket hypothesis
presented in Frankle and Carbin (2018), authors posit that,
inside the structure of an over-parameterized network, there exist
subnetworks (winning tickets) that when trained in isolation
reaches accuracies comparable to the original network. The pre-
requisite to achieve comparable accuracy is to initialize the sparse
network using the original random weight initialization that was
used to obtain the sparse architecture. However, it was shown that
with careful choice of the learning rate, the stringent requirement
on original weight initialization can be relaxed and the sparse
network can be trained from scratch for any random initialization
(Liu et al., 2018).

One of the assumptions that we have made throughout this
paper is the availability of clean speech signal to obtain the
spectrogram. In practice, only noisy mixtures are available and
speech sources must be separated before the spectrogram can
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be calculated. This is an active research field and algorithms
are already available based on classical signal processing such
as beamforming or based on deep neural networks (Wang and
Chen, 2018). Another challenge in neural network learning and
in particular, its application in EEG research is the scarcity
of labeled data to train the network. This limits the ability of
network to generalize well to unseen EEG data. To mitigate
the aforementioned limitation, data augmentation techniques are
widely used in neural network training. Data augmentation is
a procedure to generate synthetic dataset that spans unexplored
input signal space but corresponding to the true labels (Wen et al.,
2020). In auditory attention paradigm, linear system analyses
have shown that the TRF properties differ between attended
and ignored speakers (Fiedler et al., 2019; Kuruvila et al., 2021).
As a result, synthetic EEG can be generated by performing a
linear convolution between TRFs and the corresponding speech
signal cues (Miran et al., 2018). The signal-to-noise ratio of
the synthesized EEG can be varied by adding appropriate noise
to the convolved signal. The most commonly used speech
cue is the signal envelope obtained using Hilbert transform.
However, more sophisticated envelope extraction methods such
as the computational models simulating the auditory system
could improve the quality of synthesized EEG signals (Kates,
2013; Verhulst et al., 2018). It must be noted that the data
augmentation techniques must only be used to train the network.
The validation and the testing procedure must still be performed
using real datasets.

6. CONCLUSION

Integrating EEG to track the cortical signals is one of the latest
proposals to enhance the quality of service provided by hearing
aids to the users. EEG is envisaged to provide neuro-feedback
about the user’s intention thereby enabling the hearing aid to
infer and enhance the attended speech signals. In the present
study, we propose a joint CNN-LSTM network to classify the
attended speaker in order to infer the auditory attention of a
listener. The proposed neural network uses speech spectrograms
and EEG signals as inputs to infer the auditory attention.
Results obtained by training the network using three different
EEG datasets collected from multiple subjects who undertook a
dual-speaker experiment showed that our network generalizes

well to different scenarios. Investigation into the importance of
different constituents of our network architecture revealed that
adding an LSTM layer improved the performance of the model
considerably. Evaluating sparsity on the proposed joint CNN-
LSTM network demonstrates that the network can tolerate upto
50% sparsity without considerable deterioration in performance.
These results could pave way to integrate algorithms based on
neural networks into hearing aids that have constrained memory
and computational power.
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