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Reliability and minimal detectable 
change of the ‘Imperial Spine’ marker set 
for the evaluation of spinal and lower limb 
kinematics in adults
J. A. Deane1* , E. Papi1, A. T. M. Phillips2 and A. H. McGregor1

Abstract 

Objectives: As a step towards the comprehensive evaluation of movement in patients with low back pain, the aim of 
this study is to design a marker set (three rigid segment spine, pelvic and lower limb model) and evaluate the reliabil-
ity and minimal detectable change (MDC) of this marker set in healthy adults during gait and sit to stand (STS) tasks 
using three dimensional motion capture.

Results: The ‘Imperial Spine’ marker set was used to assess relative peak angles during gait and STS tasks using the 
minimum recommended sample size (n = 10) for reliability studies with minimum Intraclass Correlation Coefficient 
(ICC) of 0.70, optimum ICC 0.90 and 9 trials replicated per subject per task. Intra- and inter-tester reliability between 
an experienced and inexperienced user was examined. ICC, mean, standard error (SEM), Bland Altman 95% limits of 
agreement (LOA) and MDC were computed.

ICC values demonstrated excellent intra- and inter-tester reliability in both tasks, particularly in the sagittal plane 
(majority ICCs > 0.80). SEM measurements were lower in gait (0.8–5.5°) than STS tasks (1°-12.6°) as were MDC values. 
LOA demonstrated good agreement. The ‘Imperial Spine’ marker set is reliable for use in healthy adults during func-
tional tasks. Future evaluation in patients is required.

Keywords: Marker set, Kinematics, Spine, Low back pain, Gait, Sit to stand, Minimal detectable change, Reliability, 
Three dimensional motion capture, Motion technology
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Introduction
The ‘Imperial Spine’ marker set was developed to assess 
spinal and lower limb movement or kinematics during 
functional tasks using three dimensional motion capture 
(3DMC). To date, spinal movement has been examined in 
both healthy and patient populations using regional lum-
bar [1–3] or multiple spine segments [4–6]. Although, 
some consider the contribution of the spine, pelvis and 

lower limbs towards assessing spinal movement, few have 
analysed the absolute measures of measurement error 
and minimal detectable change (MDC). MDC describes 
the amount of change that is greater than the measure-
ment error for each joint and plane of movement [7]. 
This permits kinematic data to be interpreted in a clini-
cally meaningful manner, enabling the assessment of true 
differences.

Low back pain (LBP) is an extremely common symp-
tom [8] associated with difficulties walking and sitting to 
standing (STS) [9]. Since current LBP management is at 
best, moderately effective [10], it is necessary to consider 
alternative therapeutic targets. Steps have been taken 
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towards this through the examination of spine and lower 
limb segment motion in healthy adults using one and two 
rigid spinal models [7, 11]. However, spinal models with 
more than two rigid segments will be required in order 
to reliably characterise and interpret movement during 
activities that are important to LBP patients [12].

This preliminary study builds upon previous research 
through the development of a three rigid segmented 
spine, pelvic and bilateral lower limb marker set, the 
‘Imperial Spine’. The objective of this study is to establish 
the reliability and MDC values relating to the ‘Imperial 
Spine’ in adults during gait and STS tasks using 3DMC as 
a step towards evaluation in LBP patients.

Main text
Methods
The sample size was determined and study design opti-
mised using recommendations previously described 
( α = 0.05,β = 0.20) [13]. Healthy adults (4 males, 6 
females) were recruited from University staff (mean age 
30.8 (25.8–35.8) years, mean body mass index 23.4 (19.0–
27.6) kg/m2). Strict criteria ensured that participants had 
no current or past history of LBP, spine or lower limb 
extremity trauma, neurological or musculoskeletal his-
tory that would affect task performance. Each participant 
provided written informed consent (REC Ref. 15IC2985).

Reliability testing
Reliability of the ‘Imperial Spine’ marker set was evalu-
ated using testers with and without prior clinical knowl-
edge; tester 1(JD) (physiotherapist, 16  years clinical 
experience) and tester 2 (EP) (biomechanist, no prior 
clinical experience). Prior to subject testing each tester 
completed training including marker set familiarisation 
(30 min) and practical training (60 min) using standard-
ised written instruction to reduce tester bias.

Each session comprised of 5 gait and 5 STS trials, 2 of 
which involved participant familiarisation. The gait task 
required unshod participants to walk at a comfortable 
speed over a level 6  m walkway at a self-selected pace. 
The STS task required participants to stand up from a 
backless chair with arms crossed, knees initially flexed 
to 90° and both feet assuming a ‘natural stance position’. 
Participants followed standardised verbal instruction.

Prior to the first session tester 1 (JD1) applied the 
marker set to participants using double-sided tape. On 
completion of the tasks, the marker set was systemati-
cally removed by tester 1 using alcohol swabs to remove 
signs of adhesive. An interval of 45 min was observed to 
ensure participant rest and to engage tester 1 in unrelated 

activities to minimise memory bias. During the second 
session the marker set was then re-applied and removed 
by tester 2 (EP) as described. Following the same interval, 
tester 1 repeated this sequence (JD2).

Testers were not permitted to observe each other or 
communicate during testing and were blinded to all kin-
ematic outputs.

The ‘Imperial Spine’ marker set and data processing
The ‘Imperial spine’ was modelled in three segments 
according to easily identifiable anatomical landmarks; 
upper thoracic (T1-T6), lower thoracic (T7-T12) and 
lumbar (L1-L5). The upper thoracic (UT) segment was 
defined with its origin in T6, vertical axis from T6 to T1 
(+ y) and horizontal axis through T6 (+ z to the right). 
The lower thoracic (LT) segment was defined with its ori-
gin in T12, vertical axis from T12 to T7 (+ y) and hori-
zontal axis through T12 (+ z to the right). The lumbar (L) 
segment was defined with its origin in L5, vertical axis 
from L5 to L1 (+ y) and horizontal axis through L5 (+ z 
to the right) (Fig.  1). Pelvic, hip, thigh, shank and foot 
local co-ordinate systems were also defined and recon-
structed from joint centres and easily identifiable ana-
tomical landmarks on the pelvis and lower limb [14–16].

Anatomical frames of the pelvis, thigh and shank were 
referenced to the corresponding technical frames (con-
structed from technical clusters of markers) in the static 
calibration trial such that anatomical markers (ASIS, 
PSIS, MFC, LFC, LMAL, MMAL) (Fig.  1; Additional 
file  1: Table  S1) could be removed prior to dynamic 
trial, permitting freedom of movement. All trials were 
recorded at 100  Hz using a 10-camera 3DMC system 
(Vicon Nexus (T160), Oxford Metrics Ltd., Oxford, UK) 
[17].

The onset and cessation of each task were determined 
using kinematics from each gait [18] and STS motion 
cycle [12, 19]. Each cycle was extracted (Vicon Nexus 
(T160), Oxford Metrics Ltd., Oxford, UK) and filtered 
using a Woltring cross-validity quantic spline routine 
[20]. The data was then normalised to 100% of each 
motion cycle (MATLAB, Mathworks, Natick, MA., 
U.S.A.). 3D Kinematics of each segment and joints were 
calculated using the Joint Coordinate System (JCS) con-
vention [21] and computed using Bodybuilder and Vicon 
Nexus software (Oxford Metrics Ltd., Oxford U.K.). The 
average relative peak angles were then extrapolated.

Statistical analysis
The normality of the data was confirmed using Q-Q plots 
and the Shapiro Wilks test (significance level p ≥ 0.05). 
Inter-tester and intra-tester ICCs (3, k) (2-way mixed 
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model) and the 95% confidence intervals were derived. 
ICC values of 0.70 were considered acceptable, 0.75–1.00 
excellent, 0.40–0.74 fair to good and ≤ 0.40 poor [22].

The mean peak joint angles (mean session one and 
two measurements), mean of the differences between 
measurements at session one and two (Mean Diff), 
the respective 95% confidence intervals (95% CI) for 
these differences, the standard deviation of the differ-
ences (SD Diff) and the 95% levels of agreement (95% 
LOA) were determined [23] in frontal, sagittal and 
transverse planes. The standard error of measurement 
(SEM) was calculated (SEM = SD Diff ÷

√
2) [24]. The 

minimal detectable change (MDC), which expresses 
the amount of joint angle change was also calculated 
(MDC = 1.96×

√
2× SEM) [25].

ICC statistical analysis was conducted using SPSS 
software (SPSS Statistics Version 22, IBM, Chicago, IL., 
U.S.A.). A critical level p < 0.05 was defined as significant. 
Mean, Mean Diff, 95% CI, SD Diff, 95% LOA, SEM and 
MDC calculations were computed using Microsoft Excel 

(Excel 2010, Microsoft Corporation, Redmond, WA., 
U.S.A.).

Results
Gait task
Analysis of the mean peak joint angles for the spine and 
lower limbs demonstrated that 70% of intra-tester and 
76% of inter-tester ICC scores were excellent (0.75–0.99). 
The remainder ranged between 0.60–0.74 (intra-tester) 
and 0.50–0.56 (inter-tester). Overall, ICC values were 
higher in the sagittal plane (for both intra- and inter-
tester reliability), whilst those in the frontal and trans-
verse planes were lower (Table 1). Kinematic waveforms 
reflect this agreement (Additional file 2: Figure S1, Addi-
tional file 3: Figure S2 and Additional file 4: Figure S3).

The SEM values were ≤ 5.3° and ≤ 5.5° for all intra- and 
inter-tester trials respectively, with 91% of values fall-
ing below 5°. The mean differences between sessions for 
all parameters were lower for intra-tester trials (≤ 0.9°, 
except 1.3° for peak lumbar abduction/adduction) than 

Fig. 1 The ‘Imperial Spine’ marker set, segments and local anatomical frames. For all local anatomical frames, the + y axis (cephalad) is indicated in 
green, the + z axis (towards the right) in blue and the + x axis (perpendicular to both + y and + z axes) in red
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inter-tester trials (≤ 1.4°, except 3.4° for peak hip inter-
nal/external rotation). The MDC values ranged between 
2.4 and 4.7° (intra-tester) and 2.4°–15.3° (inter-tester).

Bland Altman 95% limits of agreement for both intra-
tester and inter-tester trials are outlined in Table 1.

STS task
The mean peak joint angles for the spine and lower limbs 
demonstrated ICC ranges of −  0.82–0.98 (intra-tester) 
and −  0.52–0.97 (inter-tester). 76% of intra-tester and 
52% of inter-tester ICC scores indicated excellent reli-
ability (0.75–0.99). ICC values were higher in the sagittal 
plane; 0.83–0.98 (intra-tester) and 0.89–0.97 (inter-tester, 
except 0.52 at the ankle) and lower in the transverse and 
frontal planes (− 0.2 to 0.89) (Table 2). Kinematic wave-
forms reflect this agreement (Additional file 2: Figure S1, 
Additional file 3: Figure S2 and Additional file 4: Figure 
S3).

SEM values were ≤ 5° for intra- and inter-tester trials 
respectively with the exception of pelvic tilt, rotation, hip 
flexion/extension and ab/adduction and lumbar flexion/
extension (SEM range: 5.1–12.6°, with the largest error 
in pelvic rotation). Similar to the gait task, mean differ-
ences for all parameters between sessions were lower for 
intra-tester trials (≤ 3.9°) than inter-tester trials (≤ 5.3°). 
The range of MDC values was wider in the STS task (2.9–
34.9° (intra-tester) and 3.6–25.6° (inter-tester)) compared 
to the gait task with the highest values relating to pelvic 
rotation in both cases.

Bland Altman 95% limits of agreement for both intra-
tester and inter-tester STS trials are outlined in Table 2.

Discussion
To our knowledge, reliability has not been previously 
examined amongst experienced and inexperienced test-
ers during both gait and STS tasks using a three rigid 
segmented spine, pelvic and lower limb model in adults. 
Similar gait studies, which focussed on a two rigid spine 
segment model with lower limbs but without pelvic out-
puts [11, 26], also found small mean intra-tester differ-
ences (Mean Diff Intra-tester). The ‘Imperial Spine’ (3 
rigid spine segment model including pelvic and lower 
limb outputs) builds upon this; inter-tester kinematics 
differences (Mean Diff Inter-tester) were low within both 
gait and STS tasks.

Systematic reviews of the reliability of 3DMC kinematic 
measurements have demonstrated that reliability varies 
between studies due to methodological variation [1, 27], 

which makes direct comparison difficult. Overall, ICCs 
are reported to be above 0.7 for most range of move-
ment parameters [1] and are highest within the sagittal 
plane [27]. These findings concur with this current study 
(median ICC for gait and STS tasks > 0.89 for intra- and 
inter-tester data) and that of more recent work [28, 29].

Transverse plane measurements are typically less reli-
able (median ICC < 0.72) [27]. However, using the ‘Impe-
rial Spine’, the median values are increased in both 
transverse and frontal planes (median ICC > 0.80 for gait 
and STS task for intra- and inter-tester data) with the 
exception of transverse and frontal plane inter-tester 
ICCs for the STS tasks (median 0.60 and 0.62 respec-
tively). To our knowledge, this has not been investigated 
until now in healthy adults using a multi-segmental spine 
and bilateral lower limb model.

In agreement with this current study, higher intra-
tester than inter-tester reliability is reported [27] and may 
represent a difference in tester experience [7]. It is pro-
posed that errors between 2 and  5° are acceptable [27]. 
In this current study the SEM for STS tasks (intra- and 
inter-tester) was higher than this, as one would expect 
for a task requiring through range movement (SEM range 
1.0–7.8, except for peak pelvic rotation), and was lower 
in gait trials (SEM range 0.8–5.5). Although, the corre-
sponding MDC ranges approximate values recently cited 
during gait and STS tasks [28, 29], the MDC range in our 
study was wider during STS.

Despite unavoidable and well documented errors impli-
cated in 3DMC, these findings indicate that it should be 
possible to reliably establish kinematic differences using 
the ‘Imperial Spine’. In order to identify potential thera-
peutic targets, further testing will be required in LBP 
patients.

Limitations
Although a pragmatic sample size was used in this study 
[13], reflecting that of previous reliability trials [1, 5, 
30], the authors recognise that an increased sample size 
would have further enhanced reliability and MDC out-
comes. Participants were examined by each tester follow-
ing a 45 min rest period, which could also be considered 
a limitation. This was necessary to ensure that meas-
urements were made at the same time of day to ensure 
that the diurnal changes of the spine (disc hydration) in 
this cohort or changes in movement over time did not 
account for the changes observed.

It is important to note that the reported error in the 
‘Imperial Spine’ relates to healthy participants and 
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therefore, is not applicable to a patient population. Future 
work will include the examination of spinal, pelvic and 
lower limb kinematics in LBP patients.
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