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Purpose of review

Does neuroinflammation promote neurodegeneration? Does neurodegeneration promote
neuroinflammation? Or, is the answer to both questions, yes? These questions have proven challenging to
answer in patients with typical age-related neurodegenerative diseases in whom the onset of
neuroinflammation and neurodegeneration are largely unknown. Patients recovering from diseases
associated with abrupt-onset neuroinflammation, including rare forms of antibody-mediated encephalitis
(AME) and common complications of novel coronavirus disease 2019 (COVID-19), provide a unique
opportunity to untangle the relationship between neuroinflammation and neurodegeneration. This review
explores the lessons learned from patients with AME and COVID-19.

Recent findings

Persistent cognitive impairment is increasingly recognized in patients recovering from AME or COVID-19,
yet the drivers of impairment remain largely unknown. Clinical observations, neuroimaging and biofluid
biomarkers, and pathological studies imply a link between the severity of acute neuroinflammation,
subsequent neurodegeneration, and disease-associated morbidity.

Summary

Data from patients with AME and COVID-19 inform key hypotheses that may be evaluated through future
studies incorporating longitudinal biomarkers of neuroinflammation and neurodegeneration in larger
numbers of recovering patients. The results of these studies may inform the contributors to cognitive
impairment in patients with AME and COVID-19, with potential diagnostic and therapeutic applications in
patients with age-related neurodegenerative diseases.
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INTRODUCTION

Neuroinflammatory changes may promote the
accrual and propagation of neuropathological
changes associated with Alzheimer disease (AD) and
AD-related dementias (ADRD). Autopsy studies attest
to the relationship between inflammatory mediators
(cytokines, chemokines, prostaglandins, complement
cascade proteins) and breakdown in the blood-brain-
barrier [1–6], while depicting the association between
reactive glia, and cerebral plaques and tangles. In
cellular models, activated microglia and astrocytes
induce amyloid-beta and tau pathology, while dele-
tion of microglial receptors prevents inflammation
and ameliorates amyloid accumulation [7–9]. In
mouse models, microglial activation occurs months
 2022 Wolters Kluwer H
before neurofibrillary tangle formation [10]. Genetic
evidence further strengthens this relationship in
humans, with variants affecting microglia or astro-
cyte activation linked to neurodegeneration (e.g.,
TREM2 mutations in Nasu�Haloka disease; micro-
glial-expressed progranulin mutations in patients
with frontotemporal lobar degeneration, FTLD
ealth, Inc. All rights reserved.

Volume 35 � Number 2 � April 2022

mailto:day.gregory@mayo.edu


KEY POINTS

� The relationship between neuroinflammation and
neurodegeneration is challenging to decipher in
patients with typical age-related neurodegenerative
diseases.

� Clinical observations, neuroimaging and biofluid
biomarker measures, and pathological studies suggest
that acute neuroinflammation associated with antibody-
mediated encephalitis (AME) and coronavirus disease
2019 (COVID-19) precedes neurodegeneration and
contributes to persistent cognitive impairment.

� Knowledge gained through the study of patients with
AME and COVID-19 may inform the relationship
between neuroinflammation and neurodegeneration
with potential diagnostic and therapeutic applications
in patients with age-related neurodegenerative
diseases.
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[11,12]). Taken together these findings suggest that
neuroinflammation drives neurodegeneration. Yet,
an equally robust literature suggests that neurode-
generative changes promote neuroinflammation.
The aggregation of various neurodegeneration-
related proteins triggers inflammatory processes,
including microgliosis, microglial ‘priming’ (an acti-
vated state leading to exaggerated responses), cyto-
kine release, and complement activation [4,13–17].
Additionally, population-based prospective studies
suggest that the sustained use of nonsteroidal anti-
inflammatory drugs negatively associated with the
development of AD [18] (although prospective treat-
ment trials failed to prove this [19]). Clearly, the
relationshipbetween neuroinflammation and neuro-
degeneration is complex.

Unraveling this complex relationship in
patients with age-related neurodegenerative dis-
eases is challenging. In humans, disease-associated
pathology accumulates over decades, at variable
rates, with various effects. Furthermore, the inability
to directly measure histopathologic changes early in
the course of AD/ADRD has confounded efforts to
decipher the temporal ordering of neuroinflamma-
tion and neurodegeneration. Although animal
models may address some of these limitations, cur-
rent models fall far short of the human experience.
Models relying on overexpression of genes or pro-
tein products may drive excessive pathology, with-
out time for a compensatory response, while single
gene ‘knock-in’ (or out) approaches may result in
changes that are too mild to elicit measurable
changes, particularly if animals are not allowed to
age sufficiently [20–22]. New models and new
approaches are needed to address this challenge.
 Copyright © 2022 Wolters Kluwe
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Patients with diseases associated with the abrupt
onset of substantial neuroinflammation offer one
possible solution to this problem: providing an
opportunity to study the relationship between neu-
roinflammation and neurodegeneration in a cohort
where the direction of effect is known. On this
front, experience with increasing numbers of
patients recovering from rare forms of antibody-
mediated encephalitis (AME) or common complica-
tions of novel coronavirus disease 2019 (COVID-19)
may inform the short- and long-term consequences of
neuroinflammation on neurodegeneration, including
the effects of neuroinflammation on the formation
and propagation of age-associated neurodegenerative
diseases in susceptible individuals.
ANTIBODY-MEDIATED ENCEPHALITIS

Neuroinflammation in antibody-mediated
encephalitis: cause?

Rare diseases associated with autoantibodies against
central nervous system (CNS) cell-surface N-methyl-
D-aspartate receptors (NMDAR) or components of
the voltage-gated potassium channel complex (e.g.,
leucine-rich glioma-inactivated 1; LGI1) provide
unique insights into the effects of targeted neuro-
inflammation. Acutely, the immune-mediated
pathological process is marked by inflammatory
changes in the cerebrospinal fluid (CSF), including
pleocytosis, immunoglobulin synthesis, and clonal
expansion of disease-specific autoantibodies; with
transient changes on magnetic resonance neuroim-
aging (MRI), including T2-fluid-attenuated inversion
recovery (FLAIR) and contrast-enhancing abnormal-
ities in cortical and subcortical regions [23–27]. In
AME associated with NMDAR and LGI1 autoanti-
bodies, these changes correspond to the emergence
of prominent behavioral and psychiatric symptoms,
including memory loss, altered mental status, hallu-
cinations, psychoses, and affective disturbances.
Movement disorders, seizures, and autonomic dys-
function may also occur, contributing to morbidity
and mortality [26,27]. The link between acute neuro-
inflammation and clinical presentation is supported
by cellular models demonstrating antibody-medi-
ated disruption in neuronal signaling associated with
autoantibody exposure [26,28–30]; animal models
recapitulating clinical findings with intraventricular
infusion of CSF from AME patients [31,32]; and, most
convincingly, by the high potential for recovery
in AME patients treated with immune-suppressing
therapies [24–26].

The longer-term consequences of neuroinflam-
mation are increasingly understood in recovering
patients. Persistent deficits in attention, memory,
r Health, Inc. All rights reserved.

rved. www.co-neurology.com 213
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and executive function are common in recovering
NMDAR and LGI1 AME patients [33–38]. Cognitive
deficits are noted in 80% of recovering NMDAR AME
patients assessed between 2 and 5 years from disease
onset [39], and at least 65% of patients recovering
from LGI1 AME assessed a median of 39 months
following disease onset [40]. Poor cognitive out-
comes are more likely in patients with marked
CSF pleocytosis or MRI abnormalities at presenta-
tion, and in those who experience delays from
symptom onset to initiation of immunosuppressant
therapies [39–41], implying that the severity and
duration of neuroinflammation is associated with
long-term outcomes. Importantly, long-term cogni-
tive deficits are seen in the absence of concurrent
neuroinflammation [42], raising questions concern-
ing the mediators of impairment in recovering
AME patients.
Neurodegeneration in antibody-mediated
encephalitis: effect?

Early in the disease course, CSF biomarkers of neuro-
degeneration (total tau, VILIP-1) are similar in
patients with AME and healthy controls [43

&

,44]
suggesting that neuronal integrity is acutely main-
tained. By contrast, markers of neuroinflammation
(YKL-40, tumor necrosis factor (TNF)-alpha,
 Copyright © 2022 Wolters Kluwer H

Table 1. Biomarkers of neurodegeneration following AME

Biomarkers Acute findings

MRI

Structural & functional Normal in most cases [36]
Mild hippocampal atrophy [52]
Impaired functional connectivity of t

hippocampus [50]
Loss of intrinsic activity: reduction in

amplitude of spontaneous BOLD f
fluctuation [49]

CSF

Markers of neuroinflammation Elevated YKL-40, TNF-a, IL-6, IL-10 [

Markers of neurodegeneration Normal t-tau, VILIP-1 [43&,44]

Markers of neuroaxonal injury Elevated NfL [43&,46&,47,48]

Molecular PET

Tau PET Not reported

AME, antibody-mediated encephalitis; BOLD, blood oxygen level dependent; CSF, c
neurofilament light chain protein; TNF-a, tumor necrosis factor-a; T-tau, total tau; VIL
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interleukin (IL)-6, IL-10 [43
&

,45]) and neuro-axonal
injury (neurofilament light chain, NfL) [43

&

,46
&

,47,
48] are elevated, whereas markers of synaptic func-
tion (SNAP-25 and neurogranin) are decreased
[43

&

,46
&

]. If neuronal integrity is acutely maintained
in AME patients, then long-term outcomes may
reflect the protracted effects of neuroinflammation,
neuroaxonal injury, and synaptic dysfunction. Lon-
gitudinal studies increasingly support this hypothe-
sis (Table 1).

Functional MRI confirms acute network dysfunc-
tion, loss of intrinsic activity [49], and widespread
connectivity alterations in patients with NMDAR
AME [36,50]. These deficits persist in patients with
behavioral and cognitive dysfunction [36,51]. Simi-
larly, structural neuroimaging, although normal at
presentation in many patients [24,36], may become
abnormal in follow-up (Fig. 1). Diffuse cerebral atro-
phy is recognized in longitudinal imaging in AME,
with disproportionate effects on the hippocampi
[52,53], which may be most prominent in patients
with persistent deficits in verbal and visual memory
[34]. Deep [54] and superficial [55] white matter
disruption is also reported on diffusion tensor MRI
in recovering patients with memory and visuospatial
dysfunction.

The long-term drivers of structural and func-
tional changes in recovering AME patients are
ealth, Inc. All rights reserved.

Long-term findings

he

the
MRI

Diffuse cerebral and bilateral hippocampal atrophy
[34,52,53]

Widespread deep white matter damage [54]
Superficial white matter damage predominant in

the frontal and temporal lobes [55]
Impaired hippocampal connectivity; decoupling of

the medial temporal and default-mode networks;
an overall impairment of frontotemporal
connections [36]

Alteration in default mode network with aberrant
structure�function relationship with damaged
hippocampus; impairments in sensorimotor,
salience and higher visual networks [51]

43&,45] Normalization of YKL-40 levels [45]

Normal t-tau [44]

Normalization of NfL levels [44]

Prominent [18F]flortaucipir retention within the
temporal lobes, correlating to hippocampal
atrophy [65&]

erebrospinal fluid; IL, interleukin; MRI, magnetic resonance imaging; NfL,
IP-1, visinin-like protein 1.
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FIGURE 1. A 68-year-old man presented with the subacute onset of personality changes, irritability, confusion, and a
convulsion. Subtle bitemporal T2-FLAIR hyperintensities were observed on brain MRI (A1, white arrows), without enhancement
(A3). LGI1 autoantibodies were detected in the serum and spinal fluid, establishing the diagnosis of definite LGI1 antibody-
mediated encephalitis. He was treated with plasmapheresis within 5.5 weeks of symptom onset, and subsequently rituximab
leading to resolution of acute confusion. Cognitive impairment persisted, characterized by deficits in orientation and memory,
difficulty with word retrieval, spelling errors, and slow deductive reasoning, meeting diagnostic criteria for ‘autoimmune
dementia’ [33]. No inflammation was found on repeat CSF studies or neuroimaging, although diffuse cerebral (white
arrowheads) and focal hippocampal atrophy (white arrows) were evident on neuroimaging obtained 12- (B1–3) and 24-
months (C1–3) following symptom onset. Memory deficits remain stable 36-months following symptom onset. CSF,
cerebrospinal fluid; MRI, magnetic resonance imaging.
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unclear. Extensive pathological studies are lacking
in AME, owing to favorable outcomes in treated
patients. The few studies available almost exclu-
sively report findings in patients with severe, treat-
ment-refractory forms of disease who died during
the acute phase of the illness. These studies confirm
gliosis, microglial activation, and infiltrating leuko-
cytes and antibody-secreting cells, with acute neu-
ronal loss [56–60]. Antibody-mediated complement
activation with T-cell infiltration may be a unique
 Copyright © 2022 Wolters Kluwe
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feature in patients with LGI1 AME [56,61], provid-
ing a plausible pathway for immune-mediated neu-
ronal destruction and degeneration leading to
progressive atrophy in these patients [62]. Less is
known in NMDAR AME.

Findings from biofluid biomarkers, neuroimag-
ing, and highly selected autopsy series raise important
questions concerning the long-term neuropatholog-
ical consequences of AME. Longitudinal studies
culminating in neuropathological assessment are
r Health, Inc. All rights reserved.
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Degenerative and cognitive diseases
needed to address these questions. In lieu of such
studies, novel applications of emergent molecular
PET tracers may provide insights into antemortem
brain changes, providing an opportunity to evaluate
the distribution and accumulation of amyloid (e.g.,
18F-florbetaben (Neuraceq), 18F-florbetapir (Amyvid),
18F-flutemetamol (Vizamyl) [63]) and tau neuropa-
thology (e.g., 18F-flortaucipir, Tauvid [64]), and to
study the relationship between cognitive symptoms
and neuropathology. To date, molecular imaging
studies are limited to a single series including four
patients with LGI1 AME [65

&

]. Increased 18F-flortau-
cipir tau-PET retention was noted in two recovering
patients, who both exhibited protracted cognitive
impairment with hippocampal atrophy. In the
patient with highest accumulation, molecular imag-
ing findings were confirmed at autopsy [66].
Although preliminary, these findings suggest that
accumulating tau neuropathology may contribute
to cognitive complaints and structural and func-
tional changes observed in recovering AME patients.
Future studies incorporating tau-PET imaging at mul-
tiple intervals in larger cohorts are required to repli-
cate these findings and determine whether AME-
associated neuroinflammation influences the forma-
tion and propagation of tau neuropathology in
susceptible individuals.
CORONAVIRUS DISEASE 2019

Neuroinflammation in coronavirus disease
2019: cause?

Neurological deficits are common in recovering
COVID-19 patients, with headache, nausea, anos-
mia, ageusia, myalgia/fatigue, confusion, or disorien-
tation recognized in 36% of patients in some series
[67]. More serious neurologic consequences are
reported in 13.5% of patients, including encephalop-
athy, stroke, seizures or hypoxic injury [68]. Rates of
cognitive impairment may be even higher with some
studies reporting acute deficits in 80% of patients
[69], and persistent complaints in 35.5% [70]. As with
AME, the risk of impairment increases with disease
severity,withhigher prevalence of impairment noted
in patients who require hospitalization, intensive
care unit admission, and intubation [70–72].

The severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) virus infiltrates epithelial cells
of the respiratory and gastrointestinal tract via the
angiotensin converting enzyme 2 (ACE2) functional
receptor. ACE2 is also expressed within CNS neurons
and glia [73], providing a possible pathway through
which SARS-CoV-2 may invade the CNS [74]. Evi-
dence of axonal transport, neuron-to-neuron prop-
agation, and detection of virus RNA in brain autopsy
 Copyright © 2022 Wolters Kluwer H
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samples supports direct dissemination of SARS-
COV-2 within the CNS as one cause of neurologic
sequelae [75]. However, the absence of virus in most
CSF samples and tissues specimens in autopsy series
implicates other indirect drivers of cognitive
impairment [76,77], namely neuroinflammation.
Indeed, a substantial proportion of COVID-19
patients with CNS-localizing neurological symptoms
have evidence of neuroinflammation in the CSF
(positive SARS-CoV-2 antibodies with evidence of
intrathecal synthesis (12%), pleocytosis (15%), ele-
vated cerebral fluid protein (31%) [76]). Cases of
SARS-CoV-2-related encephalitis are also recognized,
with CSF examination demonstrating elevations in
NfL, t-tau, YKL-40 and higher concentrations of cyto-
kines such as IL-1b, IL-6, IL-8, and TNF-a compared to
healthy controls [78]. The cytokine storm associated
with COVID-19 infection may also promote cogni-
tive dysfunction by contributing to blood-brain-bar-
rier disruption (via IL-6 mediated endothelial
dysfunction and vascular permeability), and through
IL-1 mediated acceleration of the formation and
propagation of underlying age-related neuropathol-
ogy in susceptible individuals [16,79].
Neurodegeneration in coronavirus disease
2019: effect?

Biomarker studies provide compelling evidence of
neurodegeneration in moderate and severely ill
COVID-19 patients (Table 2). Serum biomarkers of
neuroaxonal injury (e.g., NfL) are higher in patients
with severe COVID-19 versus healthy controls [80],
while biomarkers of neurodegeneration (e.g., t-tau,
p-tau181, NfL, and UCHL1) appear to rise during the
acute phase of illness [81], normalizing months later
[82,83]. Higher markers may identify patients with
greater neurological symptoms and illness severity
[82]. Brain imaging provides further insights. Abnor-
mal brain imaging findings in acutely ill COVID-19
patients may be harbingers of chronic vascular
pathology [84,85], with few reports suggesting focal
hippocampal atrophy in selected patients with new-
onset seizures [86]. One study leveraging diffusion
tensor MRI found possible disruption to microstruc-
tural integrity in the recovery stages of COVID-19
patients compared to healthy controls, with changes
in olfactory- and limbic-related regions correlating
with memory loss [87]. In the UK Biobank COVID-19
re-imaging study [88

&&

], 401 participants tested posi-
tive for SARS-CoV-2 infection between two MRI scans
(mean 3.2�1.6 years between scans). Compared to
controls, infected participants had greater global
atrophy and tissue damage in limbic regions, which
was associated with greater cognitive decline [88

&&

].
As COVID-19 remains a new illness, longitudinal
ealth, Inc. All rights reserved.

Volume 35 � Number 2 � April 2022



Table 2. Biomarkers of neurodegeneration following COVID-19

Biomarkers Acute findings Long-term findings

MRI

Structural & functional Chronic vascular lesions: nonspecific white
matter microangiopathy, chronic infarcts
[84,85]

Acute vascular lesions: ischemic infarcts or
hemorrhage [84,85]

Focal hippocampal atrophy in selected
patients [86]

Disruption to micro-structural and functional brain
integrity, including enlarged olfactory cortices,
insulas, Rolandic operculum, cingulate gyrus,
Heschl’s gyrus, hippocampi, corona radiata,
external capsule, and superior frontal-occipital
fasciculus [87]

Reduced cortical thickness and contrast in the lateral
orbitofrontal region and para-hippocampal gyrus; a
relative increase of diffusion indices in the regions of
the brain functionally-connected to the piriform
cortex, anterior olfactory nucleus, and olfactory
tubercle; reduction in global measures of brain size
and increase in CSF volume [88&&]

CSF

Markers of neuroinflammation Elevated YKL-40, TNF-a, IL-6, IL-8, IL-1b [78] Not reported

Markers of neurodegeneration Elevated t-tau [78,82] Not reported

Markers of neuroaxonal injury Elevated levels of NfL [78,81,82] Normalization of NfL levels [83]

COVID-19, coronavirus disease 2019; CSF, cerebrospinal fluid; IL, interleukin; MRI, magnetic resonance imaging; NfL, neurofilament light chain; TNF-a, tumor
necrosis factor-a; T-tau, total tau.
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biomarker data are lacking. Longitudinal studies are
needed to inform the long-term consequences of
neuroinflammation and the relationship between
early biomarker changes, and later neurodegenera-
tion and cognitive function.

Neuropathological findings to date have exclu-
sively reported findings from patients who died in
the acute phase of COVID-19 [89

&

,90]. As expected,
these studies codify the presence of neuroinflamma-
tion, describing abundant reactive astrogliosis,
microgliosis, T-cell invasion, hypoxic injury, and
rare cases with leptomeningeal inflammation
[89

&

]. Although most patients in neuropathological
series died before neurodegenerative changes would
be expected to manifest, select patients exhibited
brainstem neuronal loss (n¼4) and axonal degener-
ation (n¼3) [90]. As with AME, neuropathological
studies in recovered patients are needed to decipher
the drivers of long-term complications of COVID-
19. Molecular PET studies offer an opportunity to
track the effect of COVID-19 associated neuroin-
flammation on the formation and propagation of
age-related neuropathology. However, no studies
have been published reporting amyloid- and tau-
PET measures in recovering patients.
INFORMING THE LINK BETWEEN
NEUROINFLAMMATION AND
NEURODEGENERATION

Experience with recovering AME and COVID-19
patients inform the relationship between acute neu-
roinflammation, neurodegeneration, and cognitive
 Copyright © 2022 Wolters Kluwe
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impairment. Clinical observations, neuroimaging
and biofluid biomarkers, and pathological studies
imply a link between the severity of acute neuro-
inflammation, subsequent neurodegeneration, and
disease-associated morbidity. Although much
remains to be determined before cause and effect
can be established, these early findings inform key
hypotheses that may be tested through future stud-
ies. Neuroinflammation may mediate some effects
acutely (i.e., by direct cellular damage reflected in
acute elevation in neurodegenerative biomarkers in
subsets of patients with severe illnesses). However,
long-term sequelae likely extend from the long-term
effects of neuroinflammation, which may include
blood-brain-barrier disruption, vascular stress,
immune dysregulation, and glial activation. The
cumulative effects of these changes may trigger
the formation of and/or promote the propagation
of typical age-related pathology in susceptible indi-
viduals (e.g., individuals with existing preclinical
pathology, or disease-associated genetic variants
such as APOEe4 and TREM2).

Longitudinal studies incorporating biofluid, neu-
roimaging, and molecular biomarkers of neuroinflam-
mation and neurodegeneration are needed to explore
these hypotheses. In this respect, the COVID-19 pan-
demic offers a unique opportunity to study the
chronic effects of time-locked neuroinflammation
in large numbers of patients. As in AME, it will be
particularly interesting to consider how neuroinflam-
mation associated with severe COVID-19 contributes
to the formation and propagation of age-related neu-
ropathology in susceptible individuals.
r Health, Inc. All rights reserved.
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Degenerative and cognitive diseases
CONCLUSION

Clinical observations, neuroimaging and biofluid
biomarker measures, and pathological studies sug-
gest that acute neuroinflammation predates the
emergence of neurodegeneration in recovering
AME and COVID-19 patients. Knowledge gained
through the study of unique patients with diseases
associated with abrupt onset of neuroinflammation
may inform the complex relationship between neu-
roinflammation and neurodegeneration, with
potential diagnostic and therapeutic applications
that extend well beyond patients with AME and
COVID-19.
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