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The sequencing of both organelle and nuclear genomes from

phylogenetically diverse species will help us to infer how

these genomes have evolved and the forces that have shaped

them. Recent findings of high rates of transfer of organelle

DNA to the nucleus [1], and of high rates of functional gene

transfer from organelles to the nucleus [2-5], demonstrate

that the endosymbiotic origin of organelles was a major

determinant in defining eukaryotic nuclear genomes and

was probably a defining event for the formation of the

eukaryotic cell [1,6]. Clearly there is an evolutionary pres-

sure to centralize genetic information in the nucleus, but the

forces behind this transfer are not obvious. Muller’s ratchet -

the unidirectional process of building up mutations in an

asexually reproducing population - is one commonly sug-

gested hypothesis to account for this centralization, but is

limited in its ability to explain more ‘recent’ gene transfer

events (reviewed in [5]). But despite a wealth of information,

it is still not clear from genome sequencing why some genes

remain encoded in organelles such as mitochondria

and chloroplasts. 

A recent study in yeast [7] indicated that an astonishing

25% of the mitochondrial proteome (around 185 proteins)

is required for the maintenance and expression of the eight

polypeptides encoded by the mitochondrial genome. Analy-

sis of the Arabidopsis mitochondrial and chloroplast pro-

teomes indicates that a similar amount of cellular effort is

required to maintain and express organelle genomes in

plants [8,9]. In this article we address the perplexing question

of why some genes in the small organelle genomes have been

maintained when the majority have been relocated to the

nucleus. Figure 1 shows the steps needed for a gene to transfer

from the nucleus to the mitochondrion. Historical arguments

to explain the retention of a core set of organellar genes fall

into two broad categories: either the genes have been

‘trapped’ in the organelle, or they have been ‘preferentially

maintained’ there. We discuss the merits of each argument. 

Too hot to handle - have organellar genes been
‘trapped’? 
The idea that some genes have been trapped in organellar

genomes stems largely from the idea that the proteins

encoded by these genes are difficult to transport back to the

organelle for assembly when synthesized in the cytosol.

Intrinsic to this idea is that there has been a hierarchical loss

of organellar genes, whereby those that were first to be suc-

cessfully relocated were those encoding proteins that are

easiest to transport back, while those that were last to be

transferred encode proteins that are difficult to transport

back. Many bacterial proteins have or are predicted to have

mitochondrial targeting properties, or can be targeted to mito-

chondria without the acquisition of a targeting presequence,

and these are predicted to be the first organellar genes to be

successfully relocated to the nucleus [10,11]. As there seem

to be no limitations on the transfer of genetic material,

organellar gene loss should, according to this theory, have

continued until the cell solved the targeting and assembly
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problems for all proteins, and organellar genomes would

then no longer exist [12]. This may yet occur in plants, where

transfer of organellar genes to the nucleus continues to

erode the organelle genomes [4]. 

Why, then, has the transfer of genes to the nucleus not gone to

completion? The difference in genetic code between mitochon-

dria and the nucleus in eukaryotic organisms other than plants

is one plausible explanation for the apparent ‘freeze’ on gene

relocation [13]. Regardless of the reason, organellar genomes

linger, and they are enriched in genes that encode hydrophobic,

membrane-embedded proteins that are difficult to transfer

from cytosol to organelle. Notably, even the reduced plastid

genome of dinoflagellates is enriched in genes encoding

hydrophobic proteins [14]. These initial observations instigated

the ‘hydrophobicity hypothesis’, which was first proposed by

von Heijne in 1986 [15] and was later expanded by others

[16,17] (see Box 1). Since then there has been a steady accumu-

lation of both bioinformatic observation and experimental evi-

dence suggesting that hydrophobic regions in proteins are a

major obstacle to both targeting and import, and that proteins

must overcome this obstacle if their genes are to relocate.

Following the original hydrophobicity hypothesis [15],

several studies have shown that targeting to mitochondria

and the endoplasmic reticulum are competing pathways and

that subcellular location is determined by a combination of

the length of the transmembrane region, the degree of

hydrophobicity and the number of positive residues flanking

the transmembrane region [18,19]. Specifically, it was con-

cluded that moderate transmembrane region length and

charge distribution resulted in mitochondrial targeting for

some proteins, whereas increasing the length of the

transmembrane region resulted in mis-localization to other

membrane systems [20,21]. Although these proteins were

not organelle-encoded, the findings demonstrate that

hydrophobic transmembrane regions can cause mis-targeting

of cytosolically synthesized proteins. 

Evidence that organelles are unable to import certain

hydrophobic proteins has also accumulated since the initial

observations that there was a limit on the number of trans-

membrane regions that could be imported [17]. Direct

experimental evidence indicates that a reduction in

hydrophobicity was essential for the rare transfer event that

occurred for the cytochrome c oxidase subunit 2 (Cox2) gene

in legumes [22]. Also, the other rare gene transfer events of

Cox2, Cox3 and ATP6 from the mitochondrion in green

algae have been accompanied by a reduction in hydropho-

bicity of the encoded protein [23-25]. These events highlight

the fact that there are hydrophobicity limits on import, and

that many mitochondrially encoded proteins lie naturally

outside this limit. But they also indicate that in those organ-

isms for which the location of the gene has not been ‘frozen’

by a change in genetic code, organellar genomes will con-

tinue to be eroded. 

Another observation that suggests that gene location is

affected by hydrophobicity is the finding that cytochrome f and

subunit IV of the cytochrome bf complex of Euglena gracilis

are encoded in the nucleus [26]. Euglena is somewhat unusual

as it has three chloroplast-envelope membranes because an

additional endosymbiosis has taken place and thus the outer

envelope membrane - the perichloroplast membrane - is

closely related to the endoplasmic membrane. As well as the

decrease in hydrophobicity of the cytochrome f and subunit

IV polypeptides in relation to their chloroplast-encoded

counterparts, it is tempting to speculate that this transfer

was only feasible because of the additional outer membrane,

as proteins destined for the chloroplast in Euglena are first

targeted co-translationally to the endoplasmic reticulum and

subsequently sorted to the chloroplast (see below) [27].

The solutions that nature has found for overcoming the

hydrophobicity problem associated with relocating some genes

have been both original and instructive. Similar efforts by

researchers to express organellar genes allotopically have
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Figure 1
The steps required for a gene to be transferred from an organelle to the nucleus. (a) The gene must be transferred from the organelle, either as a fragment of
organellar DNA or as a cDNA, and (b) integrated into a nuclear chromosome. (c) The gene must then acquire the signals for expression, including promoter,
terminator, and polyadenylation signals, and also a signal to target the protein back to the organelle. These events may occur together or separately. (d) The
expressed gene may be translated on free polysomes to produce a protein that is targeted to mitochondria, or alternatively the mRNA may be targeted to
mitochondria to be translated on the surface. (e) The targeting signal must be removed and (f) the protein has to be assembled in order for it to function.
Assembly may require re-sorting to the correct location within the organelle and additional processing of sorting signals.
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proven difficult and also give credit to the hydrophobicity

hypothesis. Although the coding location could be experimen-

tally moved from the mitochondrion to the nucleus for

ATP6 and ATP8 [28,29], this could not be achieved for

apocytochrome b or ND4 [29]. Additionally, overexpression

resulted in depolarization of the mitochondrial membrane

potential. Thus these proteins seem to have a toxic effect on

cells when expressed in the cytosol, and this may be linked to

their hydrophobic nature [29]. 

Hard-wired - have organellar genes been
‘preferentially maintained’?
The preferential ‘maintenance’ of a core set of organellar

genes is encompassed by the CORR theory (co-location for

redox regulation; see Box 1), which was first proposed in

1992 [30,31]. This hypothesis proposes that there is a direct

link between coding location and regulation, either tran-

scriptional or post-transcriptional, which gives a fitness

advantage compared with nuclear-encoded genes. In this

way, expression of a gene within the organelle gives an

advantage, thus preventing transfer of the gene to the

nucleus. An example often quoted to support the hypothesis

is that if more subunits of a protein complex are needed in a

particular chloroplast, for example the DI subunit of photo-

system II, which might be required because of photo-oxida-

tive damage, it is more efficient to have the gene encoded

within the organelle, as nuclear encoding would mean that

the protein would be sent even to those chloroplasts that did

not require this subunit [32]. Although rich in predictions,

there is no direct experimental evidence for CORR (for mito-

chondria) [5], in contrast to several experimental investiga-

tions that support the validity of the hydrophobicity

hypothesis [5,16-26,28,29]. 

The flaws of each hypothesis
On the surface, the hydrophobicity hypothesis does not

appear to adequately explain the retention of all organelle-

encoded genes. Notable flaws are, firstly, that not all protein-

coding genes encoded in organelles encode hydrophobic

proteins, the most obvious example being the large subunit of

ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco-

LSU) in chloroplasts; and secondly, both mitochondria and

chloroplast already import hydrophobic proteins. The mito-

chondrial carrier family and the light-harvesting protein of

the light-harvesting chlorophyll-protein complex are cited

examples for mitochondria and chloroplasts, respectively.

Similarly, the CORR hypothesis also has some deficiencies.

Firstly, redox control has as yet been demonstrated for only

a handful of plastid-encoded genes. Secondly, the expression

of many nuclear-encoded mitochondrial and chloroplast

proteins is under redox control and yet these proteins are

not organelle-encoded [33,34]; thus, why only some redox-

controlled genes must be organelle-encoded is not explained

by CORR. And thirdly, even for the redox-regulated compo-

nents encoded by chloroplasts, the products are functional

only when combined with additional nuclear-encoded sub-

units; thus, being organelle-encoded does not offer any

immediate advantage in terms of protein function.

Thus it might be possible that there are a variety of reasons

why genes are organellar and the reason for each gene might

differ, or even be a combination of a number of different

factors. It is worth examining the exceptions to each hypoth-

esis to see whether there is evidence to validate or invalidate

the objection. Also, there is a need to question how being

chloroplast-encoded and under redox control is an advan-

tage in evolutionary terms.

Exceptions to the rule
The hydrophobicity hypothesis centers on the problem of

targeting and importing a protein following its synthesis in

the cytosol. Although hydrophobic proteins clearly present

targeting problems, many organellar genes do not encode
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Box 1

An explanation of terms 

The hydrophobicity hypothesis. This hypothesis ini-
tially proposed that some genes were mitochondrially
encoded because they would be mis-targeted to the
endoplasmic reticulum by the signal-sequence target-
ing pathways if synthesized in the cytosol. The hypoth-
esis was then expanded to cover proteins for which
hydrophobicity prevents import into mitochondria,
even if no mis-targeting to the endoplasmic reticulum
takes place. Thus these genes can be considered ‘too
hot to handle’.

The CORR hypothesis (co-location for redox regula-
tion). A recently stated version of this hypothesis by
Allen [58] is as follows. “This hypothesis states that
mitochondria and chloroplasts contain genes whose
expression is required to be under the direct regula-
tory control of the redox state of their gene products,
or the electron carriers with which their gene prod-
ucts interact.” These genes are thus ‘hard-wired’ into
the redox system of organelles. 

Allotopic gene expression is expression of a gene in a
cell or organelle in which it is not normally expressed.
Thus, to express from a nuclear or episomal location
using recombinant techniques genes that are normally
encoded and expressed in mitochondria or chloro-
plasts is referred to as allotopic.



hydrophobic proteins. If we look at Rubisco-LSU, as it is the

obvious and cited counterexample to the hydrophobicity

hypothesis, can it be synthesized in the cytosol and imported

to produce a functional protein in chloroplasts? The answer

is yes, as this has been successfully achieved in some dinofla-

gellates [14]. In other plants where Rubisco-LSU is normally

plastid-encoded the reported attempts to express the gene

allotopically have been successful qualitatively but not quan-

titatively. Although it is possible to express and import the

protein, only a small proportion of the wild-type activity can

be achieved [35]. One reason for this failure might relate to

the assembly of the complex. As the holoenzyme of Rubisco

is the most abundant protein in a cell, efficient assembly is

critical, and specific chaperone systems are involved in this

process (for review, see [36]). Thus, although it is possible to

import the protein, the limitations of assembly - that is,

reduced assembly efficiency - may reduce fitness and thus

successful gene transfer. An unfolded protein response, a

stress-induced pathway, has been described for mitochon-

dria and thus, in addition to the fact that inefficient assem-

bly may reduce fitness, unfolded or unassembled proteins

may be degraded and/or may induce stress pathways, as has

been demonstrated in mitochondria [36,37]. It should be

noted that as the small subunit of Rubisco is nuclear-

encoded, the reason for the failure to express Rubisco-LSU

adequately from a nuclear location is unlikely to be due to a

gene dosage effect of plastid genome versus nuclear genome.

This assembly concept could be extended further to explain

the organellar coding location of other proteins that are not

encompassed by the hydrophobicity hypothesis. One

common feature of almost all organelle-encoded genes is

that the products are assembled into multisubunit com-

plexes that contain at least one other protein - for example

the Rubisco holoenzyme - but usually many others, as is

evident for the electron-carrying components of the photo-

synthetic and respiratory chains. Studies on how such com-

plexes assemble indicate that there are ordered sequential

assembly pathways. The order of assembly is critical to pro-

ducing a functional complex, and importantly organelles

have specific protease and chaperone systems for degrading

proteins that have not assembled correctly [38,39]. 

The extensively studied photosystem II from chloroplasts

indicates “a hierarchy in the protein components that allows

a stepwise building of the complex” [40]. An excellent

example is the DI protein, which is encoded by the chloro-

plast gene psbA. This protein is inserted into the thylakoid

membrane in a co-translational manner with the aid of the

chloroplast signal-recognition particle, and requires the

presence of several other subunits of photosystem II [40,41].

Studies of the unicellular green alga Chlamydomonas rein-

hardtii indicate that specific sequences in the 5�-untrans-

lated region of the mRNA bind specific proteins that might

define thylakoid membrane targeting [42]. Allotopic expres-

sion of genetically altered psbA resistant to herbicide

demonstrated that the protein product could be imported

into chloroplasts but plants were still sensitive to herbicide

(albeit less than wild-type plants) [43], possibly as a result of

ineffective or inefficient assembly of the cytosolically synthe-

sized protein.  This example indicates that assembly may

define an organelle-encoded location. An excellent review

containing more details of this process is available [44]. 

The second apparent ‘flaw’ in the hydrophobicity hypothesis is

that both mitochondria and chloroplast import many

hydrophobic proteins. Why then should some hydrophobic

proteins be resistant to this process? The answer may lie in the

protein itself; many nuclear-encoded mitochondrial proteins

are imported across the organellar membranes to the matrix,

and then rerouted via conserved sorting pathways. This import

pathway requires that all but the last transmembrane stretch

must pass through the import machinery. If, however, a trans-

membrane stretch is recognized as a ‘stop-transfer’ sequence,

the import process stops [22], the offending stretch of amino

acids is moved laterally into the membrane, and the protein is

unable to fold to its active conformation [45]. Clearly, all

nuclear-encoded organellar proteins have evolved so that their

transmembrane stretches do not resemble stop-transfer

sequences, enabling polytopic proteins to be easily imported

and assembled. Thus it is the subtle signals contained in a

transmembrane stretch that can prevent import, something we

are not yet able to predict from gene sequence alone.

The often-cited examples of mitochondria and chloroplasts

importing hydrophobic proteins do not contradict the principle

that assembly can define organelle-coding location. Members

of the mitochondrial carrier family, present in the inner mem-

brane, may be hydrophobic but function in homodimeric com-

plexes; thus there is no sequential assembly required [46]. The

hydrophobic light-harvesting chlorophyll proteins were

derived from simpler forms in cyanobacteria that are single-

membrane-spanning [47,48]. These two sets of proteins repre-

sent ‘eukaryotic’ proteins and thus import and assembly

pathways were invented de novo by eukaryotic cells. But, when

multisubunit protein complexes were derived from the

endosymbiotic ancestor, the assembly pathways were dictated.

One, two or more reasons not to move?
As outlined above, there is compelling experimental evi-

dence that the targeting and import of some proteins might

be the major determinant for their organelle-coding loca-

tion. But not all organelle-encoded proteins pose targeting

and import problems, and it is becoming increasing clear

that assembly should be added to the list of difficulties. We

therefore feel that the term ‘importability’ better encom-

passes the difficulties experienced by some proteins when

expressed in the cytosol, and therefore the retention of

organellar genomes. The importability concept does not

ignore the observations of the CORR hypothesis: rather, the

elegant redox regulation of some chloroplast-encoded genes
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[34] may be a mechanism for ensuring that these organelle-

encoded subunits are synthesized in the correct sequential

manner, so as to ensure correct assembly. Redox regulation

may have specialized to a stage at which it facilitates the

ordered assembly of multisubunit complexes and may now

represent a barrier to gene relocation. 

The importability hypothesis also encompasses the proposal

that some products may be toxic if synthesized in a cytosolic

location, as has been demonstrated for the apocytochrome b

and ND4 proteins [29]. An important point to note is that even

if, under experimental conditions, allotopic expression of some

organelle genes can be achieved and can rescue mutant pheno-

types, in evolutionary terms it is the efficiency of import and

assembly that can be a selective factor. Thus, reducing the

growth rate by achieving allotopic expression may reduce

fitness and result in an organellar location for a gene even

though a nuclear location can be achieved in the laboratory.  

Importability may not be sufficient to explain an organellar

coding location for all genes in all organisms. There might be

alternative reason(s) why some genes are retained in

organelles. The evolution of organellar and nuclear genomes

must be a complementary process in cells. Effective cross-talk

takes place between nuclear and organellar genomes to coor-

dinate function, as is evident with retrograde regulation for

nuclear-encoded genes for mitochondrial and chloroplast pro-

teins [49-51]. There is also evidence for an additional form of

regulation, termed intergenomic communication [52,53]; this

is based on the physical presence and expression of a gene

within an organelle genome independent of the function of the

encoded protein [54]. Furthermore, it appears that mutations

in the mitochondrial genome in yeast increase the rate of

nuclear mutation [55]. Mutations in mitochondrial genomes

cause defects or alterations in development in mammalian

and plant systems [56,57]. Thus, perhaps an additional reason

that genes are encoded in organelles is that some genes must

be encoded there in order for expression of organelle and

nuclear genomes to be coordinated. Genes encoding protein

products that present additional barriers for successful gene

transfer will also most often be observed in organelle

genomes. With all the genome information that is now avail-

able, care needs to be taken to look at genomes rather than

focusing solely on individual genes. This approach may yield

insights that would not be possible with single-gene analysis

and may provide more inclusive hypotheses for explaining

organelle genome maintenance.
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