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Abstract

Since the introduction of modern dental implants in the 1980s, the number of inserted

implants has steadily increased. Implant systems have become more sophisticated and

have enormously enhanced patients’ quality of life. Although there has been tremendous

development in implant materials and clinical methods, bacterial infections are still one of

the major causes of implant failure. These infections involve the formation of sessile micro-

bial communities, called biofilms. Biofilms possess unique physical and biochemical proper-

ties and are hard to treat conventionally. There is a great demand for innovative methods to

functionalize surfaces antibacterially, which could be used as the basis of new implant tech-

nologies. Present, there are few test systems to evaluate bacterial growth on these surfaces

under physiological flow conditions. We developed a flow chamber model optimized for the

assessment of dental implant materials. As a result it could be shown that biofilms of the five

important oral bacteria Streptococcus gordonii, Streptococcus oralis, Streptococcus salivar-

ius, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans, can be repro-

ducibly formed on the surface of titanium, a frequent implant material. This system can be

run automatically in combination with an appropriate microscopic device and is a promising

approach for testing the antibacterial effect of innovative dental materials.

Introduction

More than 700 bacterial species inhabit the human oral cavity [1]. While a large proportion of

these bacteria are harmless commensals, opportunistic bacteria can trigger common oral dis-

eases like caries, peri-implantitis and the chronic inflammatory disease periodontitis [1, 2].

Most bacteria within the oral cavity are sessile and form highly organised microbial communi-

ties, referred to as biofilm, on the surfaces of soft and hard tissues. Bacteria are embedded in a

matrix of self-secreted extracellular polymeric substances (EPS) that determine the three

dimensional structure of the biofilm [3]. As the EPS matrix shields cells in the biofilm from

antimicrobials as well as from the host immune response, sessile bacteria can exhibit up to

5000-fold greater resistance to antibiotics than free floating (planktonic) cells [4]. There are
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three mechanisms that increase antibiotic resistance: First, the EPS acts as a potent diffusion

barrier that antagonizes antibiotic penetration into the biofilm [5, 6]. Second, the sessile life

cycle stage is accompanied by a metabolic activity change that reduces the antibiotic uptake

[7–11]. Third, via horizontal gene transfer resistance genes can be exchanged between bacteria

in biofilms as reported by Roberts et al. [12]. The high antibiotic tolerance makes biofilm infec-

tions hard to treat. In spite of intensive research, these bacterial communities still pose a severe

medical complication. Therefore, the biofilm-related infections belong to the main reasons for

early and late implant loss in dental implantology, as well as in other medical disciplines [13].

Therefore, studies are necessary investigating oral biofilm formation in order to develop

implant surfaces that reduce biofilm formation and the risk of implant failure.

Even tough flow chamber systems have been used to study biofilm formation in oral

implants research, most studies were conducted under static conditions [14–18]. These require

a less sophisticated experimental set-up and show greater ease of handling [19]. However, the

physiological flow conditions, as they are found at the dental implantation site, are not consid-

ered in these systems. Even though, the application of a static or dynamic system depends on

the considered scientific question. The microenvironmental conditions have substantial

impact on biofilm morphology and growth behavior as they influence: a) oxygen and nutrients

transport processes through the biofilm [20–22], b) transport of signal molecules, e.g. quorum

sensing messengers that alternates the biofilm morphology and physiology [23–25], c) heat

and mass transfer that coordinates the biotransformation reaction and energy losses [21], d)

gene expression and EPS content [26] and e) spreading of biofilms through increasing the

mobility of pioneering bacterial cells [26].

Sternberg et al., Besemer et al., Purevdori et al., and Zhang et al. focused on a variety of fea-

tures of biofilms, including the influence of flow velocity on biofilm morphology and the dis-

tribution of bacterial growth activity within a flow chamber system [23, 27–30]. Biofilm

behavior was also tested under different chemical and physiological conditions as the pH or

the different nutrient and oxygen concentrations in a flow environment [20, 21, 23, 27–30].

Clinical research with flow chamber systems has increased rapidly within the last decade.

For example, Zhao et al. developed a model to investigate different implant materials for the

suppression of biofilm formation and Chin et al. used a flow chamber system to test the effects

of antibacterial agents on orthodontic binding materials [31, 32]. In 2013, da Silva Domingues

et al. developed a parallel flow chamber system to elucidate the adherence mechanisms of

Staphylococcus aureus and quantify phagocytosis by murine and human macrophages [33].

Even though, dynamic studies of oral biofilm formation and characterization have to be

improved. These studies have to include the implant material, implant failure relevant bacteria,

reproducible culture and flow conditions.

Biofilm architecture is greatly influenced by the colonising bacterial species or the species

composition. The present study focused on a selection of oral biofilm formers that reside

within the oral cavity during health and/or disease: S. gordonii, S. oralis, S. salivarius, P. ginigi-
valis, and A. actinomycetemcomitans. The gram-positive streptococci S. gordonii, S. oralis and

S. salivarius are commensal bacteria that, as pioneer colonisers, provide adhesion sites to mid-

dle and late colonizing bacterial species [34, 35]. S. salivarius is an opportunistic pathogen that

may occasionally cause infections such as caries in man and which is involved in the develop-

ment of halitosis [36, 37]. One of the most virulent opportunistic pathogenic streptococci is S.

oralis. This bacterium expresses a sialidase, an enzyme that hydrolyses the bonds between sialic

acids residues and the hexose or hexosamine residues at the terminal side of the oligosaccha-

rides in glycolipids and glycoproteins. In the bacterial host, the enzyme cleaves target struc-

tures and thus unfavourably influences cellular processes [38–41]. Moreover, S. oralis causes

infective endocarditis and is a major pathogen in immunosuppressed patients [42–45].

Flow chamber system for in vitro analysis
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P. gingivalis and A. actinomycetemcomitans are rod-shaped, anaerobic, gram-negative bac-

teria that can cause severe diseases, including periodontitis [46–48].

P. gingivalis secretes inflammatory compounds and toxins that attack host tissue and can

lead dysbiosis of the microbial flora [49]. A. actinomycetemcomitans produces virulence factors

that allow the migration and invasion of other bacteria, e.g. the expression of leukotoxins. As a

result, host periodontal tissue is damaged and the immune response severely weakened [50],

[51].

For oral implant materials testing a standardized in vitro biofilm model for a panel of rele-

vant bacterial species is missing. The aim of the study was to establish and evaluate a flow

chamber system for this purpose. The experimental parameters growth environment, cultiva-

tion duration and nutrient supply had to be optimized for the biofilm formers, S. gordonii, S.

oralis, S. salivarius, P. gingivalis and A. actinomycetemcomitans to give a reproducible and

robust biofilm formation in vitro.

Materials and methods

Bacterial strains

S. gordonii DSM 20568, S. salivarius DSM 20067 and P. gingivalis DSM 20709 were obtained

from the German Collection of Microorganisms and Cell Cultures (DSMZ). The bacterial

strains S. oralis ATCC 9811 and A. actinomycetemcomitans ATCC 2474 were purchased from

the American Type Culture Collection (ATCC).

Bacterial cultivation and biofilm formation

S. gordonii, S. salivarius and S. oralis were routinely precultured in Tryptic Soy Broth (TSB;

Oxoid, Unipath Ltd., Wesel, Germany), supplemented with 10% yeast extract (Roth, Karls-

ruhe, Germany), aerobically at 37˚C in an incubator shaker (200 min-1, SM-30, Bühler, Utzwil,

Switzerland) for 18 h (S. gordonii, S. salivarius) or 24 h (S. oralis). For the induction of biofilm

formation, S. gordonii and S. salivarius cultures were adjusted to an optical density (OD600;

BioPhotometer, Eppendorf, Hamburg, Germany) of 0.016 in TSB medium modified by addi-

tion of 50 mM glucose (Roth) and stirred (VMS-C7 advanced, VWR; Darmstadt, Germany)

for 24 h at 37˚C for biofilm formation. This OD600 corresponds to an inoculum of: 1.94 x 106

colony forming units CFU/mL for S. gordonii and 4.19 x 106 CFU/mL for S. salivarius, respec-

tively. For S. oralis, the procedure was identical, except that an OD600 of 0.026 was chosen (3.5

x 106 CFU/mL) and that Brain Heart Infusion (BHI, Oxoid, Unipath Ltd., Wesel, Germany)

medium supplemented with 5% sucrose (Roth) and 10 μg/mL vitamin K (Roth) was used as

nutrient broth. S. oralis biofilm was also cultivated for 24 h.

P. gingivalis was cultured anaerobically (10% carbon dioxide, 10% hydrogen, 80% nitrogen)

in BHI medium modified with 10 μg/mL of vitamin K for 24 h without agitation at 37˚C, fol-

lowed by culture in an incubator shaker (200 min-1) for 48 h. For biofilm formation experi-

ments, the cultures were adjusted to an OD600 of 0.0375 (7.88 x 106 CFU/mL) in BHI medium

supplemented with 5% sucrose and 10 μg/mL vitamin K. The bacterial suspension was anaero-

bically grown under continuous stirring for 48 h at 37˚C for biofilm formation.

A. actinomycetemcomitans was routinely cultured anaerobically in Schaedler bouillon

(Oxoid, Unipath Ltd., Wesel, Germany) supplemented with 10 μg/mL vitamin K at 37˚C

under agitation (200 min-1) for 48 h and was then transferred to an Erlenmeyer flask to be cul-

tured for an additional 48 h under continuous stirring. To induce biofilm formation by A. acti-
nomycetemcomitans, cultures were adjusted to an OD600 of 0.0319 (1.25 x106 CFU/mL) in

Schaedler bouillon supplemented with 10 μg/mL vitamin K and anaerobically cultured for 72

h at 37˚C under continuous stirring for biofilm formation. All experiments modified with
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vitamin K were protected from light to avoid the destruction of the compound by light. For

the anaerobic cultivation of P. gingivalis and A. actinomycetemcomitans, the bioreactor and the

flow chamber system were evacuated twice and subsequently flushed with anaerobic gas mix

(10% hydrogen, 10% carbon dioxide, 80% nitrogen). The system was kept pressurized by con-

necting a gas filled balloon to the bioreactor. Thus the inflow of oxygen was inhibited through-

out the experiment.

Flow chamber system

The flow chamber devices were 7.0 cm x 5.5 cm x 3.5 cm in size and were equipped with a 28

mm glass cover slip (Thermo Scientific, Waltham, USA) to allow direct macro- and micro-

scopic analysis of biofilm formation on test surfaces (Fig 1). Titanium discs (grade 4) with a

diameter of 12 mm were used as specimens. Each of these underwent surface treatment with a

45 μm diamond abrasives grinding disc to generate a uniform surface pattern for bacterial

adhesion. The bacterial suspension was recirculated from the bioreactor to the flow chambers

and back at a flow rate of 100 μL/min (IPC-16 peristaltic pump, Ismatec, Wertheim, Ger-

many). The flow chamber system was kept air-free by use of bubble traps. To monitor bacterial

growth in the bioreactor, the OD600 was continuously recorded during the experiment using

an inline photometer (Elo-Check, biotronix, Hennigsdorf, Germany). Each flow chamber

experiment was repeated independently five times with at least three technical replicates.

Biofilm imaging and analysis

The flow chambers were separated from the system by surgical clamps at the collector’s site.

New sterile tubings were connected to the tubings of the peristaltic pump. Biofilms were

Fig 1. Sketch of the flow chamber and flow chamber system. A) Assembly drawing with test specimen; B)

General setup of the closed circuit system. The red arrows indicate the direction of the flow.

doi:10.1371/journal.pone.0172095.g001
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washed by pumping phosphate buffered saline (PBS, Dulbecco‘s Media, Sigma Aldrich, Han-

nover-Seelze, Germany) through the flow chambers to remove planktonic bacteria. The bio-

films were specifically stained live/dead by flushing with a 1:1000 dilution of BacLight staining

mix (Life Technologies, Darmstadt, Germany). Syto 9 is a green fluorescent dye that passes

bacterial cell membranes by diffusion and intercalates unspecifically into bacterial DNA. Pro-

pidium iodide is a red fluorescent dye that, due to its size, cannot pass intact cell membranes.

Dye intercalation is only observed in dead cells in which membrane integrity is impaired. The

bacteria were stained for 15 min at a flow rate of 100 μL/min in the dark and subsequently

examined by confocal laser scanning microscopy (CLSM, Leica-Upright MP microscope con-

nected to a TCS SP2 AOBS scan head, Leica, Wetzlar, Germany). From each specimen, image

stacks were acquired at five different positions; centre, right, left, top and bottom, using 10x

magnification. The Imaris 3D image processing software (Version 6.2.1, Bitplane, Oxford

instruments, Zurich, Switzerland) was used to calculate mean biofilm height.

Statistical analysis

The experiments were performed five times for each bacterial species, and the mean biofilm

height and standard errors were calculated. The mean biofilm heights between independent

biological replicates were compared using the univariate ANOVA test with a significance level

of 0.05. All statistical analyses were conducted using the software package SPSS (v23.0.0, IBM,

Armonk, USA).

Results

The flow chamber system

The flow chamber system was successfully manufactured according to the construction plans.

An assembly drawing of the chamber is presented in Fig 1A. As test specimen titanium discs

were used. To allow for macro-and microscopical specimen observation, the stainless steel

cover plate had been manufactured with a circular recess, housing a microscopic coverglass. In

Fig 1B, the complete setup of a flow chamber in a continuous flow circuit is depicted. The

growth conditions were successfully adjusted under aerobic and anaerobic conditions as seen

by the formation of stable, mature biofilms on the titanium specimens (Fig 2).

Micro- and macroscopic evaluation of biofilm formation

Biofilm formation of S. gordonii, S. oralis, S. salivarius, P. gingivalis and A. actinomycetemcomi-
tans was evaluated under constant flow conditions. A confluent biofilm formation was

observed for all tested bacterial species. The bacterial cultures in the bioreactor showed normal

growth behavior during the experiment and the resulting biofilms were structurally intact and

composed of predominantly vital cells (Fig 2A–2E). For all species, biofilm formation was

highly reproducible between independent experiments. However, the observed biofilm mor-

phologies were unique to the individual species. In detail, S. gordonii (A) and S. salivarius (C)

biofilms showed relatively homogenous surface pattern interspersed with a few tower-like

structures. S. oralis (B) biofilms demonstrated an uneven surface pattern with numerous

tower-like structures. The P. gingivalis (D) biofilm showed a rough biofilm surface with marco-

colonies. The biofilm of A. actinomycetemcomitans (E) demonstrated an open and loose

microbial biofilm structure.

Throughout all experiments, the biofilms exhibited high structural stability and no visible

detachment was detected during sample preparation for microscopic analysis.

Flow chamber system for in vitro analysis
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Calculation of mean biofilm height

Mean biofilm heights were determined for the five bacterial species tested. For each species,

the reproducibility of biofilm formation between the independent experiments was statistically

significant (Fig 3). The greatest mean biofilm height was observed for P. gingivalis with

38.85 μm (p = 5.2 x 10−13), followed by A. actinomycetemcomitans with 28.9 μm (p = 0.01), S.

oralis with 28.5 μm (p = 0.003), S. salivarius with 26.5 μm (p = 0.008), and S. gordonii with

21.1 μm (p = 0.000009).

Discussion

Many flow chamber systems have been developed within recent decades to analyse biofilm for-

mation and dynamics in a fluid system. Our flow chamber system was optimized for the exper-

imental investigation of dental relevant bacteria on the implant material titanium, as this is an

important approach to prevent implant failure due to biofilm-associated infections. Within

the presented flow chamber system, the replacement of the titanium disc with other disc-

shaped sample materials of interest is applicable without time-consuming reconstruction mea-

sures. The complete flow chamber system is reusable and fully autoclavable. The cultivation

setup can easily be modified according to the optimal growth conditions of the respective bac-

terial species under aerobic as well as anaerobic conditions.

We focused on a group of bacteria, consisting of oral commensal and periodontopatho-

genic bacteria: S. gordonii, S. oralis, S. salivarius, P. gingivalis, and A. actinomycetemcomitans.
Previous studies have mostly described biofilm formation under static test conditions [52, 53],

but in vivo the flow has great influence on the of the biofilm behavior. Therefore, fluid systems

have been established to mimic the physiological flow conditions within the oral cavity [54].

To achieve a realistic experimental setup, we chose a flow speed of 100 μL/min, as it is

described for the natural saliva flow in the hibernation mode [55–57]. The bacterial suspension

was pumped continuously over the test specimens as in the oral cavity bacteria-contaminated

saliva is permanently flooding the implant.

Fig 2. 3D reconstruction of biofilms in side view. The cells were stained live/dead and analysed by CLSM.

Vital cells are depicted in yellow, viable cells in blue. A) S. gordonii, B) S. oralis, C) S. salivarius, D) P.

gingivalis, and E) A. actinomycetemcomitans.

doi:10.1371/journal.pone.0172095.g002
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All bacterial species exhibited reproducible and homogenous growth behavior under the

given flow conditions, as confirmed by 3D biofilm reconstruction from CLSM image stacks

and statistical analyzes.

In contrast to the flow chamber systems of Weiger et al., Hauser-Gerspach et al., Meier

et al., and Diaz et al., our test procedure allows direct investigation of biofilm formation for

five bacterial species [56, 58–64]. The test specimens were not removed from the chambers for

microscopic observation, so that detachment effects were minimised and biofilm quantifica-

tion was highly precise. Only a few studies have analysed biofilm development for oral health

relevant bacteria in a flow system [56, 58–64]. To the best of our knowledge, no other study

has focused on the described group of bacteria for microbial adhesion testing in one flow

chamber system.

The biofilm morphologies of the applied bacterial species have already been in other stud-

ies: In accordance to the study of Diaz et al., a homogeneously flat biofilm morphology with a

few tower-shaped structures was observed for S. gordonii. However, contrasting to our study

the bacteria were visualized by fluorescent in situ hybridization (FISH) [56].

For S. oralis Paramonova et al. designed a flow chamber system to analyse the influence of

shear stress on biofilm formation [61]. The biofilm height of S. oralis was enhanced with

Fig 3. Biofilm heights on titanium substrata in the flow chamber system. In each diagram, the mean

biofilm heights for five independent experiments are shown. A = S. gordonii, B = S. oralis, C = S. salivarius,

D = P. gingivalis, and E = A. actinomycetemcomitans.

doi:10.1371/journal.pone.0172095.g003
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increasing shear stress. The observed biofilm morphology of S. oralis showed a typical tower-

like biofilm with a rough surface comparable to our study.

The S. salivarius biofilm morphology was homogenously flat, as also shown in the study of

Gashti et al. [65]. However, they used microfluidic flow chambers, and focused primarily on

the influence of pH on biofilm formation.

Davey et al. designed their flow chamber model for P. gingivalis according to Christensen

et al. [64, 66]. They also observed a rough surface morphology with macrocolonies within the

biofilm. Analogously to our experiments, the biofilm was grown under anaerobic conditions.

However, the mean biofilm height was about five times higher compared to our study. These

findings can be attributed to the different flow chamber design and the differing cultivation

conditions. Davey et al. grew biofilms for 96 h compared to 48 h in our experiment [64]. Addi-

tionally, Davey et al. analyzed the living fraction of the biofilm by staining with SYTO9.

The biofilm morphology of A. actinomycetemcomitans showed an open and soft microbial

architecture on the titanium substratum. The same findings were described by Sliepen et al.

[63]. In contrast to our method, they tagged A. actinomycetemcomitans with a green fluores-

cent protein to analyze the biofilm formation by CLSM. However, it cannot be completely

ruled out that this genetic modification may have influenced the adhesion behavior and bio-

film formation.

Finally, in the present study, the reproducibility of the bacterial biofilm height was given in

all our experiments.

Biofilm formation takes place throughout the whole oral cavity. However, daily oral hygiene

measures reduce the amount of attached biofilms in the oral cavity. Especially at the interfaces

gum/tooth or gum/implant bacteria begin to accumulate and form biofilms. If not removed,

biofilms cause swelling and detachment of the gums from teeth or implants. Biofilms further

proliferate in the formed periodontal pockets. As these are not isolated compartments but are

connected to the oral cavity, biofilms are exposed to a low flow environment rather than static

conditions. Therefore, the described flow chamber model approximates the in vivo situation,

which is crucial for evaluation of surfaces intended to be used in the oral cavity. In conclusion,

the here developed flow chamber system, in combination with CLSM-based biofilm quantifi-

cation, proved to be a reliable instrument for the analysis of biofilm height and the formation

of bacterial biofilms that are relevant in dentistry. Under the given experimental setting, the

flow chambers can be used for evaluation of bacterial colonisation behavior of implant materi-

als for the oral cavity. In further studies, the system will be optimised for studies of the forma-

tion oral multispecies biofilms, which is closer to the actual situation in the human mouth.

Other interesting aspects will be the investigation of the influence of different flow velocities,

nutrient concentrations and substrata on the biofilm formation.

Supporting information

S1 File. Supporting information. Complementary information of all biofilm height data
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