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In the causal mediation framework, several parametric-regression–based approaches have been introduced in
the last decade for estimating natural direct and indirect effects. For a binary outcome, a number of proposed
estimators use a logistic model and rely on specific assumptions or approximations that may be delicate or
not easy to verify in practice. To circumvent the challenges prompted by the rare outcome assumption in this
context, an exact closed-form natural-effects estimator on the odds ratio scale was recently introduced for a binary
mediator. In this work, we further push this exact approach and extend it for the estimation of natural effects on
the risk ratio and risk difference scales. Explicit formulas for the delta method standard errors are provided. The
performance of our proposed exact estimators is demonstrated in simulation scenarios featuring various levels
of outcome rareness/commonness. The total effect decomposition property on the multiplicative scales is also
examined. Using a SAS macro (SAS Institute, Inc., Cary, North Carolina) we developed, our approach is illustrated
to assess the separate effects of exposure to inhaled corticosteroids and placental abruption on low birth weight
mediated by prematurity. Our exact natural-effects estimators are found to work properly in both simulations and
the real data example.

binary mediator; binary outcome; causal mediation; causal mediation regression-based analysis; exact
natural-effects estimator; outcome rareness/commonness

Abbreviations: NDE, natural direct effect; NEM, natural effect model; NIE, natural indirect effect; OR, odds ratio; RD, risk
difference; ROA, rare outcome assumption; RR, risk ratio; TE, total effect.

Mediation analysis approaches that rely on the specifi-
cation of parametric models for the mediator and outcome
variables are naturally appealing to practitioners because of
their conceptual simplicity. However, notoriously, the devel-
opment of such approaches is more challenging when the
outcome is binary, as opposed to continuous, due to the con-
sideration of nonlinear models (1). In this line of research,
contributions made over the years in the causal inference
framework have helped to increase the resources available
for estimating direct and indirect effects with binary out-
comes. However, a number of proposed approaches invoke
specific assumptions or approximations, some of which may
be delicate or not easy to verify in practice. VanderWeele and
Vansteelandt (2) and Valeri and VanderWeele (3) relied on
the rare outcome assumption (ROA) to propose regression-

based estimators of the natural direct effect (NDE) and the
natural indirect effect (NIE) on the odds ratio (OR) scale for
continuous and binary mediators. For a normally distributed
mediator, Gaynor et al. (4) used a probit approximation of
the logit function to provide an estimator of the NDE and
NIE on the OR scale that can be used when the outcome is
common. Previous work by Tchetgen Tchetgen (5), which
motivated the work of Gaynor et al. (4), introduced an exact
estimator for a nonrare outcome, but the approach assumed
a bridge distribution for the continuous mediator.

For a binary outcome and a binary mediator, the logistic-
regression–based causal mediation approach of Valeri and
VanderWeele (3) is popular among applied researchers,
arguably because of its accessible implementation in
standard statistical software (e.g., the SAS procedure PROC
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CAUSALMED (SAS Institute, Inc., Cary, North Carolina)
and the Stata module PARAMED (StataCorp LLC, College
Station, Texas) (6–8). First designed for cohort data, this
approximate approach is based on the simplifying ROA,
which is crucial in the development of the proposed closed-
form natural-effects OR estimator. In practical contexts, the
ROA is commonly verified by checking that the marginal
outcome prevalence P(Y = 1) is reasonably small (9–11).
However, as is further expanded below, there is an increased
awareness that this marginal definition is inadequate for the
ROA in causal mediation settings.

For a binary mediator, both Samoilenko et al. (12) and
Gaynor et al. (4) independently introduced a logistic-
regression–based estimator for cohort data that uses the pa-
rameterized outcome and mediator probabilities to express
the NDE and NIE on the OR scale. This estimator is qualified
as exact, since it does not rely on approximations and can
be used regardless of the rareness or commonness of the
outcome.

Samoilenko et al. (12) presented a simulation scenario
mimicking real perinatal data in which the outcome was
rare marginally (i.e., with P(Y = 1) < 0.1) but not in the
strata formed by the exposure and mediator. They com-
pared the proposed exact OR estimator with the Valeri and
VanderWeele (3) approximate estimator and found that the
former was unbiased for the NDE and NIE ORs (ORNDE

and ORNIE, respectively), unlike the latter. Commenting on
Samoilenko et al. (12), VanderWeele et al. (13) acknowl-
edged that the ROA needs to hold in strata formed by
covariates, including the mediator, for their estimator to be
valid. However, to require that the outcome be rare in strata
of a mediator is questionable when the mediator is strongly
associated with the outcome.

The recent parametric estimator proposed by Samoilenko
et al. (12) and Gaynor et al. (4) for a binary mediator is
attractive, since it overcomes the marginal or conditional
verification of the ROA. However, more work is required
to fully develop inference. In the paper by Samoilenko
et al. (12), the variance computation for the ORNDE and
ORNIE estimators was done using bootstrapping only. In
Gaynor et al. (4), the standard error formulas were not
provided in the paper but were implemented in R code
(R Foundation for Statistical Computing, Vienna, Austria)
developed for scenarios based on specific data sets. In the
paper by Doretti et al. (14), the exact parametric formulas
for the natural effects on the log OR scale were extended for
all possible interactions in the outcome model (including
exposure-mediator-confounding covariates’ interactions);
corresponding expressions for standard errors were derived
using the delta method. However, the authors did not release
computer code to provide easy implementation.

The purpose of this article is 2-fold. Our first objective
is to provide explicit and straightforward formulas for the
delta method standard errors for the case of the mediator-
exposure interaction and make this option available in the
general SAS macro developed in the paper by Samoilenko
et al. (12). While the bootstrap is indicated for inference
on the indirect effect (15), it is more computer-intensive
and not assumption-free (16, 17). Therefore, providing both
delta and percentile bootstrap confidence intervals allows

for greater flexibility and increased confidence in mediation
results. Our second objective is to go beyond the OR scale
and provide analogous results for the NDE and NIE on the
risk ratio (RR) and risk difference (RD) scales, with all 3
scales using the same logistic model for the outcome.

METHODS

Models and nested counterfactual outcome
probabilities

As in the papers by Samoilenko et al. (12) and Gaynor et
al. (4), we assume the following logistic regression models
for the binary mediator M and binary outcome Y , respec-
tively:

logit(P(M = 1|A = a, C = c)) = β0 + β1a + β′
2c, (1)

logit(P(Y = 1|A = a, M = m, C = c))

= θ0 + θ1a + θ2m + θ3am + θ′
4c, (2)

where A is the exposure (binary or continuous) and C is the
set of covariates sufficient to control for exposure-outcome,
mediator-outcome, and exposure-mediator confounding (18).

Under identification assumptions (19) and the modeling
assumptions in equations 1 and 2, the nested counterfactual
outcome Y(a, M(a∗)) probability is expressed as

P
(
Y
(
a, M

(
a∗)) = 1|C = c

)

= expit
(
θ0 + θ1a + θ2 + θ3a + θ′

4c
)

× expit
(
β0 + β1a∗ + β′

2c
)

+ expit
(
θ0 + θ1a + θ′

4c
)

× (
1 − expit

(
β0 + β1a∗ + β′

2c
))

, (3)

where

expit(α) = exp(α)

1 + exp(α)
, 1 − expit(α) = (1 + exp(α))−1.

Generally, the NDE compares Y(a, M(a∗))with Y(a∗, M(a∗)),
while the NIE is defined as a contrast between Y(a, M(a))
and Y(a, M(a∗)). In the literature, the NDE and NIE are also
referred to as the pure (natural) direct effect and the total
(natural) indirect effect, respectively (20–22).

Equation 3 allows expression of the NDE and NIE ORs
(ORNDE and ORNIE), as well as the NDE and NIE RRs
(RRNDE and RRNIE) and the NDE and NIE RDs (RDNDE

and RDNIE), in an exact manner.

Natural direct and indirect effects on the OR, RR, and
RD scales

Explicit expressions for the (conditional) NDE and NIE
ORs, ORNDE

a,a∗|c and ORNIE
a,a∗|c, corresponding to a change in the

exposure level from A = a∗ to A = a (also see Samoilenko et
al. (12) and Gaynor et al. (4)), are derived using the nested
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counterfactual outcome probabilities defined in equation 3
as follows:

ORNDE
a,a∗|c =

P(Y(a,M(a∗))=1|C=c)
1−P(Y(a,M(a∗))=1|C=c)
P(Y(a∗,M(a∗))=1|C=c)

1−P(Y(a∗,M(a∗))=1|C=c)

,

ORNIE
a,a∗|c =

P(Y(a,M(a))=1|C=c)
1−P(Y(a,M(a))=1|C=c)
P(Y(a,M(a∗))=1|C=c)

1−P(Y(a,M(a∗))=1|C=c)

. (4)

In an analogous manner, equation 3 leads to exact NDE and
NIE RR expressions, RRNDE

a,a∗|c and RRNIE
a,a∗|c, respectively:

RRNDE
a,a∗|c = P (Y (a, M (a∗)) = 1|C = c)

P (Y (a∗, M (a∗)) = 1|C = c)
,

RRNIE
a,a∗|c = P (Y (a, M(a)) = 1|C = c)

P (Y (a, M (a∗)) = 1|C = c)
. (5)

The total effect (TE) OR and RR, ORTE
a,a∗|c and RRTE

a,a∗|c, are
defined as the product of the NDE and NIE on their respec-
tive scales:

ORTE
a,a∗|c = ORNDE

a,a∗|c × ORNIE
a,a∗|c,

RRTE
a,a∗|c = RRNDE

a,a∗|c × RRNIE
a,a∗|c. (6)

From equation 3, the NDE and NIE exact expressions on the
RD scale are

RDNDE
a,a∗|c = P(Y(a, M(a∗)) = 1|C = c)

− P(Y(a∗, M(a∗)) = 1|C = c),

RDNIE
a,a∗|c = P(Y(a, M(a)) = 1|C = c)

− P(Y(a, M(a∗)) = 1|C = c). (7)

On the RD scale, the TE, RDTE
a,a∗|c, is defined as the sum of

the NDE and NIE:

RDTE
a,a∗|c = RDNDE

a,a∗|c + RDNIE
a,a∗|c.

For each effect scale, the NDE and NIE estimators are in-
duced by replacing the coefficients in equations 1 and 2 with
corresponding estimators. The formulas for calculating the
natural-effects standard errors via the delta method are pro-
vided in Web Appendix 1 (available online at https://doi.
org/10.1093/aje/kwab055).

Valeri and VanderWeele (3) approximate NDE and NIE
approach

As detailed by Samoilenko et al. (12), the approximate
expressions for the ORNDE and ORNIE provided in the paper
by Valeri and VanderWeele (3) are obtained by invoking
the ROA multiple times. First, replace in equation 3 the

expit functions stemming from the outcome model with
exponential functions; and second, approximate the OR by
RR, that is, replace equation 4 with equation 5:

Papp(Y(a, M(a∗)) = 1|C = c)

= exp(θ0 + θ1a + θ2 + θ3a + θ′
4c)

× expit(β0 + β1a∗ + β′
2c) + exp(θ0 + θ1a + θ′

4c)

× (1 − expit(β0 + β1a∗ + β′
2c)); (8)

app ORNDE
a,a∗|c = Papp(Y(a, M(a∗)) = 1|C = c)

Papp(Y(a∗, M(a∗)) = 1|C = c)
,

app ORNIE
a,a∗|c = Papp(Y(a, M(a)) = 1|C = c)

Papp(Y(a, M(a∗)) = 1|C = c)
. (9)

The approximate expression for the TE is then given by

app ORTE
a,a∗|c = app ORNDE

a,a∗|c × app ORNIE
a,a∗|c. (10)

Simulation studies

We conducted 2 simulation studies to examine the behav-
ior of proposed exact estimators. In the first simulation study,
no covariates C were included for the sake of simplicity,
while 2 covariates were included in the second study. Both
studies considered 4 scenarios corresponding to different
levels of outcome rareness/commonness:

Scenario 1. The outcome is rare in all of the strata defined
by the binary exposure and binary mediator (conditional
probabilities P(Y = 1|A = i, M = j) ≤ 10%, i, j = 0,1).

Scenario 2. The outcome is rare marginally (P(Y =1)≤10%),
but it is not rare in 1 stratum defined by the binary expo-
sure and binary mediator.

Scenario 3. This scenario is similar to scenario 2, but it fea-
tures 2 common strata and a slightly increased marginal
outcome probability (P(Y = 1) ≈ 15%).

Scenario 4. The outcome is not rare marginally (is common)
with P(Y = 1) ≈ 40%.

Simulation study without covariates

For each scenario, we generated 1,000 independent sam-
ples of size n = 5,000 nonparametrically using sequential
Bernoulli sampling for A, M, and Y . The probability values
used to generate the exposure, mediator, and outcome vari-
ables are presented in Table 1.

The true mediation OR, RR, and RD effects were calcu-
lated as

true ORNDE = P10/(1−P10)

P00/(1−P00)
, true ORNIE = P11/(1−P11)

P10/(1−P10)
;

true RRNDE = P10/P00, true RRNIE = P11/P10;

true RDNDE = P10 − P00, true RDNIE = P11 − P10,
(11)
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Table 1. Data-Generating Mechanisms for a Simulation Study Without Covariates Conducted to Evaluate Proposed
Exact Estimators

Simulation Scenario

Simulation Parametersa

Scenario 1 Scenario 2 Scenario 3 Scenario 4

P(A = 1) 0.40 0.40 0.40 0.40

P(M = 1|A = 0) 0.10 0.10 0.10 0.10

P(M = 1|A = 1) 0.20 0.20 0.20 0.20

P(Y = 1|A = 0, M = 0) 0.03 0.03 0.15 0.30

P(Y = 1|A = 0, M = 1) 0.08 0.08 0.10 0.70

P(Y = 1|A = 1, M = 0) 0.07 0.07 0.07 0.40

P(Y = 1|A = 1, M = 1) 0.10 0.50 0.50 0.80

Marginal outcome probability 0.05 0.08 0.15 0.40

a A, binary exposure; M, binary mediator; P, probability; Y, binary outcome.

with P11, P10, P00 computed using values from Table 1:

Pij = P(Y = 1|A = i, M = 1) × P(M = 1|A = j)

+P(Y = 1|A = i, M = 0)× (1−P(M = 1|A = j)).

The true total causal effects were calculated correspondingly
as

true ORTE = true ORNDE × true ORNIE,

true RRTE = true RRNDE × true RRNIE,

true RDTE = true RDNDE + true RDNIE.

For each sample, exact estimates of natural direct and indi-
rect effects were calculated on the OR, RR, and RD scales.
The mean value, bias, relative bias, standard deviation, and
root mean squared error of proposed exact estimators were
then estimated over the 1,000 samples generated; the true
ORs, RRs, and RDs defined in equation 11 were used as
the gold standard. For each simulation scenario, the same
statistics were also calculated for the approximate natural-
effects estimator based on equations 8–10. The approximate
natural-effects OR estimator was evaluated in regard to
both multiplicative scales (OR and RR). Indeed, because
the approximate natural effects are generally reported as
ORs (23), we first compared the approximate natural effect
estimates with the true ORs. However, since the approxi-
mate ORs mimic RRs by construction (see correspondence
between equations 5 and 9), we also evaluated the perfor-
mance of the approximate estimator using the true RRs as the
reference. The calculations described above were performed
using SAS, version 9.5.

For each scenario and sample, we also considered 2 other
existing approaches for comparison with the exact method
being introduced here. For all 3 scales (OR, RR, and RD),
we applied the natural effect model (NEM) approach (24,
25) using the R package medflex (26). This approach is
not based on the ROA and directly parameterizes the nat-
ural effects. Two procedures, weighting and imputation, are
implemented in medflex; we used the weighting one, which
requires specifying a regression model for the mediator

and an NEM for the counterfactual outcome. A logistic
model was specified for the mediator for all scales. NEMs
g(E{Y(a, M(a∗))}) = γ0 + γ1a + γ2a∗ + γ3aa∗, where g(·)
is a link function, were fitted using logistic, log-binomial,
and linear regressions for the OR, RR, and RD scales,
respectively. For the RD scale, we also applied Imai et al.’s
(27) parametric inference algorithm, implemented in the R
package mediation (28). This causal approach, which also
does not rely on the ROA, is based on quasi-Bayesian Monte
Carlo approximations and is provided as the default option
in mediation. A logistic model was specified for the medi-
ator as well as for the outcome, where the latter included
a treatment-mediator interaction term as in the exact and
approximate approaches; 1,000 Monte Carlo draws were
used for each sample generated. Note that mediation version
4.5.0 returns NDE and NIE estimates on the RD scale
only.

We computed the coverage probabilities of 95% confi-
dence interval estimators by calculating the proportion of
times confidence intervals enclosed corresponding true val-
ues of the NDE, NIE, and TE. For the exact and approximate
approaches, 95% confidence intervals were constructed
by percentile bootstrap based on 500 resamples with re-
placement (29) and using the first-order delta method. For
the NEM approach, 95% confidence intervals were obtained
using robust standard errors based on the sandwich estimator
(30). For the quasi-Bayesian approach, 95% confidence
intervals were based on White’s heteroskedasticity-consistent
estimator for the covariance matrix (28).

Simulation study with covariates

In all scenarios, covariates C1 and C2 were generated in-
dependently as Bernoulli(0.5) and N(0, 1), respectively. The
binary exposure A was generated according to the following
model:

logit(P(A = 1|C1 = c1, C2 = c2))

= −0.5 + 0.1c1 − 0.15c2.
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Then, the binary mediator M and outcome Y were respec-
tively generated under models

logit(P(M = 1|A = a, C1 = c1, C2 = c2))

= β0 + β1a + β21c1 + β22c2

and

logit(P(Y = 1|A = a, M = m, C1 = c1, C2 = c2))

= θ0 + θ1a + θ2m + θ3am + θ41c1 + θ42c2,

where β0 = −2.3, β1 = 0.8, β21 = 0.2, β22 = 0.25. The out-
come simulation parameters are presented in Web Table 1 for
each simulation scenario. Under these parameter values, the
stratum-specific outcome prevalences were similar to those
from the simulations without covariates.

The true mediation OR, RR, and RD effects (gold stan-
dard) were calculated using simulation parameters accord-
ing to equation 11, where

Pij = expit(θ0 + θ1i + θ2 + θ3i + θ41c1 + θ42c2)

× expit(β0 + β1j + β21c1 + β22c2)

+ expit(θ0 + θ1i + θ41c1 + θ42c2)

× (1 − expit(β0 + β1j + β21c1 + β22c2))

and c1 = 0.5, c2 = 0.
The simulation study with covariates was conducted the

same way as the one without covariates regarding number of
samples generated, sample size, and estimators investigated.
However, for the RR scale in scenario 4, the NEM was fitted
using a Poisson regression model instead of a log-binomial
model because of failed convergence of the latter model for
77.6% of samples generated. For all approaches, models
included covariates as main-effect terms only, and mediation
effects were estimated at the sample-specific mean values
for C1 and C2. Note that in absence of exposure-covariate
interactions, the conditional mediation effects returned by
medflex are the same for any level of adjustment covariates
(31).

The decomposition property of the exact and approximate
TE estimators was examined in both simulation studies
(see Web Appendix 1). Further details on the estimation
procedures are provided in Web Appendix 1.

RESULTS

The performance of the proposed exact natural-effects
estimators on the OR, RR, and RD scales is summarized in
Tables 2–4 and Web Tables 2–4 for the simulation studies
without covariates and with covariates, respectively (type of
estimator = exact).

For the multiplicative scales, the mean values of exact
NDE, NIE, and TE estimates were very close to correspond-
ing true values for each scenario and each type of simu-
lation, with relative bias values ranging between −0.34%
and 1.35%. All exact interval estimators (bootstrap and delta
method) yielded coverage probability values close to 95%.

For the simulations without covariates, the exact results were
almost identical to those returned by the NEM approach
(results omitted from tables), while they were very close
in the simulations with covariates. The exact results were
also very close to those obtained using the quasi-Bayesian
approach (for the RD scale; see Table 4 and Web Table 4).

The results for the approximate natural-effects estimator
in the simulation studies without and with covariates under
increasing degrees of the ROA violation are presented in
Tables 2 and 3 and Web Tables 2 and 3, respectively (type
of estimator = approximate). In scenario 1 (rare outcome in
all strata defined by A and M), the approximate OR estimator
demonstrated small relative bias values when either the true
ORs or the true RRs were used as reference values (between
0.13% and 5.24%). Corresponding coverage probabilities
by the delta method and bootstrap were close to the 95%
nominal level. For scenario 2, where the outcome Y is rare
marginally but not rare in the stratum defined by A = 1 and
M = 1, we observed relative bias values ranging between
5.93% and 62.6% and a significant decrease in coverage
probability values. The same tendencies for relative biases
and coverage probabilities were seen for scenario 3. For
scenario 4, which violated the ROA in all strata defined by
A and M, we obtained relative bias values up to 69.62% and
coverage probability values equal to 0% in some cases.

The TE estimates obtained from the exact approach by
the multiplication of corresponding NDE and NIE estimates
were closer to the nonmediated TE estimates as compared
with the approximate approach (Web Tables 5 and 6).

REAL-DATA EXAMPLE

We used cohort data presented in the paper by Samoilenko
et al. (12) to illustrate our exact mediation approach. Briefly,
the data consisted of 6,197 singleton pregnancies in asth-
matic women who gave birth in the province of Quebec,
Canada, between 1998 and 2008. Low birth weight and
prematurity (preterm birth) were selected as the outcome and
mediator, respectively, and 2 exposure variables were exam-
ined separately: 1) treatment with inhaled corticosteroids
during pregnancy and 2) placental abruption. These data
correspond to a scenario in which the outcome (low birth
weight) is rare marginally but not rare in some strata of the
mediator (preterm birth) and exposure.

We used our SAS macro mediation_estimates (see Web
Appendices 2 and 3) to obtain exact NDE and NIE estimates
on the OR, RR, and RD scales for each exposure variable.
Mediation analyses adjusted for maternal age at the begin-
ning of pregnancy (<18 years, 18–34 years, or >34 years),
baby’s sex, diabetes mellitus, and gestational diabetes. We
also applied the SAS CAUSALMED procedure to obtain
natural effects on the multiplicative scales, implementing
the approximate approach defined in equations 8–10 for the
OR scale. Mediation effects on the OR and RR scales were
also estimated using the NEM approach, as described in the
simulation studies, and on the RD scale using the quasi-
Bayesian approach. For all approaches, exposure-mediator
interaction was considered, and mediation effects were esti-
mated at the sample-specific mean values of the covariates.
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Table 2. Exact and Approximate Natural-Effects Estimators on the Odds Ratio Scale in Scenarios With Increasing Levels of Outcome
Commonness (Simulation Study Without Covariatesa)

Effect and Type of
Estimator

True Value Mean Bias
Relative
Bias, % SD RMSE

Coverage Probability, %

Delta
Method

Bootstrap

Scenario 1

NDE OR 2.171

Exactb 2.197 0.026 1.20 0.297 0.299 95.7 94.9

Approximatec 2.184 0.013 0.59 0.297 0.297 95.6 95.1

NIE OR 1.044

Exact 1.046 0.001 0.12 0.027 0.027 93.5 93.7

Approximate 1.047 0.003 0.24 0.028 0.028 93.4 93.7

TE OR 2.268

Exact 2.296 0.028 1.25 0.304 0.305 95.3 95.2

Approximate 2.285 0.018 0.77 0.305 0.305 95.4 95.2

Scenario 2

NDE OR 3.512

Exact 3.556 0.044 1.25 0.436 0.438 94.6 94.7

Approximate 4.663 1.151 32.77 0.600 1.298 40.6 38.1

NIE OR 1.451

Exact 1.454 0.004 0.24 0.066 0.066 93.8 93.5

Approximate 1.555 0.104 7.18 0.080 0.131 74.2 72.7

TE OR 5.096

Exact 5.165 0.069 1.35 0.616 0.620 95.5 95.1

Approximate 7.248 2.151 42.22 0.971 2.361 26.0 24.3

Scenario 3

NDE OR 0.751

Exact 0.753 0.001 0.17 0.064 0.064 95.8 95.8

Approximate 0.992 0.241 32.11 0.094 0.259 17.7 18.3

NIE OR 1.451

Exact 1.454 0.004 0.24 0.066 0.066 93.8 93.5

Approximate 1.555 0.104 7.18 0.080 0.131 74.2 72.7

TE OR 1.090

Exact 1.093 0.003 0.27 0.087 0.087 96.3 95.9

Approximate 1.542 0.452 41.49 0.156 0.478 7.1 7.1

Scenario 4

NDE OR 1.525

Exact 1.525 −0.001 −0.04 0.090 0.090 95.3 95.3

Approximate 1.616 0.091 5.97 0.129 0.158 90.8 90.1

NIE OR 1.175

Exact 1.175 0.000 0.02 0.023 0.023 94.7 95.1

Approximate 1.335 0.160 13.61 0.052 0.168 6.3 5.2

TE OR 1.792

Exact 1.791 −0.001 −0.04 0.105 0.105 95.4 95.5

Approximate 2.159 0.367 20.49 0.210 0.423 56.1 53.1

Abbreviations: NDE, natural direct effect; NIE, natural indirect effect; OR, odds ratio; RMSE, root mean squared error; SD, standard deviation;
TE, total effect.

a Simulation study based on 1,000 independent samples of size n = 5,000.
b Exact estimator proposed.
c Approximate estimator of Valeri and VanderWeele (3).
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Table 3. Exact and Approximate Natural-Effects Estimators on the Risk Ratio Scale in Scenarios With Increasing Levels of Outcome
Commonness (Simulation Study Without Covariatesa)

Effect and Type of
Estimator

True Value Mean Bias
Relative
Bias, %

SD RMSE

Coverage Probability, %

Delta
Method

Bootstrap

Scenario 1

NDE RR 2.086

Exactb 2.109 0.023 1.11 0.271 0.272 95.5 94.9

Approximatec 2.184 0.098 4.72 0.297 0.313 94.5 94.0

NIE RR 1.041

Exact 1.042 0.001 0.11 0.025 0.025 93.5 93.8

Approximate 1.047 0.006 0.57 0.028 0.028 94.6 93.9

TE RR 2.171

Exact 2.197 0.025 1.16 0.276 0.277 95.2 95.0

Approximate 2.285 0.114 5.24 0.305 0.325 94.9 94.2

Scenario 2

NDE RR 3.229

Exact 3.266 0.037 1.16 0.377 0.379 94.9 94.5

Approximate 4.663 1.435 44.44 0.600 1.555 17.1 15.3

NIE RR 1.381

Exact 1.383 0.003 0.20 0.055 0.055 94.0 93.7

Approximate 1.555 0.175 12.64 0.080 0.192 36.1 35.1

TE RR 4.457

Exact 4.513 0.055 1.24 0.504 0.507 95.3 95.0

Approximate 7.248 2.790 62.60 0.971 2.955 3.6 3.0

Scenario 3

NDE RR 0.779

Exact 0.780 0.001 0.10 0.058 0.058 95.8 95.7

Approximate 0.992 0.213 27.34 0.094 0.233 29.1 28.7

NIE RR 1.381

Exact 1.383 0.003 0.20 0.055 0.055 94.0 93.7

Approximate 1.555 0.175 12.64 0.080 0.192 36.1 35.1

TE RR 1.076

Exact 1.078 0.002 0.18 0.072 0.072 96.3 95.9

Approximate 1.542 0.466 43.33 0.156 0.491 5.6 5.6

Scenario 4

NDE RR 1.294

Exact 1.293 −0.001 −0.08 0.046 0.046 95.2 95.2

Approximate 1.616 0.322 24.89 0.129 0.347 20.9 22.1

NIE RR 1.091

Exact 1.091 0.000 0.01 0.012 0.012 94.6 95.1

Approximate 1.335 0.244 22.35 0.052 0.249 0.0 0.0

TE RR 1.412

Exact 1.411 −0.001 −0.08 0.048 0.048 95.5 95.4

Approximate 2.159 0.747 52.93 0.210 0.776 0.7 0.7

Abbreviations: NDE, natural direct effect; NIE, natural indirect effect; RMSE, root mean squared error; RR, risk ratio; SD, standard deviation;
TE, total effect.

a Simulation study based on 1,000 independent samples of size n = 5,000.
b Exact estimator proposed.
c Approximate estimator of Valeri and VanderWeele (3).
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Table 4. Natural-Effects Estimators on the Risk Difference Scale in Scenarios With Increasing Levels of Outcome Commonness (Simulation
Study Without Covariatesa)

Effect and Type of
Estimator

True Value Mean Bias Relative
Bias, %

SD RMSE
Coverage Probability, %

Delta Method/
Robust SEb Bootstrap

Scenario 1

NDE RD 0.038
Exactc 0.038 0.000 0.04 0.007 0.007 95.8 95.4

Mediationd 0.038 0.000 0.16 0.007 0.007 95.8

NIE RD 0.003

Exact 0.003 0.000 1.26 0.002 0.002 93.7 93.3

Mediation 0.003 0.000 3.81 0.002 0.002 94.4

TE RD 0.041

Exact 0.041 0.000 0.13 0.007 0.007 96.1 95.8

Mediation 0.041 0.000 0.42 0.007 0.007 95.8

Scenario 2

NDE RD 0.078

Exact 0.078 0.000 0.07 0.007 0.007 95.4 95.1

Mediation 0.078 0.000 0.06 0.007 0.007 95.4

NIE RD 0.043

Exact 0.043 0.000 0.27 0.005 0.005 94.3 94.2

Mediation 0.043 0.000 0.25 0.005 0.005 97.4

TE RD 0.121

Exact 0.121 0.000 0.14 0.009 0.009 95.9 95.8

Mediation 0.121 0.000 0.13 0.009 0.009 96.8

Scenario 3

NDE RD −0.032

Exact −0.032 −0.000 0.39 0.009 0.009 95.8 95.4

Mediation −0.032 −0.000 0.22 0.009 0.009 96.0

NIE RD 0.043

Exact 0.043 0.000 0.27 0.005 0.005 94.3 94.2

Mediation 0.043 0.000 0.25 0.005 0.005 97.5

TE RD 0.011

Exact 0.011 −0.000 −0.10 0.010 0.010 96.4 96.0

Mediation 0.011 0.000 0.33 0.010 0.010 96.8

Scenario 4

NDE RD 0.10

Exact 0.099 −0.001 −0.50 0.014 0.014 95.0 95.4

Mediation 0.099 −0.000 −0.52 0.014 0.014 95.0

NIE RD 0.04

Exact 0.040 −0.000 −0.06 0.005 0.005 94.6 95.2

Mediation 0.040 −0.000 −0.21 0.005 0.005 97.5

TE RD 0.14

Exact 0.139 −0.001 −0.38 0.014 0.014 95.4 95.2

Mediation 0.139 −0.001 −0.43 0.014 0.014 96.0

Abbreviations: NDE, natural direct effect; NIE, natural indirect effect; RD, risk difference; RMSE, root mean squared error; SD, standard
deviation; SE, standard error; TE, total effect.

a Simulation study based on 1,000 independent samples of size n = 5,000.
b Delta method for the exact estimator; for mediation, the 95% confidence intervals were based on White’s heteroskedasticity-consistent

estimator for the covariance matrix (28).
c Exact estimator proposed.
d Quasi-Bayesian approach of Imai et al. (27) implemented in the R package mediation (28).
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Figure 1. Comparison between natural direct effect (NDE), natural indirect effect (NIE), and total effect (TE) estimates on the odds ratio scale
obtained from the exact estimator and existing estimators available in software (real-data example). A) Mediation analyses with use of inhaled
corticosteroids as the exposure variable; B) mediation analyses with placental abruption as the exposure variable. The solid lines present 95%
confidence intervals (CIs) obtained by the exact approach using the delta method. The dashed and dotted lines correspond to 95% CIs returned
by the SAS (SAS Institute Inc., Cary, North Carolina) PROC CAUSALMED procedure (via the delta method) and the R package (R Foundation
for Statistical Computing, Vienna, Austria) medflex (via percentile bootstrap), respectively. The dotted-dashed line presents 95% CIs for the
conventional (nonmediated) TE (CTE) by percentile bootstrap. The black circles show effect point estimates, and the white circles show the CI
endpoints.

However, since our SAS macro mediation_estimates allows
for the estimation of conditional natural effects at user-
specified values of the adjustment covariates (by default at
the mean values of the covariates), we also obtained natural
effects for placental abruption at more meaningful levels
of the categorical covariates for the purpose of illustration.
More details on the real-data analyses are presented in Web
Appendix 1.

The main results are presented in Table 5 and Figure 1.
The exact and approximate OR estimates generally did not
agree, the only exception being the NIE in the mediation
analysis with inhaled corticosteroids as the exposure vari-
able. For placental abruption, the observed discrepancies
were quite remarkable. The RR point estimates computed
by our SAS macro were close to those computed by PROC
CAUSALMED with a log-binomial or Poisson outcome
regression model. However, abnormally wide bootstrap 95%
confidence intervals for RRNDE and RRTE were returned by
PROC CAUSALMED for inhaled corticosteroid exposure.

For both exposures, the natural-effects OR and RR point
estimates obtained by our exact approach were similar to
those obtained by the NEM approach. Some discrepancy
was observed between confidence intervals returned by med-
flex and exact delta confidence intervals for placental abrup-
tion. Exact estimates for the NDE and NIE on the RD scale
were found to be close to corresponding effect estimates
obtained using the quasi-Bayesian approach. Exact boot-
strap confidence intervals were observed to be in better
agreement with confidence intervals returned by the quasi-

Bayesian approach in comparison with exact delta confi-
dence intervals.

The exact TE point estimates were found to be close to
the conventional TE estimates for both exposures and scales.
However, the TE decomposition property was markedly
not satisfied for the approximate OR estimates returned by
PROC CAUSALMED; for example, the approximate TE
was 2.24 × 3.03 = 6.79 for placental abruption, while the
conventional TE was 5.13.

Finally, Figure 2 showcases our SAS macro by presenting
natural effects on the OR and RD scales for placental abrup-
tion evaluated at 2 different levels of fetal sex, maternal age,
and diabetes status.

The data that support the findings for this section are not
publicly available because of privacy and ethical restrictions.

DISCUSSION

In this article, we introduced exact binary-binary regression-
based estimators of the natural direct and indirect effects
for the 3 most commonly used scales in epidemiology,
namely the OR, RR, and RD scales. Our work, which is
based on the specification of a logistic outcome model, thus
extends previous works that have proposed an exact binary-
binary natural-effects estimator on the OR scale. Our exact
estimators were observed to be virtually unbiased, regard-
less of the effect scale and the rareness or commonness of
the outcome. Corresponding standard error formulas were
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Figure 2. Exact natural direct effect (NDE), natural indirect effect (NIE), and total effect (TE) on the odds ratio (A) and risk difference (B) scales
evaluated at particular levels of the adjustment covariates (real-data example with placental abruption as the exposure variable). Solid lines
correspond to 95% confidence intervals (CIs) given the following set of covariate values: baby’s sex = female, maternal age = 18–34 years,
diabetes mellitus = no, and gestational diabetes = no. Dashed lines correspond to 95% CIs when the covariate values are specified as follows:
baby’s sex = male, maternal age <18 years, diabetes mellitus = no, and gestational diabetes = yes. The 95% CIs were constructed by percentile
bootstrapping based on 1,000 resamples with replacement. The black circles show effect point estimates, and the white circles show the CI
endpoints.

derived for each scale using the first-order delta method,
thereby providing an alternative approach for computing
confidence intervals (in addition to the bootstrap). In our
simulations, for which the sample size was relatively large,
both the delta method and the bootstrap yielded cover-
age probabilities close to the nominal value. Unlike other
mediation approaches implemented in the simulations and
real-data analyses, our exact approach was observed to be
numerically stable no matter the effect scale on which results
were obtained.

Our investigations have produced additional evidence
regarding the performance of the approximate natural-
effects OR estimator proposed by Valeri and VanderWeele
(3) for binary mediators and outcomes. As expected, this
estimator was found to behave adequately in the scenario
where the outcome was rare in all strata defined by the
mediator and the exposure (scenario 1), while the exact
estimator performed comparably or better. In other scenarios
investigated (scenarios 2–4), in which the outcome was
either rare or common marginally but not rare conditionally,
the bias and variance of the approximate estimator were
found to be systematically larger than those of the proposed
exact estimator under both multiplicative scales, with large
biases and poor coverage probabilities sometimes exhibited.

Our proposed exact approach can be implemented using
the SAS macro accompanying Web Appendix 3. By default,
the exact NDE and NIE are estimated at the sample-specific
mean values of the adjustment covariates, but our macro also
handles user-specified levels for the entire set of covariates
or for some proper subset (in the latter case, our macro sets

the other covariates to the sample mean values). Another
functionality of our macro is that it allows for Firth penal-
ization by calling the Firth option in PROC LOGISTIC.
Firth penalization is a general method designed to reduce
bias of the maximum likelihood parameter estimator (32).
This penalization has been shown to be effective in dealing
with separation problems in logistic regression models in the
presence of scarce or sparse data (33–35).

Although the NDE and NIE are popular estimands in the
applied literature, the controlled direct effect can also be of
interest to practitioners (36, 37). Valeri and VanderWeele
(3) provided an expression for the controlled direct effect
on the OR scale derived from logistic regression models for
the mediator and outcome. This expression is not obtained
by invoking the ROA and thus is exact by construction. For
completeness, our macro also returns the controlled direct
effect on all scales considered (see Web Appendix 1 for our
extension to the RR and RD scales).

In conclusion, our exact estimator is indicated for those
wanting to perform a conventional binary-binary regression-
based mediation analysis on the effect scale of their choice
without worrying about the rareness or commonness of the
outcome. By using the same 2 fitted logistic models for all
effect scales (OR, RR, and RD), our exact approach also sim-
plifies applications and increases compatibility of mediation
analysis results with binary mediators and outcomes. One
limitation of our exact estimator is that it is currently only
applicable to data from cohort studies; thus, more devel-
opments will be required to extend the proposed approach
to accommodate data from case-control study designs in
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which cases are overrepresented compared with controls.
Moreover, since our work has thus far focused on the case of
a single mediator, it will also be worthwhile to study the case
of multiple mediators and expand our SAS macro further.
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