
PDFDataExtractor: A Tool for Reading Scientific Text and
Interpreting Metadata from the Typeset Literature in the Portable
Document Format
Miao Zhu and Jacqueline M. Cole*

Cite This: J. Chem. Inf. Model. 2022, 62, 1633−1643 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The layout of portable document format (PDF)
files is constant to any screen, and the metadata therein are latent,
compared to mark-up languages such as HTML and XML. No
semantic tags are usually provided, and a PDF file is not designed
to be edited or its data interpreted by software. However, data held
in PDF files need to be extracted in order to comply with open-
source data requirements that are now government-regulated. In
the chemical domain, related chemical and property data also need
to be found, and their correlations need to be exploited to enable
data science in areas such as data-driven materials discovery. Such relationships may be realized using text-mining software such as
the “chemistry-aware” natural-language-processing tool, ChemDataExtractor; however, this tool has limited data-extraction
capabilities from PDF files. This study presents the PDFDataExtractor tool, which can act as a plug-in to ChemDataExtractor. It
outperforms other PDF-extraction tools for the chemical literature by coupling its functionalities to the chemical-named entity-
recognition capabilities of ChemDataExtractor. The intrinsic PDF-reading abilities of ChemDataExtractor are much improved. The
system features a template-based architecture. This enables semantic information to be extracted from the PDF files of scientific
articles in order to reconstruct the logical structure of articles. While other existing PDF-extracting tools focus on quantity mining,
this template-based system is more focused on quality mining on different layouts. PDFDataExtractor outputs information in JSON
and plain text, including the metadata of a PDF file, such as paper title, authors, affiliation, email, abstract, keywords, journal, year,
document object identifier (DOI), reference, and issue number. With a self-created evaluation article set, PDFDataExtractor
achieved promising precision for all key assessed metadata areas of the document text.

■ INTRODUCTION

The number of publications has increasingly grown since the
digitalization of publishing,1 providing a more efficient
platform for scientific communities to share research results.
This large number of publications has led to the literature
becoming a form of “Big Data.” Such data are useful to data
science, which has evolved into a research field owing to the
stepwise increase in data capacity for high-performance
computing, and the increasing availability of open-source
scientific data and software code. It is exciting to realize that
the field of “Big Data” has emerged to produce exciting
opportunities for discovering new science from patterns found
in large arrays of data. Such patterns are best found when data
are mined from a structured assembly of information (a
database) that contains the most relevant information about
the problem in hand.
However, related data are difficult to collate. This is because

researchers typically share scientific results through many
distinct reports, which can take a variety of forms such as
academic papers, technical reports, books, patents, disserta-
tions, or theses. Data are thus strewn across scientific
documents in a highly fragmented form. A document may

feature unstructured data (e.g., in-line text) or semistructured
data (e.g., a table of information), while related data may span
many documents. Related data need to be structured and
collated in a fashion that auto-builds a database in order to
become useful. Text-mining tools that employ natural-language
processing (NLP) have enabled the structuring and collation of
related data. Open-source software packages, such as
CoreNLP2 and Spacy,3 can mine text that uses general
language. However, such tools perform poorly when applied to
the scientific domain, owing to its highly specialized language
and writing style. The “chemistry-aware” NLP-based text-
mining tool, ChemDataExtractor,4 was created to overcome
this limitation.
ChemDataExtractor4 uses an NLP-enabled workflow that is

geared specifically to mine chemistry-related information from

Received: October 1, 2021
Published: March 29, 2022

Articlepubs.acs.org/jcim

© 2022 American Chemical Society
1633

https://doi.org/10.1021/acs.jcim.1c01198
J. Chem. Inf. Model. 2022, 62, 1633−1643

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Miao+Zhu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jacqueline+M.+Cole"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.1c01198&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jcisd8/62/7?ref=pdf
https://pubs.acs.org/toc/jcisd8/62/7?ref=pdf
https://pubs.acs.org/toc/jcisd8/62/7?ref=pdf
https://pubs.acs.org/toc/jcisd8/62/7?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/

publications. ChemDataExtractor4 performs best in the
scientific literature that is imported as mark-up language, for
example, HTML or XML. This is because the literature
provided in the HTML or XML format is suitable for parsing
in sections that are semantically marked.5 For example,
“PDFDataExtractor: A Tool for Reading Scientif ic Text and
Interpreting Metadata from the Typeset Literature in the Portable
Document Format” in this document would be tagged as “title”
in mark-up language. Other sections like headings, paragraphs,
captions, and tables are also tagged in the literature. Therefore,
once combined with auxiliary semantic information, it is
possible to perform analysis on one or more user-defined
specific sections. Thus, textual noise from document features
such as headers, page numbers, and author affiliations can be
prevented from being fed into the extraction pipeline.
Unlike HTML and XML, the layout of the literature

provided in the portable document format (PDF) stays the
same across all different viewing devices.5 No semantic tags are
usually provided in PDF files6 as the text within this format
was not originally designed to be read or interpreted by
software programs. Nevertheless, many NLP applications rely
on semantic information of text fed into the pipeline.7 For
example, it is essential to correctly identify the semantic roles
of text blocks from the literature if one solely wants to perform
NLP analysis on abstracts or to find affiliations of authors from
references of a given number of scientific documents that are
provided in the PDF; that way, only text from the abstract or
reference sections of each document are fed to a software
program for extraction and analysis.8 Although most articles
can be accessed through HTML or XML, there are a large
number of articles that can only be accessed in PDF5. Services
such as literature mining and database creation rely on accurate
metadata from articles. However, metadata are sometimes
missing.9

ChemDataExtractor4 only has very limited proficiency for
extracting and interpreting data from PDF files. This limited
functionality relies on a PDF-layout-analysis tool called
PDFMiner10 to process input files. PDFMiner10 is a PDF-file
extraction tool that outputs excellent results in terms of PDF-

layout analysis, that is, representing a PDF file in many text
blocks with correct reading sequences. It spaces the positions
and fonts of the individual characters.6 However, the extraction
ability of PDFMiner10 is primitive, where limited semantic
information about text blocks is extracted. This is because
PDFMiner10 is essentially a structural-analysis package, and no
identification of the logical role of text blocks is performed.11

Extracting information from PDF files is well studied, and
notable results have been achieved from previous studies.
Available data-extraction solutions usually tackle problems by
utilizing either rule-based or machine-learning-based ap-
proaches. PDFMiner,10 PDFX,1 pdftotext,12 and PDFExtract13

represent the rule-based approaches to convert PDF files.
These tools generally use a combination of visual and text/
content information to reconstruct the logical representation of
a PDF file. Machine learning has increasingly drawn more
attention in almost every research field. For example,
Cermine,9 ParsCit,14 and GROBID15 are excellent tools for
information retrieval, which use techniques like support vector
machines (SVMs) and conditional random fields (CRFs) to
classify text. Overall, these solutions tend to use generalized
methods to cover different layouts. They offer fair extraction
results with different emphases. However, the driving force
behind the creation of PDFDataExtractor presented herein is
to (1) create and populate databases and (2) serve as a new
PDF extraction plug-in in ChemDataExtractor,4 which hosts
metadata rather than simply perform PDF layout analysis. To
this end, we present PDFDataExtractor, a tool that extracts
metadata from scientific articles using PDFMiner10 to build
text blocks.
This study shows how this is possible via a template-based

approach. Templates can push PDF extraction limits further at
the expense of handling more layouts. When building a
database, precision is considered to be a more important factor
than recall, affording a template-based approach suitable. The
modular system of PDFDataExtractor also facilitates future
customization. Overall, five large publishers account for more
than 70% of chemistry and nearly 40% of physics fields of
research.16

Figure 1. High-level schematic workflow of PDFDataExtractor.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01198
J. Chem. Inf. Model. 2022, 62, 1633−1643

1634

https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

PDFDataExtractor has been created as a plug-in to
ChemDataExtractor.4 This allows PDF-file data extraction to
be channeled directly into a text-mining pipeline with
chemical-named entity-recognition capabilities, as realized by
ChemDataExtractor.4 PDFDataExtractor also generates meta-
data that are useful for various ChemDataExtractor4 functions
that require knowledge of the sectioning of a document.
PDFDataExtractor can generate metadata for 13 primary
logical parts that can principally represent a scientific
publication: these are the title, author, abstract, section
headings, paragraph of the body text, figure, header, caption,
journal information, DOI, page number, acknowledgments,
and references (Figure 1).

■ SYSTEM OVERVIEW
The general workflow consists of five principal stages: (1) the
preprocessing of text; (2) metadata extraction; (3) documen-
tation section detection; (4) reference detection; and (5)
output extracted results to ChemDataExtractor.4 The extrac-
tion process begins with a PDF being fed to PDFMiner,10

where it is converted into a representation of text blocks in the
correct reading order. Each text block is assigned a universal
numbering label in PDFDataExtractor, which is later used to
segment the text body. Thus, for each text block, more features
are generated by PDFDataExtractor, based on the information
provided by PDFMiner,10 as shown in Figures 2 and 3, which
is essential for all its later extraction stages. Then,
PDFDataExtractor automatically picks a predefined extraction
template and passes it to the subsequent extraction
components. Following this preprocessing stage, the program
then loops through text blocks on the first page of the

document in order to determine if they include metadata. If
this is the case, the text block is fed to the metadata-extraction
stage of the pipeline, and the extracted information is attached
sequentially to the output result. In the case that the text block
does not contain metadata, a separate section detection is
performed to extract the body section titles, which is
accomplished by simultaneously constructing the text body
and indexing it. Afterward, the extracted reference text is fed to
the reference extraction component for citation parsing.
Finally, extracted results are fed into ChemDataExtractor4 for
chemical information extraction.

Preprocessing of Text. It is necessary to preprocess text
blocks and present the entire PDF in a correct data model
(Figure 3) prior to any information extraction. By default,
PDFMiner10 processes the document page by page. It is like a
blank sheet of paper is used every time a page is turned. This
means that everything is refreshed, and there is no link
between pages; simply, those text blocks are not in sequence at
the documentation level. To this end, each text block is
assigned a universal sequence number to present its relative
location at the document level, providing the ability to index
and select text blocks across different pages. One way to
understand the universal sequence number is to imagine that
all pages are flattened into a single page, where the sequence
number of text blocks proceeds sequentially from 0, with an
interval of 1. Figure 4 schematically shows distinct types of
extracted text blocks by PDFMiner.10

Each text block is stored as a key-value pair, as shown in
Figure 3. The key is a combination of the current page number
being processed and the text block within the page. This
enables quick indexing of text blocks across the whole
document, in addition to restricting the pages that are
processed. The value is a subdictionary containing all the
features of one text block that are selectively used by later-
processing components to extract information. For example,
“number_of_word” is used by the metadata-extraction
component to extract the abstract, and “universal_sequence”
is used by the section-detection component for indexing the
sections. Some text blocks, such as headers and page numbers,
contribute no information to the extraction pipeline and are
therefore removed at later stages. Notably, not all features of
the text blocks are used by the extraction pipeline; indeed,
many of these might be useful for future development of the
program.

Metadata Extraction. Extraction of semantic information
begins once all text blocks have been preprocessed and a
template is selected by PDFDataExtractor. Text blocks are
initially fed to the metadata-extraction stage of the pipeline,Figure 2. Low-level schematic workflow of PDFDataExtractor.

Figure 3. Schematic pseudocode data model showing features of a
preprocessed text block.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01198
J. Chem. Inf. Model. 2022, 62, 1633−1643

1635

https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig3&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

where the abstract, title, keywords, and caption are extracted
using a combination of predefined rules and grammar, which
are discussed in the following subsections. Such metadata are
usually displayed on the first page of a PDF; thus, part of the
extraction process is restricted to this page by indexing the
page number of each text block.
Abstract Extraction. The abstract-extraction component of

the program can handle three different situations, which are
indicated in Figure 5. This consists of (1) one text block
containing the string “abstract” within; (2) two text blocks
with string “abstract” separated; and (3) one text block with no
string “abstract.”
These three situations represent the majority of abstract

stylings and are shown in Figure 5. The preprocessed text
blocks from the first page of the PDF are the input source for
abstract extraction. The program checks each text block and
automatically selects the appropriate method for the extraction
of the abstract.

In the first situation, indicated as (1) in Figure 5, the
program can locate the target text if one text block contains the
string “abstract” and the length of the block satisfies the
predefined threshold.

Figure 4. Schematic presentation of text blocks extracted by PDFMiner.8

Figure 5. Three cases of usually seen abstracts from scientific articles.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01198
J. Chem. Inf. Model. 2022, 62, 1633−1643

1636

https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig5&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

In the second situation, the string “abstract” is separated
from the target text, resulting in two text blocks designated as
“abstract” and “target text”, shown as (2) in Figure 5. An
“identifier” is used in this case, which contains the coordinates
of the first “abstract” text block. The program then compares
the coordinates of each text block with the “identifier.” The
target text is found once the coordinates of one text block are
within the allowed error when compared to the “identifier.” In
other words, a target text block is identified once the text block
vertically aligns with the identifier “abstract” text block.
However, errors can occur in this situation because the two
text blocks are not always perfectly aligned.
In the third situation, as shown as (3) in Figure 5, where no

“abstract” string is included in text blocks, the program works
based on the assumption that the abstract will occupy the
largest area on the first page with other rules; the combination
of such rules varies among different publishers. Therefore, the
program compares the area of each text block, with the result
being continuously updated until the target text block is found.
In this case, it is highly likely to select the “introduction” on
the first page. Thus, postextraction filtration is applied before
assigning the result to the final output.
Title Extraction. The title-extraction workflow (Figure 6)

assumes that the target text block is generally expected to be

located at the top center of the first page. This pipeline first
selects text blocks that are centered on the first page and then
filters out text blocks that do not meet the length requirement.
Finally, a font size filter is applied. Nonetheless, certain
publishers, such as Elsevier, slightly offset their title text.
Hence, their article titles are not perfectly centered on the
page, and the extracted text block might contain unnecessary
data or “noise”, such as the type of the document, author
names, and institute affiliations. To this end, an extra step is
added. Such an extra step analyzes each character from the
extracted text block and performs a parallel character string
and size construction. It assigns each character with its own
font size, and then, only characters that satisfy the font size
requirement are selected.
Keywords and Caption Extraction. The extraction of

keywords and captions is more straightforward than other
processes. In the case of keywords, the text block usually
contains the string “keywords,” while for captions, each text
block usually starts with “Figure X” and naturally forms a
separate block from the rest of the text. Therefore, the text
block for both cases usually contains no noise, and the
extraction can be achieved with simple rules and grammar. An

extraction flow chart for keywords and captions is shown in
Figure 7. Each caption is then assigned a sequence number for
sorting.

Documentation-Section Detection. This stage of the
extraction pipeline has two main components that are “noise-
search-pattern creation” and “main-body-text segmentation.”

Noise-Search-Pattern Creation. The noise-search compo-
nent of the pipeline is used to exclude noisy information such
as the header, page number, and so forth; it then converts
these into a machine-readable search pattern. Such a pattern is
then fed to the main-body-text-segmentation component of the
pipeline. The workflow for the noise-search-pattern creation is
shown in Figure 8. The program assumes that all headers are
located at the beginning of each page. Thus, it takes the first six
text blocks from each page into consideration.

Figure 6. Schematic title-extraction workflow.

Figure 7. Schematic extraction flow for captions, keywords, and so
forth.

Figure 8. Schematic of the noise-search-pattern-creation workflow.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01198
J. Chem. Inf. Model. 2022, 62, 1633−1643

1637

https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig8&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

A key aspect of the “noise-search-pattern-creation” workflow
is the difference between the “compare-list” and “header-list.”
The compare-list is used as a buffer to temporarily store
candidates, whereas the header-list contains the actual
extracted headers. Starting from the first cycle, all of the first
six text blocks are appended to the compare-list as a base.
Then, for the second and all subsequent cycles, the string of
each text block is measured against the compare-list and is then
appended to the header-list, provided that matching strings are
found. This compare-list is actively updated until the final page
is processed. The strings of the extracted headers are
automatically converted into machine-readable search patterns
once all of the pages have been processed. For example, all of
the special characters such as space, period, and parentheses
are converted into machine-readable search patterns. Also,
captions and page-number search patterns are appended.
Finally, this search pattern is ready to be used by the main-
body-text-segmentation component of the document-section-
detection stage of the extraction pipeline.
Main-Body-Text Segmentation. Main-body segmentation

takes three items of input: location pairs, titles, and full body
text, as shown in Figure 9.
Location Pairs and Title Constructions (in Blue). Location

pairs are essentially the location information for each section,
which represents the start and end positions of each section.

The pipeline first checks each text block and determines if it is
a section title by using predefined rules and grammar.
Accordingly, the three characteristics of the candidate are
appended to three different lists known as “location,” “string,”
and “font” lists.
Three lists work accordingly to construct the location pairs.

First, the string-list stores the text of candidate text blocks,
which is later used for naming the extracted sections. Then, the
location-list stores the location information of the extracted
text blocks alongside the universal sequence number, which is a
document-level feature of one text block and essentially
informs the program about the span of one section. Finally, the
font-list stores font size information for every candidate text
block.
However, the lists must be cleaned before being used by the

segmentation component that is indicated in orange in Figure
9. The principle behind the cleaning process is that true
positive (TP) candidates have the largest font size among the
false positives (FPs).
Cleaning starts after all pages have been processed. At this

point, the three lists are arranged in parallel and are therefore
of the same length. At each index, there are three
correspondingly linked values, as shown in Figure 10; these
are “string,” “location,” and ‘font size’. Cleaning begins with
calculating the maximum font size from the font list. Once the

Figure 9. Flow chart showing the main-body-text-segmentation component of the documentation-section detection. Areas colored blue and green
represent the location pairs and main-body-text constructions, respectively.

Figure 10. Diagram showing the cleaning process.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01198
J. Chem. Inf. Model. 2022, 62, 1633−1643

1638

https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig10&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

maximum font size has been found, the program loops through
the font-list to find the indexes of TPs. It is assumed that TPs
have the largest font sizes. Once those indexes are extracted,
they are then used to filter out FPs in the location and string
lists. Consider the example in Figure 10, which contains one
intended error marked in red. The function finds that the
largest font size is 10.003, and the corresponding indexes are 0,
1, 3, 4, and 5, where 2 is dropped because the font size of this
index is smaller than that of all others. Then, string and
location are selected based on indexes 0, 1, 3, 4, and 5, where
“6. Intended Error” and 50 are dropped.
Finally, as shown in Figure 11, the updated location-list is

then used to construct location pairs that are machine-

readable. This is performed by simply inserting each element
from location-list into two location pairs. For the first pair, the
element is placed at the second place, and for the second pair,
the element is placed at the first place. Each location pair
informs the program of the start and end positions for each
section. For example, “Introduction” is located between the
10th and 25th text blocks. It should be noted that in the first
and last identities of the entire sequence of location pairs, “10”
and “:” are specifically added to indicate the start and end
points of the whole body of the document. In summary, this
function returns two lists that are the “location-pair” and the
“string” list, which are used by the main-body-segmentation
component in the next step. This pipeline conducts the
following manipulations:

a) Locating section titles using predefined rules and
grammar; storing the corresponding information into
location, string, and font lists, which are in parallel.

b) Identifying the maximum font size from the font list and
using its index to filter out the FPs in string and location
lists.

c) The updated location and string lists are used to build
location pairs and name-extracted sections, respectively.

Main-Body-Text Construction. Looking at the main-body-
text-construction component in Figure 9, as indicated in green,
the pipeline first takes the search pattern returned from the
noise-creation function and uses it to check every text block to
filter out the page number, headers, and captions. If the search
is positive, the program removes the corresponding text, and a
space occupier is inserted into the body list, as the total
number of universal sequence numbers must remain
unchanged to match the location pair list. If the search is
negative, the string of the text block is appended to the body
list until all pages have been processed. The final returned
object is a list containing noise-free text from the PDF.
Main-Body Segmentation. The main-body-segmentation

component of Figure 9, as shown in orange, consists of three

lists, two from the location-pair-construction component,
namely, string (title) and location-pair, and the full-body-text
list from the main-body-text construction. This pipeline
segments the full-body-text list using location pairs, as shown
in Figure 11. For example, the “Introduction” section spans
from the 10th element to the 25th element, meaning that every
element within this range is part of the introduction; the same
concept applies to the other sections. The title list is then used
to name the extracted sections. The essence of the
segmentation function is the parallel processing of each text
block, whereby each one is processed through two functions
simultaneously, and the outputs of the two subfunctions are
used together in the final step.

Reference Detection. The reference-extraction workflow
is shown in Figure 12. The extracted information is stored as a

list that contains all of the text from the reference section but
without context between one another, as shown in Figure 13.

Figure 11. Diagram showing the construction of location pairs that
are machine-readable.

Figure 12. Schematic flow chart for reference extraction.

Figure 13. Extracted information is stored as a result list. Alternating
colors represent different references, and the black line indicates a
different element in the result list.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01198
J. Chem. Inf. Model. 2022, 62, 1633−1643

1639

https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig13&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Entries that are longer than one line can be extracted into two
separate elements. Therefore, it is difficult to determine which
elements should be grouped together as a single reference
entry. To summarize, there is no pattern to follow how each
reference will be extracted by PDFMiner,10 and one reference
entry is very likely to be extracted as more than one part. In
this way, the result list can be very complex and fragmented.
Therefore, instead of defining many decision functions and
rules, the complexity of the information in the results list is
lowered by flattening all of the elements into a single long
string, as schematically shown in Figure 14.

Each reference has already been given a sequence number
from the article, as shown in red in Figure 15. Therefore,
entries can be extracted by detecting the spans of sequence
numbers from the string-list shown in Figure 14.

For example, sequence numbers of references “[1]”, “[2]”,
“[3]”, “[4]” and “[5]” have spans of “[10, 14]”, “[104, 108]”,
“[237, 241]”, “[353, 357]” and “[420, 424]” and each reference
entry can be described with this pattern. Therefore, a single
reference entry can be defined as anything that is between two
sequence numbers. For machines, this is done by offsetting all
of the starting indexes one element away from ending indexes
to produce slicing indexes that are used to slice the string-list,
as displayed in Figure 15.
Output Extracted Results to ChemDataExtractor.

PDFDataExtractor extracts semantic information from journal
articles. However, it can be made “chemistry-aware” to extract
chemical entities by feeding extracted information into its
parent tool, ChemDataExtractor.4

■ EVALUATION
The performance of PDFDataExtractor was evaluated based on
precision, recall, and F-score calculations, as shown below:

precision
TP

TP FP
=

+ (1)

recall
TP

TP FN
=

+ (2)

F score 2
precision recall
precision recall

− = ×
×
+ (3)

TPs are defined as the correctly extracted texts, FPs are
defined as the incorrectly extracted texts, and false negatives
(FN) are texts that should have been extracted but are not
returned by the program. The corresponding XML file is used
as the ground truth. Each extracted string is compared against
its corresponding ground truth to count as TP if the similarity
exceeds a predefined similarity threshold. Such a threshold is
set to allow any formatting and textual variations. The
similarity is calculated using the Gestalt Pattern Matching
algorithm, and eq 4 states the comparison between two strings,
where S1 and S2 are the two strings to be compared.

Similarity
2 S1 S2

S1 S2
= ·| {| |} ∩ {| |} |

| | + | | (4)

We evaluated the performance of PDFDataExtractor against
six datasets of journal articles from the American Chemical
Society (ACS), Elsevier, the Royal Society of Chemistry
(RSC), as well as Angewandte Chemie, ChemistryA
European Journal, and the Advanced Materials family from
Wiley. However, creating each dataset to the same size would
be impractical because different publishers have different text-
mining policies, and some access cannot be gained. Also, the
ideal dataset would satisfy the following requirements: (i) It
should be easily accessible, which would allow for the creation
of large-scale databases; (ii) it should be publicly available to
allow every user to perform extraction; (iii) good APIs are
necessary when performing large-scale extraction to enhance
the coding production efficiency; (iv) it should be large
enough and sufficiently diverse to cover various research fields;
and (v) it should have good uniformity across different
journals that can enhance the extraction performance. Hence,
we selected Elsevier as our main evaluation dataset, which
covers 10 different research fields with a total of 5797 articles,
using search keywords: “solar,” “super alloy,” “Neel temper-
atures,” “catalysis,” “nano,” “cells,” “light,” “dssc,” “battery,” and
“city.” The downloaded Elsevier dataset contains conference
papers that are not targeted by PDFDataExtractor at the
moment. Therefore, such papers are removed from the
extraction.
Meanwhile, the rest of the dataset contains two articles each,

with a total of 100 articles.
Image-based articles were filtered out when creating

datasets. Datasets store each article in two different formats,

Figure 14. Schematic presentation of flattened citations with the
sequence number shown in red.

Figure 15. Diagram showing the extraction of metadata from each
reference. The upper left section shows the span of the sequence
number, and the lower section shows the construction of slicing
indexes. The upper right section shows the semantics of each
reference entry where authors, journal name, year, and page number
are indicated in green, orange, purple, and blue, respectively.

Table 1. Evaluation Results for Elseviera

dataset metadata body references

Elsevier title abstract doi journal keywords author sections captions refs
precision 77.9 68.9 99.2 60.0 71.3 90.6 57.0 46.0 48.7

aEach cell is the calculated precision.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01198
J. Chem. Inf. Model. 2022, 62, 1633−1643

1640

https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?fig=fig15&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

one as PDF for extraction, another one as XML or HTML to
use as ground-truth data for evaluation against extracted data.

■ RESULTS: THE ELSEVIER DATASET

The evaluation of the performance of PDFDataExtractor yields
promising results, as shown in Table 1.
Metadata. Overall, the extraction results are promising

with each assessed extraction exceeding nearly 60% precision,
apart from journal information. The precision for the journal is
lower when compared to other types of metadata information.
There are several reasons for this deficit in journal information.
For example, some authors use slightly different styles such as
moving journal information leftwards; in some such cases, this
might be visually the same to human eyes but would be
different to machines, resulting in it being ignored by the
program. Another reason is that some articles downloaded
from Elsevier show a completely different layout to the typical
format of this publisher. This is because that Elsevier publishes
a small number of articles on behalf of another publisher; this
also lowers the precision of such articles for abstract extraction.
Although each template in PDFDataExtractor is designed to
have some generic extraction abilities, handling a completely
different layout using the same template is impossible.
Sometimes, authors swap the locations of year and volume,
which might confuse the program during the evaluation
process as the evaluation compares journal name, year, volume,
and page fields independently.
For the body and reference, the precision is significantly

lower. Such lowering is caused by the ground truth during the
evaluation process. For XML files, the labels that mark the
corresponding information occasionally target other text,
resulting in noisy text being treated as ground truth. Such
lowering is eliminated during manual evaluation and can be
seen from other datasets.
Body. PDFDataExtractor can extract article sections and

captions with good precision, as shown in Table 1. The text
under each section is ignored for evaluation. This is purely
because the matching for extracted and ground-truth data can
be interrupted by text from images, tables, formulae, and so
forth, or simply an encoding of characters. Also, the extraction
of metadata information is the main focus of the current
version of PDFDataExtractor. When extracting captions, there
are two main issues that lower the precision. The first is that
the current version of PDFDataExtractor is not able to
efficiently separate subcaptions from the main caption. For
example, there are captions named Figure 1a,b, and so forth,
while PDFDataExtractor treats every subcaption as a whole.
The second issue is that PDFDataExtractor includes the string
“figure x” in the results, where “x” is the sequence number of

each caption. Such noise also contributes to a lowering of the
precision.

Reference. For each reference entry, extracted metadata
were discarded. Only plain substrings were used for evaluation
against the ground-truth dataset. The precision is lower than
the other results. There are several reasons for this, the main
one being the noise in ground-truth data, which is impractical
to remove. Another reason is that the reading order of each
reference entry can be extracted incorrectly, resulting in a
comparison of two completely different reference entries
during the evaluation stage. Also, PDFDataExtractor is not able
to extract reference entries without a sequencing number at the
beginning, in a robust manner; the current rules/grammar have
their weights more on reference entries with sequencing
numbers.

■ RESULTS: THE OTHER DATASETS
The title, abstract, and DOI extractions for each publisher yield
good results with at least 75% precision, except for the RSC
(Table 2). This might be caused by the lack of actual “abstract”
text; thus, the program struggles to locate the target text block.
For email and keywords, some publishers simply do not
include such information, and ChemistryA European
Journal puts keywords at the very end of the article, which
PDFDataExtractor struggles to process. RSC journals and the
ChemistryA European Journal each give 23 and 27%
precision for author extraction, respectively. Such a low
precision is potentially caused by the narrow structural spacing
between the title, author, and abstract. Sometimes, these text
blocks can be extracted as one single text block. For the RSC,
Angewandte, and ChemistryA European Journal, the section
title extraction precisions are lower than others. This is because
these publishers do not include a sequence number or special
character in front of each section title such that the program
can be confused. For reference extraction, the Advanced
Materials family of journals and the ChemistryA European
Journal outperform others with a precision of 75 and 80%,
respectively. Such high results are because each reference entry
is assigned a sequence number, which the program can use as
anchoring points to separate and extract each reference entry.
Overall, PDFDataExtractor performs well on all publishers,
especially on metadata information extraction.
PDFDataExtractor has several known limitations under

certain scenarios, which are as follows:

PDFDataExtractor ignores formulae within an article
body and purely treats them as plain text; also, lines
within formulae are discarded. The extracted informa-
tion is essentially correct and at the correct position
within body text but without structures. This can be
solved by first locating each formula using optical

Table 2. Evaluation results for the ACS, the RSC, the Advanced Materials family, Chemistry-A European Journal, and
Angewandte Chemiea

dataset metadata body reference

publisher title abstract doi journal keywords author sections captions refs

ACS 0.95 0.90 0.75 0.20 0.50 0.65 0.80 0.90 0.25
RSC 0.83 0.78 1.00 0.00 0.00 0.23 0.25 0.90 0.30
Advanced 0.90 0.90 0.90 0.76 0.80 0.76 0.85 0.75 0.75
Chemistry-A 0.80 0.75 1.00 0.00 0.66 0.27 0.50 0.65 0.80
Angewandte 0.90 0.80 1.00 0.26 0.65 0.50 0.30 0.80 0.10

aEach cell displays the calculated precision.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01198
J. Chem. Inf. Model. 2022, 62, 1633−1643

1641

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

character recognition and then extracting using open-
source third-party formula conversion tools.
Tables contain plenty of structured text. However, tables
are ignored in PDFDataExtractor, although the
information contained in tables is essentially extracted
in common with the formula issue. Extraction
information from tables is a research topic within its
own right. For example, a third-party package termed
Camelot17 claims to resolve the issue.
Author information is sometimes seen in extracted titles.
This is because of the misclassified text blocks from
PDFMiner,10 where the author text block and the title
text block are merged together if the two visually appear
to be close. Filters are used to separate titles from the
results, but more robust ones are needed.
The reference-extraction component of PDFDataEx-
tractor relies on the sequence number of each reference
entry. However, such information is sometimes missing.

■ CONCLUSIONS
PDFDataExtractor is a plug-in in ChemDataExtractor4 for
reconstructing PDF articles to ultimately create or autopopu-
late databases. Its high precision-oriented system design
ensures that good-quality databases can be achieved.
PDFDataExtractor automatically outputs extracted metadata,
article bodies, and references in JSON or the plain text format.
These results are then fed into its parent ChemDataExtractor4

text-mining software package, for which it is a plug-in tool; this
enables data extraction from PDF files to be connected directly
to the text mining of chemical information. The customizable
modular structure of PDFDataExtractor allows for the user to
adapt prewritten templates for specific use.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198.

Documents used for the evaluation of PDFDataExtractor
and the corresponding scripts (ZIP)

■ AUTHOR INFORMATION
Corresponding Author
Jacqueline M. Cole − Cavendish Laboratory, Department of
Physics, University of Cambridge, Cambridge CB3 0HE,
U.K.; ISIS Neutron and Muon Source, STFC Rutherford
Appleton Laboratory, Harwell Science and Innovation
Campus, Oxfordshire OX11 0QX, U.K.; Department of
Chemical Engineering and Biotechnology, University of
Cambridge, Cambridge CB3 0AS, U.K.; orcid.org/0000-
0002-1552-8743; Email: jmc61@cam.ac.uk

Author
Miao Zhu − Cavendish Laboratory, Department of Physics,
University of Cambridge, Cambridge CB3 0HE, U.K.

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.1c01198

Author Contributions
J.M.C. and M.Z. designed the research. M.Z. developed the
concepts associated with each stage of the work, with guidance
from his PhD supervisor (J.M.C.). M.Z. wrote the code,
performed the evaluation tests, implemented the tool as a plug-

in to ChemDataExtractor, and provided the evaluation test set
for PDFDataExtractor. M.Z. drafted the manuscript with help
from J.M.C. Both authors have reviewed and approved the final
manuscript.

Notes
The authors declare no competing financial interest.
PDFDataExtractor is released under the MIT license and is
available to download from https://github.com/cat-lemonade/
PDFDataExtractor. A user guide with examples of code and
templates for common chemical publishers is available from
https://github.com/cat-lemonade/PDFDataExtractor/demo.
Document source information for the documents used for the
evaluation of PDFDataExtractor is available at https://github.
com/cat-lemonade/PDFDataExtractor/SI.

■ ACKNOWLEDGMENTS

J.M.C. is grateful for the BASF/Royal Academy of Engineering
Research Chair in Data-Driven Molecular Engineering of
Functional Materials, which is partly supported by the STFC
via the ISIS Neutron and Muon Source. The BASF portion of
this Fellowship includes provision of PhD funding to support
MZ. The authors also thank BASF for helpful discussions,
especially Dr. Peter Geyer, who helped to set up the project
and advised on the initial stages of work. Taketomo Isazawa
from the Molecular Engineering group at the Cavendish
Laboratory is also acknowledged for checking and testing the
code. The authors acknowledge the use of research resources
at the Argonne Leadership Computing Facility (ALCF), which
is a DOE Office of Science Facility, under contract No.
DEAC02-06CH11357.

■ REFERENCES
(1) Constantin, A.; Pettifer, S.; Voronkov, A. PDFX: Fully-
Automated PDF-to-XML Conversion of Scientific Literature. In
Proceedings of the 2013 ACM symposium on Document engineering -
DocEng’13; ACM Press: Florence, Italy, 2013; p. 177.
(2) Manning, C.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S.;
McClosky, D. The Stanford Corenlp Natural Language Processing
Toolkit. In Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, 2014.
(3) GitHub - explosion/spaCy: Industrial-strength Natural Language
Processing (NLP) in Python. https://github.com/explosion/spaCy
(accessed Mar 3, 2022).
(4) Swain, M. C.; Cole, J. M. ChemDataExtractor: A Toolkit for
Automated Extraction of Chemical Information from the Scientific
Literature. J. Chem. Inf. Model. 2016, 56, 1894−1904.
(5) Déjean, H.; Meunier, J.-L. A System for Converting PDF
Documents into Structured XML Format. In Document Analysis
Systems VII; Bunke, H., Spitz, A. L., Eds.; Hutchison, D., Kanade, T.,
Kittler, J., Kleinberg, J. M., Mattern, F., Mitchell, J. C., Naor, M.,
Nierstrasz, O., Pandu Rangan, C., Steffen, B., et al. Series Eds.;
Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; Vol. 3872, pp.
129−140.
(6) Bast, H.; Korzen, C. A Benchmark and Evaluation for Text
Extraction from PDF. In 2017 ACM/IEEE Joint Conference on Digital
Libraries (JCDL); IEEE: Toronto, ON, Canada, 2017; pp. 1−10.
(7) Ramakrishnan, C.; Patnia, A.; Hovy, E.; Burns, G. A. Layout-
Aware Text Extraction from Full-Text PDF of Scientific Articles.
Source Code Biol. Med. 2012, 7, 7.
(8) Krallinger, M.; Rabal, O.; Lourenco̧, A.; Oyarzabal, J.; Valencia,
A. Information Retrieval and Text Mining Technologies for
Chemistry. Chem. Rev. 2017, 117, 7673−7761.
(9) Tkaczyk, D.; Szostek, P.; Fedoryszak, M.; Dendek, P. J.;
Bolikowski, Ł. CERMINE: Automatic Extraction of Structured

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01198
J. Chem. Inf. Model. 2022, 62, 1633−1643

1642

https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c01198/suppl_file/ci1c01198_si_001.zip
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jacqueline+M.+Cole"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1552-8743
https://orcid.org/0000-0002-1552-8743
mailto:jmc61@cam.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Miao+Zhu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01198?ref=pdf
https://github.com/cat-lemonade/PDFDataExtractor
https://github.com/cat-lemonade/PDFDataExtractor
https://github.com/cat-lemonade/PDFDataExtractor/demo
https://github.com/cat-lemonade/PDFDataExtractor/SI
https://github.com/cat-lemonade/PDFDataExtractor/SI
https://github.com/explosion/spaCy
https://doi.org/10.1021/acs.jcim.6b00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.6b00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.6b00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/1751-0473-7-7
https://doi.org/10.1186/1751-0473-7-7
https://doi.org/10.1021/acs.chemrev.6b00851?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00851?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10032-015-0249-8
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Metadata from Scientific Literature. Int. J. Doc. Anal. Recognit. 2015,
18, 317−335.
(10) GitHub - pdfminer/pdfminer.six: Community maintained fork
of pdfminer - we fathom PDF. https://github.com/pdfminer/
pdfminer.six (accessed Mar 3, 2022).
(11) Suzuki, M.; Yamaguchi, K. Recognition of E-Born PDF
Including Mathematical Formulas. In Computers Helping People with
Special Needs; Miesenberger, K., Bühler, C., Penaz, P., Eds.; Springer
International Publishing: Cham, 2016; Vol. 9758, pp. 35−42.
(12) GitHub - jalan/pdftotext: Simple PDF text extraction. https://
github.com/jalan/pdftotext (accessed Mar 3, 2022).
(13) A Tool and Library That Can Extract Various Areas of Text from
a PDF, Especially a Scholarly Article PDF.: CrossRef/Pdfextract.
Crossref, 2019.
(14) Councill, I. G.; Giles, C. L.; Kan, M.-Y. P. C. An Open-Source
CRF Reference String Parsing Package. In LREC, 2008.
(15) Lopez, P. GROBID: Combining Automatic Bibliographic Data
Recognition and Term Extraction for Scholarship Publications. In
Research and Advanced Technology for Digital Libraries; Agosti, M.,
Borbinha, J., Kapidakis, S., Papatheodorou, C., Tsakonas, G., Eds.;
Lecture Notes in Computer Science; Springer Berlin, Heidelberg,
2009; pp. 473−474.
(16) Larivier̀e, V.; Haustein, S.; Mongeon, P. The Oligopoly of
Academic Publishers in the Digital Era. PLoS One 2015, 10,
No. e0127502.
(17) GitHub - atlanhq/camelot: Camelot: PDF Table Extraction for
Humans. https://github.com/atlanhq/camelot (accessed Mar 3,
2022).

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01198
J. Chem. Inf. Model. 2022, 62, 1633−1643

1643

https://doi.org/10.1007/s10032-015-0249-8
https://github.com/pdfminer/pdfminer.six
https://github.com/pdfminer/pdfminer.six
https://github.com/jalan/pdftotext
https://github.com/jalan/pdftotext
https://doi.org/10.1371/journal.pone.0127502
https://doi.org/10.1371/journal.pone.0127502
https://github.com/atlanhq/camelot
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

