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Despite their importance in tissue homeostasis and renewal, human pituitary stem cells (PSCs) 

are incompletely characterized. We describe a human single nucleus RNA-seq and ATAC-seq 

resource from pediatric, adult, and aged postmortem pituitaries (snpituitaryatlas.princeton.edu) 

and characterize cell-type-specific gene expression and chromatin accessibility programs for all 

major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and 

sex differences. Pseudotime trajectory analysis indicates that early-life PSCs are distinct from 

the other age groups. Linear modeling of same-cell multiome data identifies regulatory domain 

accessibility sites and transcription factors that are significantly associated with gene expression 

in PSCs compared with other cell types and within PSCs. We identify distinct deterministic 

mechanisms that contribute to heterogeneous marker expression within PSCs. These findings 

characterize human stem cell lineages and reveal diverse mechanisms regulating key PSC genes 

and cell type identity.

Graphical abstract

In brief

This study profiles the gene expression and chromatin accessibility landscapes in postmortem 
male and female pituitaries of different ages using single nucleus multiomics technologies. Zhang 

et al. characterize the pituitary stem cell population and develop computational methods, which 

allow us to elucidate regulatory mechanisms underlying pituitary stem cell identity.
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INTRODUCTION

Tissues are composed of several cell types that can assume different gene expression 

states in response to environmental cues (Morris, 2019). Major objectives of current 

biological research include resolving cellular heterogeneity within tissues and elucidating 

the regulatory mechanisms determining cell types and states. With the recent development 

of single-cell (sc) omics technologies, researchers have refined the characterization of cell 

types in many tissues (Griffiths et al., 2018; Tanay and Regev, 2017).

The pituitary gland secretes hormones that control crucial physiological processes, including 

reproduction, metabolism, and the stress response. The adenohypophysis represents the main 

portion of the pituitary gland and contains five hormone-producing cell lineages. Despite the 

physiological relevance of the pituitary in health and disease, human sc RNA-sequencing 

(RNA-seq) studies to date have omitted the postnatal pituitary (Han et al., 2020; Zhang 

et al., 2020). Furthermore, mapping of the pituitary epigenome landscape has not been 

included in the ENCODE project (ENCODE Project Consortium et al., 2020; Davis et al., 

2018), and no chromatin accessibility profiling of the human pituitary at sc resolution has 

been reported.

Of particular interest is the insight into pituitary stem cells (PSCs) to be obtained 

from sc analyses. PSCs are a heterogeneous population containing both uncommitted 

and committing stem cells, and thus provide an ideal target to study the transcriptional 

and chromatin accessibility mechanisms underlying the expression of specific lineage-

defining genes. Furthermore, the study of PSCs is motivated by the need to develop 

stem cell therapies that could restore lost or damaged endocrine cell populations in 

the pituitary. Pituitary hormone deficiencies, which include congenital hypopituitarism 

(combined pituitary hormone deficiencies), acquired hypopituitarism (secondary to trauma, 

surgery, chemotherapy, or radiotherapy), as well as pituitary tumors such as adenomas, 

result in a severe disruption of endocrine systems that could be addressed with PSC therapy 

(Castinetti et al., 2011). Previous mouse studies demonstrated the existence of PSCs and 

their ability to self-renew and differentiate into all five endocrine cell types (Andoniadou 

et al., 2013; Rizzoti et al., 2013), thus opening potential therapeutic avenues for human 

pituitary deficiencies and pituitary tumors (Russell et al., 2018; Vankelecom, 2016). Little 

is known about the epigenetic landscape (chromatin changes as measured by chromatin 

accessibility assays) and the dynamics of human PSCs during postnatal life, which is 

critical information for realizing their therapeutic potential. Sc resolution studies of the 

human pituitary are important for resolving cellular identity and revealing the regulatory 

mechanisms of this key cell type.

One impediment to conducting sc resolution studies of the human pituitary is the technical 

difficulty in generating high-quality datasets from the frozen postmortem pituitary samples 

provided by tissue banks, which are the only potential source for normal pituitary tissue. 

We recently developed an integrated single nucleus (sn) multiomics analysis using frozen 

adult murine pituitary (Ruf-Zamojski et al., 2021). We have now successfully employed a 

similar procedure to characterize all major cell types in the human pituitary with a particular 

focus on PSCs. Archived frozen postmortem pituitaries from pediatric, adult, and elderly 
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male and female subjects were jointly analyzed by snRNA-seq and sn assay for transposase-

accessible chromatin using sequencing (ATAC-seq) (sn multiomics). Importantly, we also 

generated same-cell human pituitary sn multiome data. Analyses of these data enabled us 

to characterize the transcriptome and chromatin accessibility landscapes of pituitary cell 

types. We further refined the identification of human PSC subtypes and their changes during 

aging and provide insight into the diverse gene regulatory mechanisms underlying stem cell 

identity and commitment and heterogeneous marker expression within the PSC cell type.

RESULTS

Sn multiomics profiling of human pituitaries

To construct cell-type-specific genome-wide maps of gene expression and open chromatin 

in the human pituitary, we conducted same-sample multiomics assays of sn transcriptome 

(snRNA-seq) and sn chromatin accessibility (snATAC-seq) in frozen postmortem pituitaries 

from pediatric, adult, and aged males and females. These six pituitaries had been stored in 

tissue banks at −80 °C for an average of ~10 years since donation (range 4–20; Table 1). 

Of note, nuclei were isolated from the same pituitary fragment and were processed for both 

snRNA-seq and snATAC-seq. Hence, although the paired datasets were not derived from 

the same nuclei, they were sampled from the same population of nuclei in each analyzed 

pituitary. In addition, to test for tissue heterogeneity and accuracy of cell-type-specific 

mapping across assays, and to improve inference of regulatory mechanisms, the remaining 

sample comprising nearly the entire pituitary from one female donor was pulverized and the 

isolated nuclei were then used to carry out 1) same-sample analysis of sn transcriptome and 

sn chromatin accessibility, and 2) same-cell sn multiome analysis providing simultaneous 

measurement of RNA expression and chromatin accessibility within each individual nucleus 

(Figure 1A)

All snRNA-seq and snATAC-seq libraries generated from the same samples were pooled for 

sequencing to reduce batch effects. Data meeting the quality control (QC) threshold were 

obtained from a total of 76,016 nuclei for snRNA-seq and 44,141 nuclei for snATAC-seq in 

paired assays, and from 15,024 nuclei in the same-cell sn multiome assay (Table S1). All our 

libraries underwent detailed QC analysis, were assessed for multiple metrics, and none of 

the samples failed (Tables S1A2 and S1B2). For data analysis of a given sample processed 

through the same-sample sn paired assays, we generated uniform manifold approximation 

projections (UMAPs) for both snATAC-seq and snRNA-seq datasets, each identifying cell 

clusters by type. Integration of both datasets resulted in an overlay UMAP showing good 

correspondence of the major pituitary cell types across assay modalities (Figures 1B and 

S1). The same-cell sn multiome assay, in which each cell yielded both RNA-seq and 

ATAC-seq datasets (Figure 1C), directly generated an integrated UMAP plot (Figure 1D).

Transcriptome analysis of human pituitary cell types

The same-sample paired assay snRNA-seq datasets had an average of 86% of reads mapped 

to the transcriptome and allowed for the detection of ~2,800 genes per nucleus, with 

comparable high-quality QC metrics obtained from all samples (Tables S1A1 and S1A2). 

In the snRNA-seq data analysis of individual male and female pituitary samples, cells 

Zhang et al. Page 4

Cell Rep. Author manuscript; available in PMC 2022 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were clustered using Seurat, projected on UMAPs, as well as visualized using t-distributed 

stochastic neighbor embedding (t-SNE) representation (Figure S1). Cell clusters were 

annotated manually using differential RNA expression of established pituitary marker genes. 

Key cell type markers included FSHB, LHB, and GNRHR for gonadotropes; GH1 for 

somatotropes; POMC for corticotropes; DIO2 for thyrotropes (Cheung et al., 2018; Zhang 

et al., 2020); PRL for lactotropes; and SOX9 (Rizzoti et al., 2013), LGR4 (Russell et al., 

2021), and RBPMS (Cheung et al., 2018) for PSCs. A list of established markers used for 

the assignment of each cell type as well as markers identified in our datasets (IQCJ-SCHIP1, 
NTNG1, EBF1, BNC2, ADGRA3 for PSCs) are listed in Table S2. The RNA counts (Figure 

S1H), mitochondrial gene content (Figure S1I), and ribosomal protein gene content (Figure 

S1J) all indicated the high quality of the snRNA-seq data obtained from each individual 

donor. Cell clustering analysis revealed well-defined cell clusters, including the five major 

hormone-producing cell types as well as several non-endocrine cell types (Figure S1).

Chromatin accessibility analysis of human pituitary cell types

The same-sample paired assay snATAC-seq datasets generated approximately 11,000 DNA 

fragments per nucleus with an average transcription start site (TSS) enrichment score of 5.0 

and a fraction of reads in called peak regions (FRiP) score of 47% (Tables S1B1 and S1B2). 

Cells were clustered and visualized using UMAP representation (Figure S1). Cell clusters 

were manually annotated based on chromatin accessibility (i.e., peaks of accumulated reads) 

at informative promoters among the same marker genes used for the RNA-seq annotation 

(see Table S2). Thyrotrope cells were too poorly represented to generate reliable chromatin 

tracks, across all samples consistent with their being the lowest-abundance endocrine cell 

type in the anterior pituitary (Ben-Shlomo et al., 2017). Similar to the sn transcriptome 

analysis results, cell clustering of the snATAC-seq data from each donor resulted in distinct 

cell clusters with all the major cell types being identified, although a thyrotrope cluster could 

not be distinguished in all male samples (Figure S1).

Cell type identification in snRNA-seq and snATAC-seq datasets

Integration of the snRNA-seq and snATAC-seq data from each sample was accomplished 

by label transfer from the snRNA-seq to the snATAC-seq data using the Seurat pipeline 

(Figure S1). The major pituitary cell type clusters were detected in all individual samples. 

Some clusters showed a gradient of expression and chromatin accessibility, resulting in their 

distinction as separate clusters, although they were not physically distinct (corticotropes 

in Figure S1F; somatotropes, gonadotropes, and stem cells in Figure S1G). Chromatin 

accessibility and transcript expression for specific established pituitary cell type markers are 

presented in Figure S2.

To improve the resolution of human pituitary cell types and to assess inter-individual 

variation, we merged same-sex snRNA-seq datasets and color-labeled them by donor 

(Figures 2A and 2C). Similarly, we merged the snATAC-seq data from same-sex samples, 

and labeled them by donor (Figures 2B and 2D). In addition to the five endocrine pituitary 

cell types, we identified stem cells, pituicytes, as well as pericytes, endothelial cells, and 

immune cells (macrophages, T cells, B cells). We observed donor-to-donor heterogeneity 

in cell type clustering in both datasets. For example, in males, separate gonadotrope, 
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somatotrope, and lactotrope clusters were noted in both RNA-seq and ATAC-seq data, 

originating almost exclusively from the pediatric sample. In females, one gonadotrope, one 

somatotrope, and one stem cell cluster were also derived from the pediatric sample. To 

determine whether these inter-individual differences might be the result of variations in 

sample processing or assay variability, we compared the results obtained with the pediatric 

sample processed using different assay protocols and on different days, with the results 

obtained with the other samples. As shown in Figure 2E, the three different assays of the 

pediatric female sample all gave similar UMAP projection results. These findings indicate 

that donor-to-donor differences cannot be attributed to batch effects or technical artifacts and 

represent inter-subject heterogeneity. The genes that are the most differentially expressed 

across these samples within lactotrope, gonadotrope, and somatotrope cells are shown as 

heatmaps in Figure S2.

The proportions of the major pituitary cell types identified by snRNA-seq versus snATAC-

seq across all samples were highly correlated, indicating the agreement of main cell type 

assignment between the two assay modalities (R2 > 0.96; Figure 2F). We also saw a similar 

distribution of the expression markers in human pituitary cell types in comparison with 

the same markers in an adult mouse pituitary dataset (Ruf-Zamojski et al., 2021). An sn 

multiome dataset and a same-sample sn paired dataset were generated from the pulverized 

pediatric female sample, further supporting the reliability of cell type assignment across the 

two assays (Tables S1 and S2). All datasets are publicly available and are accessible for 

exploration at snpituitaryatlas.princeton.edu.

Characterization of the PSC population

The stem cells identified among all samples by snRNA-seq (Figure 2) were re-clustered 

using the Seurat pipeline, leading to the detection of eight clusters (Figure 3A), with 

one well-separated cluster (cluster 6, circled in Figure 3A) and a large group formed by 

the remaining clusters (clusters 0–5 and 7). Cluster 6 corresponded to lineage-committed 

progenitor stem cells distinguished by GATA3 expression (Figure 3B, see discussion). The 

remaining large group of seven clusters expressed SOX2, SOX9, and the Hippo pathway 

effectors WWTR1 (also known as TAZ) and YAP1 (Lodge et al. [2019] and reviewed in 

Cox et al. [2017]; Figures 3B and S3A), which are indicative of uncommitted PSCs. The 

proliferation marker MKI67 was not expressed in any of the PSC clusters (Figure 3B). 

Committing and likely committing cells expressing POMC and POU1F1 were detected 

throughout the whole PSC cluster (Figure 3B); however, they did not form separate clusters 

on the UMAP (Figure 3A). Cluster 5 was composed of several committing and likely 

committing cells expressing either POU1F1 or POMC, and displayed a higher mitochondrial 

gene expression (see discussion). Cluster 7 had lower UMI counts than all other PSC 

clusters (Figure S3B) and expressed several background genes. Because cluster 7 exhibited 

no apoptosis markers, additional samples would be necessary to further characterize this 

group of cells (Figure S3C, see discussion). The canonical stem cell markers SOX2 
and SOX9, as well as genes previously implicated in pituitary stem cell regulation (i.e., 

WWTR1, PITX2, and LGR4; for review, see Cox et al. [2017]), were broadly expressed.
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We next examined the relationship of PSC clusters to the sex and age of donors (Figures 

3C and 3D). The uncommitted stem cell clusters largely separated into samples of each sex, 

as confirmed by expression of the female-specific XIST (Loda and Heard, 2019). When the 

male and female datasets were grouped by age, all PSC subtypes were represented at all 

ages studied. The proportion of committing stem cells increased from early life to adulthood 

with 2.37%, 12.1%, and 9.13% in pediatric, adult, and aged samples, respectively. The 

proportion of likely committing stem cells showed a more pronounced age-related pattern, 

with 7.27%, 14.8%, and 45.6% in pediatric, adult, and aged samples, respectively (Table 

S3A; see discussion). Although the increase in committing stem cell proportions with age 

could have arisen from tissue heterogeneity and assaying only a small tissue fragment, 

the same analysis in mice revealed a comparable trend (Table S3B), thus supporting our 

findings.

We also compared the patterns of marker gene expression in human and mouse PSCs. 

As expected, we detected Sox2, Sox9, Wwtr1, and Yap1 across the stem cell population 

of both species (Figures 3B and S3A). Expression of POU1F1 in human samples was 

detected in a proportion of the cells in the main PSC cluster (Figure 3B), indicating 

the presence of committing progenitors among this population, as seen with Pou1f1 in 

mice. Similar observations were made with PAX7/Pax7 (Figure S3A), a determinant of 

melanotrope/intermediate lobe identity (Budry et al., 2012)). Additional markers that were 

either previously reported in mouse PSCs or linked to stemness, were also found in human 

stem cells, including WIF1 (Poggi et al., 2018; Schluter et al., 2013), HES1, NOTCH2 (Cox 

et al., 2017), SMAD4 (Karlsson et al., 2007), and SMAD5 (Avery et al., 2010; Kandyba et 

al., 2014) (Figure S3A).

Interestingly, expression of JUN and JUND, which have been implicated in the regulation of 

stemness in other tissues (Pagin et al., 2021; Semba et al., 2020), was heterogeneous, with 

the highest expression associated with uncommitted clusters consisting mostly of male cells 

(Figures 3B and 3C). JUN has not been proposed as a PSC marker but was recently reported 

to be enriched in SOX2-positive cells through bulk RNA-seq in mice (Russell et al., 2021). 

We therefore examined whether Jun showed co-expression with the stem cell marker Sox2 
by mRNA in situ hybridization in male neonatal, juvenile, and adult mouse pituitaries. The 

analysis confirmed Jun as a stem cell marker by identifying Jun-Sox2 double labeling at all 

ages (Figures 3E and S3D). No apparent sex-specific differences were observed in mice, as 

similar results were obtained for females (data not shown). Additional genes found to be 

differentially expressed in male and female PSCs are shown in Figure S3E.

Overall, characterization of the heterogeneity of the PSC population from humans and 

mice supports the existence of different subtypes of uncommitted stem cells that are 

distinguishable from early committing lineages (see Haston et al. [2018]).

The acquisition of both snRNA-seq and snATAC-seq datasets from the same samples 

provides high-resolution analysis of the chromatin accessibility pattern of key genes within 

each pituitary cell type and reveals potential regulatory domains (see Ruf-Zamojski et al. 

[2021]). Moreover, we analyzed gene expression and chromatin accessibility in the same 

cells using the sn multiome dataset generated from the pediatric female sample. Presented 
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in Figure 3F are gene expression and chromatin accessibility for the stemness marker 

SOX2 and the putative gonadotrope/thyrotrope committing cell lineage marker GATA3 in 

the established pituitary cell types, including the stem cells and the committing stem cells. 

SOX2 is expressed in stem cells and committing stem cells, which both showed the highest 

promoter accessibility. GATA3 was expressed in gonadotropes and thyrotropes in addition 

to the committing stem cell lineage. All three cell types also showed increased chromatin 

accessibility in the GATA3 promoter region. Other putative cis-regulatory domains in the 

SOX2 and GATA3 genes show increased chromatin accessibility in cell types that express 

these markers. In a subsequent section, we further elucidate the regulatory control of these 

and additional key PSC markers by modeling same-cell sn multiome data.

Diversity of PSC epigenetic programs

We next studied coordinated gene expression and chromatin accessibility programs in PSCs. 

We used the Pathway Level Information ExtractoR framework (PLIER), which identifies 

sets of genes (latent variables [LV]) that change together across cell types or samples, 

deconvolves datasets into these LV gene sets using known pathways, and associates them 

with biological processes, while not enforcing the strict orthogonality required for principal-

component analysis (Mao et al., 2019). PLIER analyses identified both RNA and chromatin 

accessibility LVs that showed preferential activity in each major pituitary cell type, and 

those LVs are depicted as heatmaps to provide a summary of gene expression (RNA LV) 

or chromatin accessibility (ATAC LV, Figure S4). One RNA LV was stem-cell-specific and 

highly expressed in both sexes at all ages (Figure 4A, top, for the highest weighted 200 

genes; Figure 4C for the highest weighted 30 genes; Data S1). Projection of this PSC LV 

onto adult mouse pituitary snRNA-seq data (Ruf-Zamojski et al., 2021) showed conservation 

of this PSC transcriptome program in mice (Figure 4B, top; Data S2). To determine whether 

this program was also associated with altered chromatin structure in PSCs, we projected this 

LV onto the human snATAC-seq data using the promoter accessibility signals as the gene 

features. The projection showed that the LV transcriptome program was associated with 

increased chromatin accessibility at the corresponding gene promoters (Figure 4A, bottom; 

Data S3). Similarly, projection of the PSC LV onto the adult mouse pituitary snATAC-seq 

data showed an association with increased promoter accessibility (Figure 4B, bottom; Data 

S4). Analysis of the snATAC-seq data identified a number of largely distinct accessibility 

programs that were each most strongly activated in subjects of different ages or sex (Figures 

S4 and S5). The complexity of PSC chromatin programs identified in this analysis may be 

related to the diversity of the donors (see discussion).

In addition to cell-type-specific LVs, we also identified one chromatin accessibility LV 

showing significantly decreased activity with increasing donor age (LVageatac). Figure 5A 

presents a heatmap of the 30 highest weighted promoters comprising this LV in each sample 

by cell type. When the activity level in each cell type was plotted separately by age and 

sex, all cell types showed a decrease in promoter accessibility with age, especially between 

the pediatric and aged samples (Figure 5A). The decrease in accessibility was, however, 

less pronounced in males (pink lines in Figure 5B). Interestingly, this age-related LV was 

identified in a pathway that annotates cell cycle genes such as ORC4 and EIF4E, which 

showed decreased chromatin accessibility in cell types from the older subjects (Figures 
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5A and 5C). Our results suggest that this accessibility program represents age-associated 

coordinated changes.

To further explore the relationship of PSC transcriptomes in samples with ages, we 

constructed a pseudotime trajectory from same-sex snRNA-seq datasets using the Monocle 

algorithm (Trapnell et al., 2014) (Figures 5D and 5E). In females as well as in males, the 

region of the graph most densely occupied by the pediatric PSCs was chosen as the root 

of the trajectory. In both sexes, pediatric PSCs formed the largest group, which separated 

from the adult and aged PSCs. This separation shows the large differences between PSC 

transcriptomes from pediatric and adult samples and also suggests that we have not captured 

all transitional stages of stem cells in the samples analyzed. To specify sets of genes that are 

dynamically regulated as cells progress along the trajectory, we identified several correlated 

gene modules per age group in females and in males (Figure 5F). The top genes in the most 

significant modules and the trajectories of selected genes are shown in Table S3B and Figure 

S6, respectively. Notably, almost none of the moduledefining transcripts were previously 

reported as PSC markers, and their roles in PSC physiology over the lifespan are not known. 

Overall, these analyses show an aging-related chromatin program in PSCs, and dynamic 

changes in the PSC transcriptome with aging.

Transcription factor and epigenetic control mechanisms of PSC genes

Using snRNA-seq and snATAC-seq datasets obtained from the same mouse pituitaries, 

we recently reported that chromatin accessibility is a key determinant for cell type 

transcriptional programs (Ruf-Zamojski et al., 2021). In comparison with same-sample 

datasets, same-cell sn multiome data confer vastly greater statistical power for inferring the 

regulatory mechanisms underlying the expression of specific genes (Cao et al., 2018; Ma 

et al., 2020). The matched transcriptome and chromatin accessibility data in same-cell sn 

multiome assays allow the co-variation of chromatin accessibility and gene expression to 

be modeled in thousands of individual cells. In addition, not all cells within a cell type 

express the same transcripts. Same-cell sn multiome data have the potential to provide 

insight into transcription factors (TFs) and epigenetic mechanisms that shape heterogeneous 

gene expression within the same pituitary cell type.

To explore the role of alterations in TF expression and chromatin state in modulating key 

PSC genes, we applied a linear modeling computational framework to the 15,024 nuclei in 

the same-cell sn multiome dataset obtained from a pediatric female pituitary. For each target 

gene, the linear model selects potential cis-regulatory regions comprising ATAC promoter 

peaks as well as co-accessible distal peaks. Then, testing the co-expression of putative 

trans-acting regulatory factors that have predicted TF binding sites in the co-accessible 

regions, linear regression identifies the TFs and chromatin regions that are most significantly 

predictive of the target gene expression. The linear model, when used to analyze all pituitary 

cells (“pan pituitary cell” analysis), can infer the mechanisms and factors implicated in cell-

type-specific expression. When only cells comprising one pituitary cell type are analyzed, 

the linear model can generate hypotheses for the mechanisms responsible for differential 

expression among the different cells comprising this lineage.
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We first analyzed the committed progenitor markers POMC, POU1F1, TBX19, and NR5A1. 

The output of the linear model pipeline is the p value that each selected cis-regulatory 

region and each individual TF with sites in that region contribute to the expression of the 

target gene (Figures 6 and S7). The TFs contributing to cell-type-specific expression of these 

marker genes using pan pituitary cell analysis included many factors that were previously 

implicated in the differentiation of committing stem cells. For example, the POMC analysis 

identified TBX19, which is an inducer of the POMC-expressing corticotrope/melanotrope 

lineage and of POMC expression (Pulichino et al., 2003). TCF7L2, which was highly 

significant in the analyses of POU1F1 and TBX19, is an effector of the WNT signaling 

pathway, which regulates pituitary growth and development (Brinkmeier et al., 2003). 

Similarly, LEF1, another mediator of WNT signaling (see Kioussi et al. [2002]), was also 

identified in the TBX19 analysis. Estrogen receptor alpha was the most significant TF 

implicated in NR5A1 expression. Consonant with this finding, a recent study in murine 

gonadotrope cell lines demonstrated that estrogen-dependent binding of this nuclear receptor 

to an identified enhancer region triggers Nr5a1 expression during gonadotrope lineage 

specification (Pacini et al., 2019).

We next studied the stemness marker SOX2 and the committing cell lineage marker GATA3. 

When all pituitary cells were examined, the expression of SOX2 within the overall stem 

cell subtype was associated with highly significant co-accessible proximal, upstream, and 

downstream regulatory domains (Figure 6A, left) as well as expression of TFs mapping 

to these domains (Figure 6A, right). These results indicate that PSC-specific expression of 

SOX2 depends on a pattern of chromatin accessibility of regulatory domains present within 

these cells as well as expression of the requisite regulatory factors interacting with these 

domains. A contrasting result was obtained when applying the linear model to only PSCs to 

infer the regulatory circuits involved in heterogeneous expression of SOX2 within PSCs. In 

this analysis, cis-regulatory domains correlated poorly with SOX2 expression (Figure S7E, 

left), and a restricted set of regulatory factors (Figure S7E, right) was implicated in the 

heterogeneous pattern of SOX2 expression in PSCs. These results suggest that the chromatin 

structure is sufficient for SOX2 expression in all PSCs and the expression within specific 

PSCs depends on the expression of key regulatory TFs.

When performing a pan pituitary cell analysis for GATA3, we observed a pattern consonant 

with that of SOX2, with both chromatin structure and regulatory factor expression being 

responsible for expression in PSCs (Figure 6B). However, contrary to SOX2, heterogeneous 

GATA3 expression within PSCs was associated with cis-regulatory chromatin accessibility 

domains, but not with expression of specific regulatory factors (Figures 6C and 6D). 

These results suggest that the regulatory proteins needed for GATA3 expression in PSCs 

are expressed in all of the cells, and the heterogeneous expression pattern within PSCs 

is determined by differences in chromatin accessibility of regulatory domains between 

GATA3-expressing and non-expressing PSCs (Figure 6C). The cis-regulatory domains that 

permit GATA3 expression in stem cells appear to be near GATA3.

The TF showing the second highest significance in the pan pituitary cell analysis of POMC 
is MNX1 (Figure 6E), an important homeobox gene previously implicated in motor neuron, 

pancreas, and lymphoid cell development (Harrison et al., 1994; Li et al., 1999; Vult 
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von Steyern et al., 1999). Therefore, MNX1 is an intriguing new candidate transcriptional 

regulator in the commitment toward the corticotrope/melanotrope lineages. In addition to 

the identification of novel putative TF regulators, when applied to all pituitary cells, the 

model also specifies the proximal and distal regulatory sites significantly associated with 

expression of the target gene in the cell types expressing that gene. These analyses identify 

previously unexplored regulatory domains in these key PSC genes that show accessibility 

associated with gene expression and are therefore cis-regulatory domain candidates (Figures 

6 and S7). We confirmed experimentally the colocalization of Mnx1 and Tbx19 in adult 

mice, highlighting the identification of Mnx1 as a marker of melanotrope/corticotrope 

lineage progenitor cells (Figure 6F). This validation demonstrates the value of the dataset 

and linear model for hypotheses generation. The high significance obtained in the linear 

model analysis for transcriptional regulators that were reported in previous research suggests 

that identified candidates warrant consideration for future study. When POMC was analyzed 

only in PSCs, the most significant TFs identified were E2F4 (Hsu et al., 2019) and TBX19, 

while the co-accessible regulatory regions were of low significance (Figure S7D). These 

results suggest that differential POMC expression in committing PSCs versus uncommitted 

PSCs is due to expression of these key TFs more so than to alterations in chromatin 

accessibility at key regulatory regions.

In addition to the identification of putative TF regulators, when applied to all pituitary 

cells, the model also specifies the proximal and distal regulatory sites that are significantly 

associated with target gene expression in the cell types expressing that gene. Analyses 

of these key PSC genes identify previously unexplored regulatory domains that show 

accessibility associated with gene expression and are therefore cis-regulatory domain 

candidates (Figures 6 and S7).

DISCUSSION

We generated high-quality snRNA-seq and snATAC-seq datasets from individual human 

pituitaries, demonstrating the feasibility of sn profiling in frozen postmortem samples that 

had been stored at −80 °C for as long as 2 decades. Although postmortem molecular 

profiling has been an issue for some tissues, numerous studies have demonstrated that the 

brain and the pituitary are robust to postmortem changes and long-term storage (Andreasson 

et al., 2013; Ferreira et al., 2018; White et al., 2018; Zhu et al., 2017), aside from a 

few limitations (see end of discussion). The present study is not the first to use archived 

postmortem samples (Amamoto et al., 2020; Habib et al., 2017; Mathys et al., 2019). 

Herein, we uncover putative mechanisms of lineage regulation and provide insight into 

PSC heterogeneity and the regulatory mechanisms and circuits underlying the expression 

of key PSC genes. We distinguish and characterize uncommitting and committing stem 

cell lineages, along with differences related to donor, age, and sex. We reveal a high 

level of donor-to-donor heterogeneity in cell type proportions that may stem from the 

use of postmortem samples stored at −80 °C and our small sample size. In addition, as 

only a fragment of each pituitary was analyzed in our study, we cannot exclude cell type 

regionalization as a factor in the inter-individual variation of cell type proportions.
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The pituitary has been neglected from large sc consortium studies due to the difficulty of 

assaying fresh samples. Recent studies have focused on the analysis of human pituitary 

tumors (Ben-Shlomo et al., 2020; Neou et al., 2020). Surprisingly, one study has questioned 

the specificity of SF1/NR5A1 as gonadotrope lineage marker (Neou et al., 2020). However, 

NR5A1 has been classified as a gonadotrope-specific marker in tumors (Asa et al., 

1996; Llyod et al., 2017; Trouillas et al., 2020), and in our work, NR5A1 is restricted 

to gonadotropes both at the RNA and chromatin accessibility levels. A previous study 

reported the presence and lineage tracing of Nestin+ cells in the adult mouse pituitary using 

transgenic lines (Gleiberman et al., 2008), while the fidelity of the expression pattern of 

the Nestin-Cre transgene in the pituitary gland has been challenged by others (Galichet 

et al., 2010). The lineage tracing approach used by Gleiberman’s study is not optimal, as 

Nestin is expressed across various cell populations in the mouse pituitary and thus is not 

unique to mouse PSCs. The authors indeed reported expression of the Nestin transgene in 

a sizable proportion of committed cells prior to fate mapping. Furthermore, our data reveal 

that NESTIN is not expressed robustly in the human pituitary and hence is not a suitable 

PSC marker. We have used markers from recent studies, such as SOX2 (Andoniadou et al., 

2013) and SOX9 (Rizzoti et al., 2013). Those studies demonstrated that SOX2/SOX9+ PSCs 

give rise to all the endocrine lineages, yet the two markers do not mark committed cells, and 

the genetic tools faithfully reproduce endogenous gene expression. Here, we demonstrate the 

robust expression of both genes in the human PSC cluster (Figure 3D).

Reclustering of the stem cells identified by snRNA-seq data analysis distinguishes one 

well-separated cluster that is consistent with committing stem cells (see Figure 3A). 

Characterizing the identity of cluster 7 requires further investigation of additional samples. 

This cluster had much lower UMI counts than all other PSC clusters (Figure S3B), yet it did 

not correspond to dying apoptotic cells (Figure S3C) and seemed driven by a higher level 

of background genes. Interestingly, although we detected committing or likely committing 

cells within the main PSC cluster, those did not form separate sub-clusters. The cells were 

distinguished based on low, but above ambient level counts for a few key determinant genes 

for commitment. Cluster 5 in particular comprised a higher proportion of cells expressing 

POMC or POU1F1 (Figure 3B). POMC-expressing cells are likely precursors of the 

corticotrope/melanotrope lineages (Budry et al., 2011), whereas POU1F1-expressing cells 

represent PSCs with the potential to commit to the somatotrope, lactotrope, and thyrotrope 

lineages (Li et al., 1990). Noticeably, cluster 5, which had many cells transitioning toward 

differentiated cell types, also showed higher mitochondrial gene expression, yet within the 

standard mitochondrial range for analysis. These cells were not dying and were within the 

mitochondrial range to be considered for analysis. This higher mitochondrial gene content 

relative to the other PSC clusters raises the possibility of a change in metabolic status during 

the transition to committed cells (Garcia-Prat et al., 2017; Tsogtbaatar et al., 2020; Yan et 

al., 2021). The GATA3-expressing cluster presumably comprises cells that are committing 

to the gonadotrope or thyrotrope lineages (Charles et al., 2006), although low NR5A1 
expression precludes ultimate cell type lineage assignment (Figure S3). All three committing 

lineages were identified in both sexes. The uncommitted stem cells, which formed six 

clusters that were not well separated, showed distinct but overlapping spatial localization 

between male and female samples. The proportion of committing stem cells in each sample 
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varied with age. Although our mouse data support these findings (Table S3), the differences 

observed in the human samples could still be linked to tissue heterogeneity, as we analyzed 

only a fragment of each pituitary, with a single sample per age group. To strengthen our 

claim, the study of additional samples from donors of different ages is warranted.

Our analyses identify PSC transcriptome and epigenetic programs as well as age-related 

differences in PSCs. One RNA-seq PSC LV program that is well expressed in all assayed 

samples is conserved in mice and associated with PSC-specific chromatin changes at the 

promoters for the genes comprising this LV. We also identify an ATAC-seq LV that exhibits 

increased accessibility with age in all pituitary cell types but shows smaller changes with age 

in PSCs. When the snRNA-seq data were subjected to a trajectory analysis, PSCs from the 

pediatric samples were separated from the adult and aged samples in both sexes. We find 

that human and mouse PSCs share similar patterns of gene expression and are characterized 

by the presence of several subtypes of uncommitted and committing cells, suggesting a high 

degree of conservation of this cell type in evolutionary time; however, the identification of 

species-specific genes might signify inter-species or age-related differences, with potential 

implications for use of the mouse in therapy development.

We have compared our results with a recent reported study of fetal PSCs (Zhang et al., 

2020). Both studies show key common stem cell regulators, although our study detects many 

more PSC genes, possibly because more cells were analyzed. Additional high-resolution 

fetal and juvenile pituitary studies are warranted to further compare the PSC composition 

throughout development.

The PSC LV programs, and the complete separation of PSCs across different ages in the 

trajectory analysis, indicate that fully characterizing the changes in PSC transcriptional and 

epigenetic programs with aging will require analysis of additional samples over the age 

span. Collectively, our data suggest that sex and age influence several biological processes in 

stem cells. Further investigation is needed to elucidate those sex and age differences, as they 

may impact the development of new stem-cell-based therapies.

The datasets generated in this work encompass all major cell types in the human pituitary. 

Reliability of the identification of all major cell types in the same-sample snRNA-seq 

and snATAC-seq datasets from both sexes and from a range of ages is supported by 

the concordance of cell type proportions obtained by both assays and the confirmation 

of cell type identification in the same-cell sn multiome data. We report gene expression 

and chromatin accessibility LVs that are characteristic of each major pituitary cell type. 

Extensive data from the female pediatric pituitary are provided by multiple same-sample 

datasets and a large same-cell sn multiome dataset. With the exception of the pediatric 

female sample, only a fragment of each pituitary was analyzed in each assay. Finer 

resolution of the changes that occur in the transcriptome and epigenome within pituitary 

cell types over the age span will require analysis of additional samples. The present 

datasets represent a resource to address questions about the characterization and regulatory 

mechanisms of any cell type in the human pituitary.
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Inferences from the same-cell sn multiome dataset using the linear model provide insight 

into the TFs and accessible chromatin sites contributing to the expression of key PSC genes. 

The model also provides insight into the general mechanisms (TF expression, chromatin 

accessibility differences, or both) responsible for differential expression of the target PSC 

genes among different cells. Because the model is based on detection of regulatory feature 

correlation with target gene expression, the results obtained when PSC genes are analyzed 

among all pituitary cells represent mechanisms implicated in target gene expression in PSCs 

in comparison with other cell types. When the model is applied only to PSCs, the results 

represent deterministic mechanisms for the heterogeneous expression of these target genes 

within a subset of PSCs. For the PSC and committed progenitor markers analyzed (POMC, 
POU1F1, TBX19, NR5A1, SOX2, and GATA3), multiple chromatin accessibility sites and 

TFs predicted to bind to accessible sites are identified with high probability as contributing 

to stem cell expression of these markers in comparison with other cell types. This supports 

the formulation that the expression of each of those markers in PSCs depends on epigenetic 

remodeling of chromatin as well as on expression of key TFs that are necessary for driving 

gene expression.

Analysis of same-cell sn multiome data from the pediatric female pituitary suggests that a 

diversity of mechanisms contributes to differential expression of marker genes among PSCs. 

With respect to differential expression of PSC markers within PSCs, NR5A1 and POU1F1 
show TFs and chromatin sites associated with heterogeneous expression. POMC, TBX19, 

and SOX2 are associated with the expression of specific TFs and GATA3 with accessibility 

of specific regulatory sites. The pan pituitary analysis shows the importance of both TF 

expression and chromatin structure in the expression of key PSC genes. However, these 

analyses of heterogeneous expression within PSCs suggest that the differential expression of 

some markers is predominantly determined by expression of key TFs in those cells, whereas 

the differential expression of other markers depends on heterogeneity in chromatin structure. 

These results suggest that in addition to stochastic mechanisms that have been described 

to explain heterogeneity in gene expression, different deterministic mechanisms involving 

predominantly chromatin state or TF expression can now be resolved.

A strength of this study is the multiomic profiling of the entire pituitary at postnatal 

stages, which we use to generate a map of the variation of PSCs between sexes and 

with development and aging. Although our characterization of the changes associated 

with aging is limited to the analysis of only two aged donors, the identification of an 

aging-associated signature in both male and female aged donor datasets suggests that some 

effects may be attributable to aging. Our study profiles human PSCs in several human 

pituitary samples of different ages and proposes mechanisms for differential marker gene 

expression within the same cell type. We demonstrate the power of same-sample and same-

cell multiomics analyses to further elucidate the mechanisms underlying PSC cell type and 

cell state in both sexes and different age groups. All data and analyses are accessible at 

snpituitaryatlas.princeton.edu.
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Limitations of the study

Readers should be aware of some limitations of our study caused by the difficulty of 

studying human pituitaries. We used postmortem samples stored at −80 °C in a biobank, 

which could result in storage and postmortem effects on the data, although all of our samples 

were assessed for quality and generated high-quality datasets. Our assays were performed on 

pituitary fragments, which may result in cell sampling limitations. In addition, because only 

a single sample was analyzed per sex and age group, findings about differences between 

groups warrant further studies.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Dr Frederique Ruf-Zamojski 

(frederique.ruf-zamojski@mssm.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• The datasets (snRNAseq, snATACseq, sn multiome) generated in the present 

study are deposited in GEO (accession # GSE178454) and are publicly available 

as of date of publication. The sn human pituitary multi-omics atlas can be 

browsed via a web-based portal accessible at snpituitaryatlas.princeton.edu. All 

datasets will also be deposited with the Human Cell Atlas. Accession numbers 

and web-portal access are also listed in the key resources table.

• All original code has been deposited in Github and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample procurement

Human: Flash-frozen post-mortem human pituitaries were obtained from the National 

Institutes of Health (NIH) NeuroBioBank, and kept at −80C until processing. The tissues 

received varied from whole to pieces of pituitaries. A single pituitary per age/sex was 

used in the study. The following criteria were used to select samples: gender, absence of 

degenerative, neuroendocrine or endocrine disease, and coverage of a range of ages. See 

Table 1 for information on donor sex, age, ethnicity, post-mortem interval (PMI), cause of 

death, and year of collection, and the next section for ethical compliance.

Mice: Wildtype CD-1 murine postnatal pituitaries were dissected at postnatal age P3, P15, 

and P56. Mice were specific pathogen-free. Mice were socially housed in single-sex groups 

(maximum 5 per cage) in individually ventilated cages on a 12-hour light-dark cycle in a 

temperature- and humidity-controlled room. Mice were fed ad libitum on standard chow, 

Zhang et al. Page 15

Cell Rep. Author manuscript; available in PMC 2022 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://snpituitaryatlas.princeton.edu


were given fresh tap water daily, and rehoused in clean cages weekly. Nesting materials were 

provided for environmental enrichment.

Sample size estimation: not applicable for determination of gene expression patterns.

Ethical compliance

Human: We have complied with all ethical regulations and institutional protocols for 

studying human post-mortem human samples. All human specimens obtained from the NIH 

Neurobiobank were frozen samples from deceased donors. Donor anonymity was preserved, 

and guidelines were followed regarding consent, protection of human subjects, and donor 

confidentiality. Prior to being shared with the tissue biobank, collection of the pituitary 

samples upon death was approved by IRB #HP-00042077 for University of Maryland and 

consent was obtained from all donors or next of kin. Study # 13-00709 PS for tissue 

repository at the Bronx VA Medical Center was determined Human Research Exempt by 

the IRB at the Icahn School of Medicine at Mount Sinai (ISMMS), as defined by DHHS 

regulations (45 CFR 46.101(b) (2). As these samples were obtained de-identified from 

deceased subjects from the NIH Neurobiobank, the study itself was not considered human 

subjects research by the IRB at the ISMMS, where the assays were performed.

Mice: Animal work was carried out in compliance with the Animals (Scientific Procedures) 

Act 1986 and King College London (KCL) Ethical Review approval.

METHOD DETAILS

Nuclei isolation from pituitaries—Two methods were tested for nuclei isolation. Frozen 

post-mortem human pituitaries were either: 1) broken into small pieces in a frozen mortar 

on dry-ice, and one piece was thawed on ice and prepared for nuclei extraction based on a 

modified protocol from Mathys et al. (2019), or 2) pulverized and part of the powder used 

for nuclei isolation. The remainder of the pituitary was stored back at −80C. Briefly, and 

all on ice, RNAse inhibitor (NEB cat# MO314 L) was added to the homogenization buffer 

(0.32 M sucrose, 1 mM EDTA, 10 mM Tris-HCl, pH 7.4, 5 mM CaCl2, 3 mM Mg(Ac)2, 

0.1% IGEPAL CA-630), 50% OptiPrep (Stock is 60% Media from StemCell cat# 07820), 

35% OptiPrep and 30% OptiPrep right before isolation. Each pituitary was homogenized in 

a Dounce glass homogenizer (1 mL, VWR cat# 71000-514), and the homogenate filtered 

through a 40 mm cell strainer. An equal volume of 50% OptiPrep was added, and the 

gradient centrifuged (SW41 rotor at 17,792xg; 4C; 25 min). Nuclei were collected from the 

interphase, washed, resuspended either in 1X nuclei dilution buffer for snATACseq (10X 

Genomics) or in 1X PBS/0.04% BSA for snRNAseq, and counted (Cellometer).

SnRNAseq assay—SnRNAseq was performed following the Single Cell 3′ Reagents Kits 

V3 User Guidelines (10x Genomics, Pleasanton, CA). Nuclei were filtered and counted on 

a Countess instrument. A minimum of 1,000 nuclei were targeted (Chromium Single Cell 

3′ Chip kit A v2 PN-12036 or v3 chip kit B PN-2000060). Reverse-transcription (RT) was 

performed in the emulsion, cDNA amplified, and libraries constructed with v3 chemistry. 

Libraries were indexed for multiplexing (Chromium i7 Multiplex kit PN-12062).
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SnATACseq assay—SnATACseq was performed following the Chromium Single Cell 

ATAC Reagent Kits V1 User Guide (10x Genomics, Pleasanton, CA). Nuclei were counted 

(Countess counter), transposition was performed in 10 μL at 37C for 60 min on at least 

1,000 targeted nuclei, before loading of the Chromium Chip E (PN-2000121). Barcoding 

was performed in the emulsion (12 cycles) following the Chromium protocol. Libraries were 

indexed for multiplexing (Chromium i7 Sample Index N, Set A kit PN-3000262).

Sn multiome assay—Sn multiome was performed following the Chromium Single Cell 

Multiome ATAC and Gene Expression Reagent Kits V1 User Guide (10x Genomics, 

Pleasanton, CA) on part of the pulverized pediatric female sample. Nuclei were counted 

(Countess counter), transposition was performed in 10 μL at 37C for 60 min targeting 

10,000 nuclei, before loading of the Chromium Chip J (PN-2000264) for GEM generation 

and barcoding. Following post-GEM cleanup, libraries were pre-amplified by PCR, after 

which the sample was split into three parts: one part for generating the snRNAseq 

library, one part for the snATACseq library, and the rest was kept at −20C. SnATAC and 

snRNA libraries were indexed for multiplexing (Chromium i7 Sample Index N, Set A kit 

PN-3000262, and Chromium i7 Sample Index TT, Set A kit PN-3000431 respectively).

Quality control (QC) and sequencing of libraries—Libraries were quantified by 

Qubit 3 fluorometer (Invitrogen) and quality was assessed by Bioanalyzer (Agilent). 

Equivalent molar concentrations of libraries were pooled and the reads were adjusted after 

sequencing the pools in a Miseq (Illumina). Libraries were then sequenced in a Novaseq 

6000 (Illumina) at the New York Genome Center (NYGC) following 10X Genomics 

recommendations.

All libraries underwent detailed QC analysis. We included many criteria when assigning 

samples to the ‘Good/Pass/Fail’ categories. As is evident from the presented QC metrics 

(Tables S2), none of the samples failed. Moreover, it is noteworthy that all the libraries in 

the ‘Pass’ category are generally of very good quality, with just a single metric placing these 

outside the ‘Good’ category. Finally, the automated QC pipeline was followed by careful 

manual data assessment followed the automated QC pipeline to confirming acceptable data 

quality for each sample analyzed.

RNAscope mRNA in situ hybridization—Wildtype CD-1 murine postnatal pituitaries 

were dissected at P3, P15 (male), and P56 (male), and fixed in 10% neutral buffered 

formalin (Sigma) at room temperature for 16–24 hours. Samples were washed in PBS and 

dehydrated through graded ethanol series before paraffin-embedding as previously described 

(Russell et al., 2021). Samples were sectioned at 5 μm.

The RNAscope 2.5 HD Duplex assay (Advanced Cell Diagnostics) was used according 

to manufacturer’s recommendations, with the following specific probes: Mm-Jun (Cat# 

453561, Advanced Cell Diagnostics), Mm-Sox2-C2 (Cat# 401041-C2, Advanced Cell 

Diagnostics), Mnx1 (Cat# 1063561-C2, ACDBio), and Gata3 (Cat#403321, ACDBio). 

Sections were counterstained with Mayer’s hematoxylin (Vector H-3404) and mounted with 

VectaMount Permanent Mounting Medium (Vector H-5000).
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Automated QC pipeline for libraries—After sequencing of the samples, all libraries are 

processed through the 10x Genomics Cell Ranger pipeline to process the sequenced data 

(see sections below on Data Analysis). Next, we ran an internal QC pipeline to assess the 

quality of all datasets, and for each sn assay extracted important metrics from the summary 

CSV file generated through the Cell Ranger pipeline. For snRNAseq, we used the Seurat R 

package to calculate the percentage of cells with high mitochondrial read counts (>20%). 

Included was also a calculation of the percentage of cells with expression of XIST. If the 

result was greater than 0.1, the sample was determined as female. Otherwise, the sample was 

determined as male. For snATACseq, in addition to metrics from the CellRanger summary 

files, we used Seurat/Signac to calculate the present or absence of a nucleosome-free region 

peak and mononucleosome peak. Chr1-1-200000000 was used to generate the fragment 

histogram. Fragments that were less than 600bp were used to generate a density plot. If 

one of the highest two peaks in the plot is between 0 and 150bp, then the nucleosome 

free region peak was determined as TRUE. If the other highest two peaks in the plot 

were between 150 and 300 bp, then the mononucleosome peak was determined as TRUE. 

Nucleosome-free region peak and mononucleosome peak were used as additional reference 

metrics for additional quality assurance.

We determined criteria for both snRNA and snATAC datasets to classify them into Good, 

Pass, or Fail categories (Refer to Tables S1).

SnRNAseq data analysis—SnRNAseq data were processed using the Cell Ranger 

pipeline v5.0.0, and aligned to the Cell Ranger GRCh38 reference genome, introns 

included. Clustering and differential gene expression analysis were performed using Seurat 

v.3.9.9.9024 and standard procedures (Butler et al., 2018; Stuart et al., 2019). Top markers 

for each cluster were compared to known markers of pituitary cell types to annotate the 

clusters; a list of the most common genes associated to each cell type is provided in Table 

S2.

We used the t-SNE projection to identify the most common cross-type doublets, as well 

as apoptotic and low-count cells as t-SNE preserves the local structure of the data better 

than the UMAP projection. Doublet clusters appear as small, high UMI count satellites to 

the main clusters. We verified the nature of every such group of cell barcodes by plotting 

their gene expression of the top cell-type markers. By looking at which two gene expression 

programs are expressed in the barcodes composing each one of these satellite clusters, we 

were able to identify the two cell types that constitute the barcodes of these sub-clusters.

Apoptotic cells form their own clusters separate from the parent cluster. Several cell 

types often merge into a single apoptotic cluster, so that not every cell type will have 

its corresponding apoptotic cluster. These cells are characterized by low UMI counts and 

almost exclusively spliced mRNA reads, suggesting condensation of the nuclei and arrest of 

transcription of new mRNA.

Some cell-type clusters have offshoots composed of barcodes with low UMI counts. 

Contrary to apoptotic clusters, these have a similar ratio of intronic to exonic reads as their 

parent cluster and do not form their own cluster, but usually connect to, or appear very close 
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to, their parent cluster. These are probably experimental artifacts of slow mRNA capture. 

Their gene expression program is the same as that of their higher UMI counterparts, but they 

are more adversely affected by dropouts. As such, we decided to remove these low-UMI 

offshoots from downstream analysis, together with doublet barcodes and apoptotic cells.

SnATACseq analysis—SnATACseq data were processed using Cell Ranger-ATAC 

pipeline version 1.2.0, and aligned to the Cell Ranger-ATAC GRCh38 reference genome. 

Clustering was performed using Seurat/Signac versions 3.1.5/0.2.4 and standard procedures 

(Stuart et al., 2020). We produced chromatin accessibility tracks around known pituitary 

cell type marker genes and looked for promoter accessibility of these genes to annotate the 

clusters.

Doublets, low-count, and apoptotic cells were identified in the same manner as for 

snRNAseq data, except that for ATACseq data, the UMAP projection works better and was 

used instead. We used the number of fragments in peaks as an indicator as to whether a cell 

was healthy, a doublet, or low-count/apoptotic. Doublets were checked to possess fragments 

in peaks associated to the main markers of both cell types. In general, we have many fewer 

cell barcodes in the ATACseq data, so doublets are also less common. Consequently, few 

doublet clusters were identified.

Sn multiome analysis—We analyzed the pediatric female sample by sn multiome. We 

pooled together libraries from both GEM wells and ran the Cell Ranger ARC 1.0.0 pipeline 

on the pooled sample following 10x Genomics guidelines. Running the pipeline on each 

GEM well separately revealed that the samples have 97 barcodes in common that were 

called as cells.

We used Seurat version 3.9.9.9024 with Signac version 1.1.0 to perform our clustering 

analysis using a weighted shared nearest neighbor graph approach. This method identifies, 

for each cell, its nearest neighbors based on a weighted combination of the two modalities 

(Gene Expression & Chromatin Accessibility). We similarly used the weighted nearest 

neighbor graph to obtain a UMAP projection of the data. The Gene Expression modality was 

used to identify cluster cell types after determination of top markers for each cluster.

Apoptotic, low-count cells and doublets were also identified in a manner analogous to 

that of snRNAseq data. Both apoptotic and low-count cells were identified as having 

much lower counts of both their number of transcripts as well as their number of 

fragments overlapping ATACseq peaks. Apoptotic cells further have a large proportion 

of mitochondrial gene transcripts, whereas low-count cell transcripts are dominated by 

background genes. Doublets, on the other hand, were identified as having higher counts 

in both RNA and ATAC, and expressing gene programs of two cell types simultaneously. 

Only one of the main clusters was identified as doublets, and no further sub-clustering was 

attempted.

Merged datasets analysis—All male and female samples were merged by sex in Seurat 

at the UMI count level, and all of the clustering analysis was repeated on the merged 

samples independently from the beginning. We followed the same analysis steps as for 
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individual samples. Unlike our integrated samples (see the Sn data integration sub-section), 

merged samples do not have batch effects removed. Despite that, we do not observe any 

systematic batch effect between our samples. We do, however, see differences donor-to-

donor differences in gene expression among some specific cell types. The merged samples 

allow us to highlight these differences in the implicated cell types.

Mouse snRNAseq stem cell data analysis—SnRNAseq data for each mouse were 

processed and analyzed as previously described (Ruf-Zamojski et al., 2021). Raw reads 

from each mouse sample were isolated from the clusters assigned in Seurat as ‘Stem cells’ 

using the ‘WhichCells’ function. These count tables were integrated using Seurat (v3.1.5) 

SCTransform workflow (Hafemeister and Satija, 2019), clustered at 0.5 resolution and 

principal component dimensions 1:15 were taken forward for analysis.

Human stem cell re-clustering method—Following initial clustering of the complete 

datasets, the ‘stem cell’ clusters were isolated from each individual donor using the Seurat 

‘subset’ function. To increase the number of cells available for downstream analysis, the 

isolated stem cell datasets were merged based on the approximate age of donors. This 

was performed using the merge function within Seurat (v3.1.5). Sample integration by 

identification of anchors and subsequent clustering (20 PCAs, resolution 0.5) was performed 

using Seurat according to standard procedures (Butler et al., 2018; Stuart et al., 2019). 

Re-clustering and analysis leading to identification of ‘committing’ stem cells was done as 

above following removal of the ‘Pars Tuberalis’ cell clusters.

Pseudotime sn trajectory analysis—Raw gene counts were extracted from each 

sample’s “Stem Cell” cluster as previously identified using Seurat (v4.0.1) (Hao et al., 

2020). Due to sex differences, male and female samples were handled separately. The total 

number of stem cells analyzed per sample is presented in Table S3C. Same-sex samples of 

the same sex (e.g pediatric, adult, and aged females), were integrated using the functions 

‘SCTransform’ and ‘SelectIntegrationFeatures’ in Seurat to obtain the top 500 differentially 

expressed genes (DEGs). Monocle3 (v0.2.3.0) (Cao et al., 2019) was used for pseudotime 

trajectory analysis. Preliminary analysis revealed a bias in the Monocle trajectory due to 

specific hormonal genes, namely, GH1, PRL, CHGB, POMC, LHB, FSHB, and CGA. 

Therefore, these genes were regressed out of the top 500 DEGs. Monocle objects were 

generated by combining the 3 same-sex using the respective top 500 DEGs. The trajectory 

was calculated by merging partitions with the root chosen based on the earliest time point 

available for each sex. To find gene modules changing over pseudotime, the ‘graph_test’ 
function was carried out using the neighbor_graph = “principal_graph” parameter with a 

resolution of 0.8 for ‘find_gene_modules’ function. The top 4 enriched modules for each 

age in each sex were highlighted and examined further because they showed the highest 

variability between age groups.

PLIER data analysis—To delve into the gene expression trends of assigned cell types 

across samples and data types, we treated each sc dataset as a collection of bulk datasets 

for given labeled cell types. Each cell type was then treated as a separate bulk measurement 

within each sample. For snATACseq data, peak counts for a given gene were generated by 
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selecting the peak closest to the transcription start site (TSS). These peak counts per gene 

were then collected into single bulk measurements for each cell type in each sample. We 

focused specifically on 6 relevant cell types in the pituitary: corticotropes, gonadotropes, 

lactotropes, somatotropes, stem/progenitor cells, and thyrotropes. For the snRNAseq dataset, 

this process generated 36 bulk measurements over 6 samples (3 females and 3 males), and 

for the snATACseq dataset, we generated 35 bulk measurements, as thyrotropes were not 

identified in the male adult snATACseq sample. We applied PLIER (Mao et al., 2019), 

which finds patterns in count data that are associated with known prior information (such as 

Reactome and KEGG), focusing on the 2000 genes with the highest standard deviation in 

count values across the bulk measurements in each set of samples. PLIER was run on each 

set of samples separately with LVs generated on the bulk measurements in an unsupervised 

fashion. LVs were then curated to find patterns relevant to individual cell types as well 

as sample-wide trends such as sex-based differences. Statistical significance of LVs was 

computed through the Kruskal-Wallis non-parametric test for multiple groups as part of 

the stat_compare_means R method. Comparisons between LVs within and across datatypes 

were achieved by comparing the overlap of the 200 genes most associated with a given LV.

B is a PLIER-derived expression value for the genes associated with a given LV across 

the different samples. It can be treated similar to average expression, weighted by gene 

association with the LV. Technically, B is a matrix of size #LVs x #Samples. It is one of two 

matrices in PLIER, along with Z of size # of genes x #LVs. The goal of PLIER is to find 

values of B and Z that minimize the equation ∥Y - Z*B∥ where Y is our data matrix of size 

#genes x #samples. So PLIER finds a suitable number of LVs that can be used to connect the 

genes and samples and accurately estimate our data matrix.

For the boxplot statistical analysis (Figure S4), ggboxplot generates a boxplot with the 

center equal to the 50th percentile, the bounds of the box are the 25th and 75th percentile 

and the bounds of the whiskers are the smallest/largest values 1.5 times the interquartile 

range below the 25th percentile or above the 75th percentile, respectively.

Sn data integration—The snRNAseq and snATACseq data were integrated in a reference-

query based manner, mainly using the “FindTransferAnchors” and “TransferData” functions 

from the Seurat v3 package (Butler et al., 2018; Stuart et al., 2019). The snRNAseq datasets 

were used as the reference and the other modalities were integrated to them. To integrate 

snATACseq to snRNAseq, the peak-by-cell accessibility matrix was converted to a gene-by-

cell activity matrix based on the chromatin accessibility within each gene’s gene body and a 

2kb upstream region, under the assumption that chromatin accessibility and gene expression 

were positively correlated. The variable features from the snRNAseq data were used to find 

the anchors and the snATACseq data in the LSI low-dimensional embedding were used to 

transfer the data from snRNAseq to snATACseq.

Linear modeling analysis—The regulatory model of gene expression from the sn 

multiome dataset was constructed for each target gene by following several steps: 1) A 

list of potential regulatory genomic regions was selected. They included: a) any ATAC 

peaks that overlapped with the TSS +/− 2kb region, b) distal peaks that were no more 

than 500kb away from the TSS and were co-accessible with any of the peaks in a). 
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Co-accessibility scores were calculated using the Cicero package (Pliner et al., 2018) with 

default parameters, and a cutoff of 0.25 for the co-accessibility scores was used to select 

co-accessible peaks. 2) A list of potential regulatory TFs was selected by scanning for 

TF binding sites in the selected genomic regions using the “matchMotifs” function (with 

a p value cutoff of 5 × 10−5) from the r package “motifmatchr” and the position weight 

matrices (PWMs) from the JASPAR CORE database. 3) Linear regression was used to 

model target gene’s expression across cells as a function of selected TFs’ expression and 

openness of ATAC peaks’ openness, and the coefficients from the regression were used 

to measure the importance of each TF and genomic region. SCTranform (Hafemeister and 

Satija, 2019) normalized RNA counts and TFIDF normalized ATAC peak counts were used 

in the regression.

QUANTIFICATION AND STATISTICAL ANALYSIS

In Figure 5A, to calculate the statistical significance of expression or accessibility changes 

within a given LV, we applied two-way ANOVA for multiple group testing and Tukey test 

for pairwise comparisons. Each test was applied to female and male samples separately. In 

both cases, we applied the R statistical functions aov and TukeyHSD with the additive model 

Expression ~ ‘Cell Type’ + ‘Age Group’ for the calculations.

In Figure S4, the hierarchical clustering of the LV B scores was accomplished through the 

default complete linkage method utilized by the R function pheatmap.

For the boxplots analysis in Figure S4, the analysis was done with n = 3 independent 

subjects per sex and statistical analysis using the Wilcoxon ranked-sum test.

For Figures 6 and S7, the p values of peaks and the p values of the TFs were both obtained 

by running a linear regression (“lm” function in R) on 9,151 cells (for pan-pituitary results) 

and 1,623 cells (for stem cell-specific results). In addition, for TFs statistical analysis, the 

TFs were presented only if their Bonferroni-corrected p values were below 0.05.

ADDITIONAL RESOURCES

All data and analyses are available on the web portal: snpituitaryatlas.princeton.edu.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single nucleus multiomics characterization of human pituitary stem cells

• Pseudotime trajectory sets apart pediatric versus adult and aged pituitary stem 

cells

• Linear modeling infers transcription factors modulating stem cell gene 

expression

• Distinct regulatory mechanisms underlie pituitary stem cell gene expression
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Figure 1. Experimental design for human pituitary cell type identification
(A) Schematic of the overall experimental workflow, from procurement of the frozen 

pituitaries to sn data analysis.

(B) Schematic summarizing sn data integration. For each sample, the snATAC-seq dataset 

(colored dot UMAP) was integrated with the snRNA-seq dataset (black contours UMAP) to 

generate an integrated multiomics overlay UMAP identifying cell types. On the UMAP, cell 

types are color-coded and designated with a two- to three-letter code, as indicated on the 

bottom key. The female pediatric pituitary sample is represented as an example.
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(C) All integrated samples are presented in Figure S1. Schematic of the comparison between 

sn paired assays (same-sample sn multiomics) (i) and sn multiome assay (same-cell) (ii).
(D) Same-cell sn multiome UMAP from the female pediatric sample (see Table 1).

Zhang et al. Page 29

Cell Rep. Author manuscript; available in PMC 2022 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Merged analysis of same-sex human pituitaries
(A–E) UMAP representation of sn transcript expression (A, males; C, females) and of 

sn chromatin accessibility (B, males; D, females) in the merged same-sex samples, with 

labeling by donor age in each sex, and transcriptome by individual assays performed on the 

same donor. (E) Individual donors (A–E) or assays for a same donor (E) are color-coded as 

indicated. Each cluster is identified by a letter code as defined in Figure 1.

(F) Donor-related information is provided in see Table 1. Correlation between the cell 

type proportions identified by snRNA-seq versus snATAC-seq for all samples (males and 

females). Assays done for the pediatric sample in (F) were done on different days. The linear 
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regression is plotted. Pituitary cell types are color-coded and the key is provided underneath 

the plot.
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Figure 3. Identification of human stem cell sub-clusters by snRNA-seq
(A) UMAP showing the stem cell cluster identification based on the snRNA-seq data from 

the six merged human pituitary samples. Each cell cluster is color-coded and numbered. 

GATA3 lineage-committed progenitor stem cells are circled.

(B) Feature plots depicting the expression distribution of key stem cell marker genes and 

of cell lineage commitment marker genes among the various clusters. A scale is included 

for each feature plot. All scales are similar except for POMC due to background gene 

expression. For the GATA3, POMC, and POU1F1 committing cell lineages, clusters are 
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labeled for easier identification and localization of the cells throughout the PSC clusters. 

Additional gene feature plots are presented in Figure S3.

(C) UMAPs identifying all color-coded stem cell sub-clusters in females and males. The 

feature plot on the far right shows XIST expression, highlighting the female samples.

(D) UMAPs identifying all color-coded stem cell sub-clusters in the pediatric, adult, and 

aged donors.

(E) Colocalization of Sox2 (red) and Jun (blue) transcripts in a wild-type P56 CD-1 male 

adult mouse pituitary. Scale bar, 200 μm. AL, anterior lobe; IL, intermediate lobe; PP, 

posterior pituitary. Top, full image. Bottom, magnification of the boxed region on the top 

panel. Arrows highlight specific cells with colocalization of Sox2 and Jun. Refer to Figure 

S3 for Sox2 and Jun colocalization at P3 and P15. Shown is a representative staining from 

three to five biological replicates.

(F) Chromatin accessibility track analysis and gene expression analysis (violin plots to the 

right of the chromatin accessibility tracks) and for SOX2 and GATA3 in all pituitary cell 

types from the sn multiome dataset generated from the pediatric female. The gene structure 

is provided below the tracks.
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Figure 4. Characterization of coordinated gene expression and chromatin accessibility programs 
in human pituitary cell types
(A) Top, Heatmaps of gene expression levels for the top 200 genes associated with the 

human PSC LV (LVscrna, gray vertical line, top 30 genes highlighted in C). Bottom, 

Heatmap of chromatin accessibility levels for the top 200 genes associated with the human 

LVscrna applied to the human snATAC-seq datasets. Cell-type-associated boxplots are shown 

for each heatmap.

(B) Heatmap for the top 200 genes associated with the human LVscrna applied to the 

murine snRNA-seq dataset (top), and for the top 200 genes associated with the human 
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LVscrna applied to the murine snATAC-seq datasets (bottom) (Ruf-Zamojski et al., 2021). 

Cell-type-associated boxplots are shown for each heatmap.

(C) Heatmap of gene expression levels for the top 30 genes associated with human PSC 

heatmap LVscrna (A). (A–C) Each pituitary sample is indicated at the top. In the scale bars, 

red signifies the highest level of RNA expression or chromatin accessibility. Pd, pediatric; 

Ad, adult; Ag, aged pituitary. Cell type and donor color-coding are provided on the bottom 

key. (A, B) The blue dotted horizontal line corresponds to the top 30 genes as shown in (C).

(D) Chromatin accessibility tracks for LHX3 (identified in C, box) for all cell types in the 

pediatric female sample. The gene structure is provided underneath the tracks. Additional 

tracks are presented in Figure S5. Refer to Table 1 for donor-related information. Additional 

LV analyses are presented in Figure S4. The top 200 genes for all LVs illustrated in Figure 4 

are provided as spreadsheets in the Supplemental information.
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Figure 5. Age-associated chromatin accessibility and transcriptome pseudotime trajectory 
analysis
(A) Heatmap of chromatin accessibility levels for the top 30 genes in the human age-

dependent LV (LVageatac).

(B) Cell type and donor color-coding are provided in Figure 4. Additional LV analyses are 

presented in Figure S4. Plot showing the overall changes in chromatin accessibility for all 

pituitary cell types over age for females (top) and males (bottom). Pituitary cell types are 

color-coded, as indicated. Same cell types are connected by lines over donor age.
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(C) Chromatin accessibility tracks analysis for ORC4 (left) and EIF4E (right) in all 

lactotropes in the snATAC-seq datasets from all donors. The gene structure is provided 

underneath the tracks. Additional tracks are presented in Figure S5.

(D) UMAP showing the trajectory within the stem cell cluster for female (top) and male 

(bottom) samples, with samples color-coded by age.

(E) Pseudotime trajectory analysis for female (top) and male (bottom) samples. Pediatric 

PSCs represent the root of each trajectory. The color scale of pseudotime trajectories is 

displayed.

(F) Gene modules identified with pseudotime and showing expression changes over donor 

age. Monocle 3 identified sets of genes whose expression changes over donor age as 

a function of pseudotime. These modules are then plotted on a heatmap to depict their 

relative expression in each age group. The top three enriched modules for each age group 

are labeled, with module 1 being the most highly enriched in each age. Pd1-3 denotes 

the pediatric top three modules, Ad1–3 the Adult-enriched modules, and Ag1-3 the Aged-

enriched. Blue to red on the color scale represents low to high relative expression levels 

(z-transformed mean expression) of gene modules, respectively. See Figure S6 for selected 

gene trajectories within specific modules. See Table S3B for the top genes per module.

Zhang et al. Page 37

Cell Rep. Author manuscript; available in PMC 2022 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Linear model predicting the chromatin accessibility mechanisms and TFs contributing 
to PSC gene expression
(A) Linear modeling analysis of all pituitary cells (“pan pituitary cell analysis”) infers the 

chromatin accessibility and TFs involved in stem cell-specific SOX2 expression. Left, top 

track shows the contribution of each peak to gene expression measured by −log(p value), 

and bottom tracks display the TF binding sites. Right, the individual contribution of each 

predicted TF to SOX2 expression is shown as −log(p values). See Figure S7E for SOX2 
analysis in stem cells only.
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(B) Pan pituitary cell analysis infers the chromatin accessibility and TFs involved in stem 

cell-specific GATA3 expression.

(C) Top, right: Linear modeling analysis infers GATA3 chromatin accessibility. Bottom: 

t-SNE showing GATA3 gene expression (left panels) and chromatin accessibility (middle 
and right panels) in all cells (top) versus PSCs (bottom). The top left panel indicates the 

identification of all cell type clusters.

(D) Linear modeling analysis of stem cells only infers the chromatin accessibility and TFs 

involved in the differential expression of GATA3 expression within the stem cell population. 

No TF is predicted to contribute to GATA3 expression in stem cells.

(E) Pan pituitary cell analysis infers the chromatin accessibility and TFs involved in stem 

cell-specific POMC expression. Boxed is MNX,1 the second highest identified TF that is 

predicted to contribute to POMC expression. See Figure S7 for POMC analysis in stem cells 

only.

(F) RNAscope mRNA in situ hybridization showing the colocalization of Mnx1 (red) and 

Tbx19 (blue) transcripts in wild-type CD-1 postnatal day 3 (P3) and adult (P56) female 

mouse pituitaries. Blue arrows highlight specific cells with colocalization. Scale bar, 25 μm. 

Shown are representative stainings from three to five biological replicates for each age.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Female pediatric pituitary (frozen from 
deceased)

NIH Neurobiobank #1275, NDAR_INVCK755EF3

Female adult pituitary (frozen from deceased) NIH Neurobiobank #5621, NDAR_INVXK717LJA

Female aged pituitary (frozen from deceased) NIH Neurobiobank #187443

Male pediatric pituitary (frozen from deceased) NIH Neurobiobank #1674, NDAR_INVMV348UPL

Male adult pituitary (frozen from deceased) NIH Neurobiobank #5818, NDAR_INVKF350UGX

Male aged pituitary (frozen from deceased) NIH Neurobiobank #187438

Wildtype murine postnatal pituitaries Charles River Laboratories CD-1 strain; MGI: 5649524

Chemicals, peptides, and recombinant proteins

RNAse inhibitor NEB # MO314L

OptiPrep StemCell Tech 07820

Sucrose Sigma S0389

EDTA Corning 46-034-Cl

Tris-HCl, pH 7.4 Sigma T2663

CaCl2 Sigma 21115

Mg(Ac)2 Boston Bioproducts MT-190

IGEPAL CA-630 Sigma I3021

10% Buffered Neutral Formalin Sigma HT501128

Mayer’s hematoxylin Vector H-3404

Vectamount Vector H-5000

Tween-20 Surfact Amps Detergent Thermo Scientific 85113

Buffer EB Qiagen 19086

SPRI Select Beckman Coulter B23318

Critical commercial assays

Chromium Single Cell 3′ Reagents 10x Genomics V3

Chromium Single Cell ATAC Reagents 10x Genomics V1

Chromium Single Cell Multiome ATAC and 
Gene Expression Reagent

10x Genomics V1

RNAscope 2.5 HD Duplex assay Advanced Cell Diagnostics N/A

Deposited data

Raw and analyzed data This paper GEO: GSE178454

Raw and analyzed data Ruf-Zamojski et al. (2021) GEO: GSE151962

Experimental models: Organisms/strains

Wildtype murine postnatal pituitaries Charles River Laboratories CD-1 strain; MGI: 5649524

Oligonucleotides

Mm-Jun probe Advanced Cell Diagnostics # 453561

Mm-Sox2-C2 probe Advanced Cell Diagnostics # 401041-C2

Software and algorithms

Cell Ranger 10x Genomics v5.0.0
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REAGENT or RESOURCE SOURCE IDENTIFIER

Seurat Butler et al. (2018) and Stuart et al. 
(2019)

v.3.9.9.9024; v4.0.1; v3.1.5

Cell Ranger-ATAC pipeline 10x Genomics v1.2.0

Seurat/Signac Stuart et al. (2020) v3.1.5/0.2.4

Cell Ranger ARC 10x Genomics v1.0.0

Monocle3 Cao et al. (2019) v0.2.3.0

PLIER Mao etal. (2019) N/A

Original code for linear model This paper https://github.com/zidong93/
snpituitary_human_manuscript

Other

Dounce glass homogenizer VWR # 71000-514

40 mm cell strainer Falcon 352340

Centrifuge SW41 rotor Beckman Coulter #331362

Fluorometer Invitrogen Qubit3

Bioanalyzer Agilent 2100

Sequencer Illumina MiSeq

Sequencer Illumina NovaSeq 6000

Cell counter Nexcelome K2

Cell Counter Invitrogen Countess
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