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This paper presents a new approach to benchmarking brain-computer interfaces (BCIs)

outside the lab. A computer game was created that mimics a real-world application of

assistive BCIs, with the main outcome metric being the time needed to complete the

game. This approach was used at the Cybathlon 2016, a competition for people with

disabilities who use assistive technology to achieve tasks. The paper summarizes the

technical challenges of BCIs, describes the design of the benchmarking game, then

describes the rules for acceptable hardware, software and inclusion of human pilots in

the BCI competition at the Cybathlon. The 11 participating teams, their approaches,

and their results at the Cybathlon are presented. Though the benchmarking procedure

has some limitations (for instance, we were unable to identify any factors that clearly

contribute to BCI performance), it can be successfully used to analyze BCI performance

in realistic, less structured conditions. In the future, the parameters of the benchmarking

game could be modified to better mimic different applications (e.g., the need to use some

commands more frequently than others). Furthermore, the Cybathlon has the potential

to showcase such devices to the general public.

Keywords: benchmark testing, brain-computer interfaces, competition, electroencephalography, machine

learning

INTRODUCTION

Noninvasive brain-computer interfaces (BCIs), which measure a human’s brain activity and use it
to control machines, have the potential to improve human-machine interaction in numerous ways.
As assistive devices, they can be used by people with disabilities to control wheelchairs (Carlson and
Millán, 2013), orthoses (Ortner et al., 2011; Do et al., 2013), neuroprostheses (Rohm et al., 2013)
and robots (Leeb et al., 2015) as well as to write messages (Sellers et al., 2014). They can also be
used by unimpaired people to play computer games (Coyle et al., 2013) and control devices such
as mobile robots (LaFleur et al., 2013) or aircraft (Kryger et al., 2017). Alternatively, passive BCIs,
which monitor human cognitive and affective states, can be used to detect drowsiness in car drivers
(Picot et al., 2012) or high workload in pilots (Berka et al., 2007) and air traffic controllers (Aricò
et al., 2016).

While the first BCIs were inaccurate, cumbersome and time-consuming to apply, advances such
as dry (Chi et al., 2010) or water-based (Volosyak et al., 2010) electrodes and new sensor fusion
methods (Müller-Putz et al., 2015; Novak and Riener, 2015) have significantly increased both
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their performance and user-friendliness. Nonetheless, the
question remains: just how accurate and reliable are BCIs?

Previous Brain-Computer Interface
Competitions
Benchmarking the performance of BCI technology is critical,
as it allows researchers to evaluate how different approaches
compare to each other (Zander et al., 2011). For instance,
benchmarking allows us to determine whether a certain classifier
allows intended commands to be more accurately identified
from electroencephalographic (EEG) data (Zander et al., 2011).
In the past, BCI benchmarking mainly focused on comparing
different signal processing and classification methods on the
same set of previously recorded EEG data. This was done as
part of BCI competitions involving many different researchers.
The first such competition was announced in 2001 to a
smaller BCI community (Sajda et al., 2003), while follow-up
competitions focused on topical challenges—from single-trial
EEG classification (Blankertz et al., 2004) to classification of
continuous EEG data without trial structures and classification
of signals affected by artifacts (Tangermann et al., 2012).

The common feature of all previous BCI competitions was
that they performed offline analysis of a previously recorded
dataset, allowing different algorithms to be compared using
exactly the same raw data. However, when different algorithms
are compared offline, they can only perform signal analysis;
they cannot perform actions in response to the information
extracted from the dataset. For example, if the algorithm
determines that the data was recorded when the user wanted
to perform a certain action, it cannot assist with this action.
The next step is thus to benchmark BCIs online: in a situation
where the user sends commands and controls devices using the
BCI. This is more challenging than offline benchmarking, as
multiple BCI approaches cannot be used online with the same
user and same device simultaneously. However, it is critical,
as online performance cannot necessarily be predicted from
offline performance: as users use a BCI for online control,
they learn to compensate for systematic errors and better use
the device (Cunningham et al., 2011). Similar issues have been
noted in other electrophysiological devices such as myoelectric
prostheses (Jiang et al., 2014) and emphasize the need for online
benchmarking.

The Goals of the Cybathlon 2016
To fulfill the need for online BCI benchmarking outside
the laboratory, we established a BCI competition as part of
the Cybathlon—a larger event that aims to both evaluate
different assistive technologies as well as showcase them to the
general public (Riener, 2016). The first Cybathlon was held
in October 2016 in Zurich, Switzerland, and was preceded by
a rehearsal in 2015. It consisted of six disciplines: powered
arm prostheses, powered leg prostheses, powered exoskeletons,
powered wheelchairs, functional electrical stimulation, and,

Abbreviations: BCI, Brain-Computer Interface; EEG, Electroencephalogram;

EMG, Electromyogram; EOG, Electrooculogram; SSVEP, Steady-State Visually

Evoked Potential.

finally BCIs. The overarching aim of the BCI competition was to
benchmark different systems in realistic conditions outside the
lab using pilots with severe physical impairments. Specific goals
were:

- Goal 1: Develop a “benchmark” task that is inherently safe but
nonetheless provides a reasonable estimate of how well a given
BCI system would perform in a real-world assistive application
outside the laboratory.

- Goal 2: Establish a set of benchmarking rules that allow
different BCIs to be compared to each other in a fair and safe
way, using pilots with disabilities who would be most likely to
use such BCIs in everyday life.

- Goal 3: Using results of the 2016 BCI competition, compare
different BCI approaches with regard to task performance in
order to identify more or less effective approaches.

- Goal 4: Act as an outreach event that increases the general
public’s interest in BCIs and other assistive technologies.

While the first three goals were purely scientific, the Cybathlon
is also a “popular science” event that should be accessible to a
broader public. Therefore, the task being performed should be
easily understood by an audience of laypersons. For example,
commands sent by the BCI should have clearly identifiable
consequences in the task. This represents a new type of BCI
competition that is less structured and may require different
signal processing approaches, but its results would also be more
directly applicable to future real-world applications of BCI.

This paper is structured as follows. The “Methods for
BCI Benchmarking at the Cybathlon” section presents the
Benchmarking methods used in the Cybathlon BCI competition:
the task to be performed (Goal 1) and the rules (Goal 2). The
“Results of the Cybathlon BCI Competition” section presents the
results of the Cybathlon BCI competition as well as how they
relate to Goals 3 and 4. The Discussion section then discusses
our progress toward all four goals as well as how the rules of the
Cybathlon could bemodified for future BCI benchmarking either
at the Cybathlon or at other events.

METHODS FOR BCI BENCHMARKING AT
THE CYBATHLON

In offline analysis, BCI performance is generally quantified
using its classification accuracy (how often the correct
desired command is identified from brain activity). However,
while classification accuracy is generally correlated with
BCI controllability and overall user satisfaction (van de
Laar et al., 2013), there is no guarantee that better offline
classification accuracy will translate to better online performance
(Cunningham et al., 2011). An alternative performance metric
is the information transfer rate (how many commands can
be sent to a controlled device per minute) (Nicolas-Alonso
and Gomez-Gil, 2012), but this metric depends heavily on the
context. Instead, we chose to benchmark BCIs at the Cybathlon
according to a different metric: the time it takes a user to
successfully complete a real-world task using the BCI. The
development of an appropriate benchmarking task was Goal 1

Frontiers in Neuroscience | www.frontiersin.org 2 January 2018 | Volume 11 | Article 756

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Novak et al. Benchmarking Brain-Computer Interfaces at the Cybathlon 2016

of the Cybathlon, and this task is described in the “Benchmark
Game” section.

Improvements in BCI performance can be facilitated by
improvements at any level of BCI, from hardware improvement
to better noise removal and more accurate classification. While
we cannot analyze the individual contribution of each BCI
component in an online application, it is still important to
set rules for each level of BCI (including the human user)
to ensure fair comparison of the results between participating
teams. Setting these rules was Goal 2 of the Cybathlon; they were
first developed prior to the 2015 rehearsal, thenmodified after the
rehearsal following feedback from participating teams. The rules
and the justification for them are described in the “Benchmarking
Rules” section.

Benchmark Game
Concept
As stated in Goal 1, a desirable BCI benchmarking task should
represent a realistic challenge for BCI (i.e. similar to an actual
assistive application), can be understood by the general public,
and is inherently safe. We first considered using a BCI to control
a wheelchair, as this is a common application (Carlson and
Millán, 2013) and since wheelchairs are already present at the
Cybathlon. However, the idea was eventually discarded for two
reasons. First, there was a risk of an inaccurate BCI causing
unsafe behavior of the wheelchair and injuring the pilot. Second,
the additional hardware would increase the uncertainty of the
benchmarking process, as it would introduce many variables
(e.g., the construction of the wheelchair, the control algorithms)
that differ from device to device and are unrelated to the BCI
itself. Controlling a mobile robot (LaFleur et al., 2013) or any
other remote-controlled device was discarded for similar reasons.
To maximize safety and minimize dependence on hardware
unrelated to BCIs, we instead chose to use a computer game.
Computer games are often used as a demonstration of BCIs, are
inherently safe, and would look attractive to a layperson, so their
use in the Cybathlon was considered appropriate.

The most intuitive competitive multiplayer game is a racing
game, and most other Cybathlon disciplines involve racing over
an obstacle course. Therefore, we decided to use a racing game
where up to four pilots’ in-game avatars can compete either on
the same track (e.g., car racing) or on parallel tracks (e.g., horse
race, sprint). To save development time and effort, commercially
available racing games were first considered for use with BCIs.
However, while commercial games are visually attractive and
would undoubtedly be well-received by the audience, they are
not meant for BCI control, as they require many commands
to be sent to the game with split-second precision. By contrast,
many state-of-the-art BCIs achieve information transfer rates of
only approximately 20 bits/min (Nicolas-Alonso and Gomez-Gil,
2012). A racing game that is slow enough to be controllable with
BCIs was thus developed in cooperation between ETH Zurich
and the Zurich University of the Arts (ZHdK), Switzerland.

A major concern in the design of the BCI-controlled racing
game was that some BCIs at the competition could have a very
low accuracy and might be unable to effectively control the
game. Therefore, one game design rule was that a racer should

eventually reach the finish line even if he/she sends no correct
commands—correct commands should speed racers up while
incorrect commands should slow them down but not stop them
completely. Thus, an “obstacle course” game was created where
up to four pilots’ virtual avatars run along a track with different
types of obstacles. Each obstacle appears at the same spot on
the track for all competitors. Sending the correct command
through the BCI at the correct time, for example, may make
the avatar jump over an obstacle while sending no command or
sending the wrong command makes the avatar hit the obstacle
and temporarily slow down.

To ensure that pilots are not distracted by too many visual
features, another design decision was made: different visual
displays of the game were provided to pilots and to the
audience. Pilots were shown a simplified display that is focused
on their own avatar and has no distracting elements (for
example, background is removed and textures are simplified).
The audience, on the other hand, was shown a more visually rich
version of the game. A screenshot of the audience view of the BCI
game, which is titled BrainRunners, is shown in Figure 1.

Number and Type of Commands
Assuming different types of obstacles, each pilot’s avatar should
accept different commands. For example, one command would
make the avatar jump while another would make the avatar
slide. Each would only be effective for a specific type of obstacle:
for example, an obstacle at low height would require the avatar
to jump while a high obstacle would require the avatar to
slide underneath it. This then raises the question of how many
commands can realistically be sent by a BCI. The simplest BCIs
only have two output states: “command” or “no command”,
which are sent depending on the level of EEG activity (low
or high). More complex devices can produce several different
commands as well as a “no command” state depending on, e.g.,
which regions of the brain are active. How can we enable simpler
BCIs to participate in the competition while still allowing more
complex devices to have an advantage?

The first decision was that the game should operate in
asynchronous mode (Mason and Birch, 2000): there should be
times in the game when no command should be sent to it,
and sending any command should be penalized at those times.
Such asynchronous control was a major component of previous
BCI competitions (Tangermann et al., 2012), and is commonly
used in assistive devices—the user may require assistance at
any moment, but there are also times when no assistance is
needed (Pfurtscheller et al., 2005; Ortner et al., 2011; Sakurada
et al., 2013). For example, a BCI-controlled wheelchair should
remain stationary while the user focuses on activities such as
eating or working, but should also be ready to receive movement
commands at any time. The alternative to such asynchronous
control would have been to have the game ignore BCI inputs
until the avatar reaches an obstacle, then check if the user has
sent the correct command. However, given that assistive devices
commonly operate in asynchronous mode, this alternative was
unrealistic for online benchmarking.

After settling on asynchronous operation with a “no
command” state, we implemented three different commands
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FIGURE 1 | A screenshot of the audience view of the BrainRunners game, which allows up to four avatars to compete on parallel tracks. Each track consists of

multiple instances of three different “action” fields colored purple, cyan and yellow (on which the pilot must send the correct command via the brain-computer

interface in order to speed up their avatar) as well as gray “no-input” fields (on which the pilot should not send any commands).

(“rotate,” “jump,” and “slide”) that the pilot can send via the
BCI. Each command has a specific time when it should be used;
using it at the correct time gives the pilot a bonus while using
it at an inappropriate time penalizes the pilot. However, even if
the pilot never sends any command, their avatar will eventually
reach the finish line. This allows BCI devices based on 2-class
classifiers to compete by only using one command (e.g., “jump”),
while developers of more complex BCIs have to consider whether
the potential benefits of the other two commands outweigh the
potential penalties of using them incorrectly.

As seen in Figure 1, the BrainRunners game allows up to four
pilots to compete simultaneously, with their avatars running in
parallel. There are four types of fields on the track:

• No-input field (where no command should be sent)—gray in
Figure 1,

• spinning winds (where the pilot can send the “rotate”
command to speed up and is otherwise slowed down)—cyan
in Figure 1,

• stumbling blocks (where the pilot can send the “jump”
command to quickly hover over the stumbling blocks and is
otherwise slowed down)—purple in Figure 1, and

• sticky lasers (where the pilot can send the “slide” command
to quickly slide under the lasers and is otherwise slowed
down)—yellow in Figure 1.

These fields can be seen by pilots at least 10 s before their avatar
reaches them, giving pilots time to react to upcoming fields and
accounting for potentially slow BCI paradigms.

Sending the correct BCI command on its corresponding field
causes the pilot’s avatar to speed up and run at a higher speed
until the end of the field or until another command is sent.
This can be done whenever the avatar is on the field; doing it

as soon as the avatar reaches the field results in the greatest
benefit, but doing it later is still beneficial (as it makes the avatar
cross the remaining part of the field faster). On the other hand,
sending the incorrect command (or any command on the no-
input field) penalizes the pilot by making their avatar slow down.
This penalty slowdown can be overridden on an action field by
sending the correct command, which will speed the avatar up
again. Similarly, if the player first sends a correct command, then
an incorrect one, the speed-up will be overridden by the incorrect
command. On an action field, any speed-up or slowdown lasts
until the end of the field, after which the pilot’s avatar returns to
the default speed. On the no-input field, the penalty slowdown
lasts for a predetermined amount of time, and the avatar can thus
return to the default speed before the end of the field. This is
because there is no way to correct an incorrectly sent command
on a no-input field.

The penalty and override structure ensures that randomly

sending all possible commands one after another is not an
optimal strategy and is (depending on the weighting of reward

and penalty) possibly worse than sending no command at
all. This structure mimics a real-life application of controlling

an assistive device where a command being executed can be

overridden with another command.
Six different parameters are used to balance the game

mechanics:

1. Default speed on no-input field if pilot has (correctly) not sent
a command: sdefault,NoInput .

2. Reduced (penalty) speed on no-input field if pilot has sent any
command: spunish,NoInput .

3. Maximum penalty (reduced speed) time on the no-input field:
tmaxPunish,NoInput .
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4. Default speed on an action field (rotate/jump/slide) if pilot has
(incorrectly) not sent a command: sdefault,Action.

5. Increased (reward) speed on action field if the correct
command has been sent: sreward,Action.

6. Reduced (penalty) speed on action field if a wrong command
has been sent: spunish,Action.

All versions of BrainRunners obey the inequality: sreward,Action >

sdefault,NoInput > sdefault,Action > spunish,NoInput = spunish,Action. This
means that the pilot’s avatar has four possible speeds:

• The default medium speed is given on the no-input field if no
command is sent,

• the high speed is only given if the correct command is sent on
an action field,

• sending no command on an action field results in the low
speed,

• sending the wrong command on an action field or any
command on the no-input field results in the very low speed.
This is done because sending no BCI command should still be
a better option than sending the wrong command.

An example of game speed on different fields in response to
pilot commands is shown in Figure 2. In the game version used
at the 2016 Cybathlon, the values are as follows: sreward,Action
= 3, sdefault,NoInput = 1, sdefault,Action = 0.5, spunish,NoInput = 0.3,
tmaxPunish,NoInput = 4. This means, for example, that if the pilot
sends any command on a no-input field, the avatar’s speed
decreases from the default value to 30% of the default value for
a punishment period of 4 s. Conversely, if the pilot sends the
correct command on an action field, the avatar’s speed increases
from 50 to 300% of the default value until the avatar crosses
the field or a different command is sent. If the pilot sends no
command, their avatar needs about 6 s to cross a no-input field
and about 11 s to cross an action field. The exact values of the
different speeds and the maximum penalty time were not made
public prior to the 2016 Cybathlon and could only be obtained
indirectly by practicing with the training version of the game.
This was done since a real-world application would not have a
perfectly definable cost/reward structure for BCI control. The
values were balanced so that a realistic BCI accuracy achieves
a better result than sending no command at all, which in turn
achieves a better result than randomly sending commands. For

future competitions, we intend to change the different values in
order to provide participating teams with a new challenge.

A last balancing factor is the prevalence of the different fields.

Each action field (rotate/jump/slide) must have the same number

of appearances in the race. This ensures that teams that use fewer

than three commands are indifferent as to which one they omit.

Furthermore, the ratio of no-input vs. action fields has a direct

influence on how important it is to avoid false positives or false
negatives. In the final version of the game, there are four instances

of each action field as well as four no-input fields, for a total of
16 fields that can appear in different orders. We acknowledge
that such a short race is vulnerable to random effects and thus
does not necessarily produce unbiased BCI results; however, a
short duration was necessary since the Cybathlon BCI race was
watched by a live audience of laypersons.

FIGURE 2 | Changes in the speed of the pilot’s avatar (Top) as the pilot sends

different commands (Bottom: s, slide; r, rotate; j, jump) to the game on

different fields. The 1–4 values are purely symbolic, and exact speeds differ

between versions of the game; see main text for values from the 2016

competition.

Benchmarking Rules
Goal 2 of the Cybathlon BCI competition was to establish a set
of benchmarking rules that allow different BCIs to be compared
to each other in a fair and safe way. These rules are described in
this section, and include acceptable BCI paradigms, acceptable
hardware and software, and inclusion/exclusion criteria for
human pilots.

Brain-Computer Interface Paradigms
The first, fundamental decision regarding acceptable BCI
technology was whether to limit the competition to EEG-based
devices. EEG is the most popular BCI modality, and was the
focus of previous BCI competitions (Sajda et al., 2003; Blankertz
et al., 2004; Tangermann et al., 2012). Other technologies, such
as magnetoencephalography and functional magnetic resonance
imaging, were excluded simply because they are not portable.
Furthermore, invasive (e.g., implanted) BCI technologies were
excluded since it would be difficult to find sufficient human pilots
with implanted BCI devices and since pilots with noninvasive
devices may potentially be at a disadvantage compared to pilots
with implanted devices. In the end, we allowed BCIs based
on EEG as well as those based on functional near-infrared
spectroscopy. Functional near-infrared spectroscopy has been
previously used in BCIs (Sitaram et al., 2007; Zimmermann
et al., 2013) and can even be combined with EEG to improve
performance (Fazli et al., 2012). However, all teams used only
EEG-based BCIs.

Within EEG-based BCIs, there are several paradigms for how
the user can use their brain activity to control a device. To
decide which paradigms to permit, our guideline was that the
BCIs should do what the general public believes they do: read
internal thought processes. In what proved to be a somewhat
controversial decision, we thus forbade BCIs that require
additional external stimuli (e.g., a second screen). Principally,
this excluded BCIs based on SSVEPs and visually evoked P300
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waves. For example, SSVEP-based BCIs provide the user with
a dedicated screen, and different parts of the screen flash at
different frequencies. The user selects a desired BCI command
by looking at its corresponding part of the screen, and the BCI
recognizes the command by measuring the dominant frequency
of the visual cortex’s EEG activity (Middendorf et al., 2000;
Gao et al., 2003; Pfurtscheller et al., 2010; Ortner et al., 2011;
Sakurada et al., 2013). Similarly, P300-based BCIs commonly
evoke P300 waves via the oddball paradigm: different stimuli
(most commonly rows and columns of letters) are successively
highlighted on a dedicated screen, and the user exhibits a P300
wave in response to the stimulus of interest (e.g., the letter they
wish to write) (Fazel-Rezai et al., 2012). Though SSVEP- and
P300-based BCIs are relatively fast and accurate (Nicolas-Alonso
and Gomez-Gil, 2012), we feel that the required additional screen
is inappropriate for many applications and that, in the case of
SSVEPs, the same result (gaze-based selection) can be achieved
with a camera-based eye tracker.

Due to the exclusion of paradigms that rely on external
stimuli, we expected that the most commonly used paradigms
would involve motor imagery, where the pilot generates EEG
by imagining limb motions, and/or mental imagery, where the
pilot generates EEG by carrying out specific mental tasks such
as arithmetic (Obermaier et al., 2001; Friedrich et al., 2012).
This was indeed the case at the Cybathlon 2016, as described
in the “Results of the Cybathlon BCI Competition” section;
however, other potentially valid approaches have been proposed.
For example, an anonymous reviewer of this paper proposed
using error-related potentials (Chavarriaga et al., 2014), which
are evoked by external stimuli provided by the game itself
(e.g., seeing the pilot’s avatar slow-down in response to an
incorrectly sent command). In future BCI races, we would
consider the use of error-related potentials (and other brain
activity evoked by the game itself) to be acceptable since it
does not require any stimuli that are not already present in the
application.

Hardware, Skin Preparation, and Signal Sites
To capture low-amplitude EEG signals, it is critical to use
multiple electrodes (ranging from 4 to 64 in state-of-the-art
systems Nicolas-Alonso and Gomez-Gil, 2012) with a high
signal-to-noise ratio. For the Cybathlon, the primary rules
regarding electrodes were that they should be safe for human use
and should not penetrate the skin, though hair removal and light
skin abrasion at the electrode sites were permitted. As long as this
rule was met, we permitted both wired and wireless electrodes,
and placed no restrictions on the use of gel—gel-based, water-
based (Volosyak et al., 2010) and dry electrodes (Guger et al.,
2012) were all acceptable.

The electrodes are connected to signal amplifiers that
generally compromise between bulkiness and signal quality. The
main Cybathlon rule for amplifiers, again, was that they should
be safe for human use; no restrictions were placed on, for
example, the use of wireless amplifiers. Teams using commercial
devices were asked to provide the manufacturer’s statements of
conformity while teams that wanted to use their own (built in-
house) devices were required to conduct a risk analysis and

provide a full report. All documentation was reviewed by two
independent BCI experts, who were provided with a checklist of
safety items (e.g., surge protection) and could note outstanding
issues to be checked in person prior to the competition. This
checklist is provided in Appendix I (Supplementary Materials).
However, these safety issues were minimal, as all teams used
commercially available devices rather than in-house prototypes.

Finally, all EEG electrode sites (frontal, central, parietal etc.)
were permitted. While some areas are known to be more closely
related to, e.g., motor or mental imagery, we saw no need to limit
teams to those areas. Indeed, most teams chose to use a large
number of evenly spread electrodes so that they could perform
spatial filtering on the data.

Artifact Removal and Classification
EEG signals have amplitudes in the microvolt range and are
vulnerable to different artifacts. For instance, signals from frontal
areas could be contaminated by electrooculographic (EOG)
artifacts while signals from parietal areas could be contaminated
by neck muscle activity (Delorme et al., 2007). Thus, EEG signals
are almost always filtered to remove noise and artifacts prior to
further analysis (Ramoser et al., 2000; Blankertz et al., 2008).
However, unscrupulous participants could also make use of
artifacts to unfairly boost the performance of their BCI system:
for instance, since blink artifacts have a high amplitude compared
to actual EEG, a team could potentially train their pilot to blink
in order to send a command.

While we did not expect intentional cheating, we did request
that teams provide us with a description of their artifact removal
procedure. As EOG was considered to be the most problematic
potential source of artifacts, we also requested that teams include
EOG recordings in their setup. This way, judges could check
whether eye artifacts have been adequately removed from EEG.
As an alternative to a description of each team’s artifact removal
procedure, we briefly considered simply implementing standard
artifact removal software and requiring each team to use the
same software. However, while this would make it much easier
to monitor the teams, it would also require extensive testing to
ensure that the artifact removal software is compatible with all
teams’ systems. Furthermore, as artifact removal is an important
part of ensuring real-world BCI performance (Fatourechi et al.,
2007), we wanted to encourage teams to develop novel artifact
removal methods.

Once EEG signals have been filtered to remove noise and
artifacts, useful features need to be extracted from the signals, and
classification algorithms need to be applied in order to turn the
extracted EEG features into discrete commands that are sent to
the controlled device (Bashashati et al., 2007; Brunner et al., 2011;
Nicolas-Alonso and Gomez-Gil, 2012; Müller-Putz et al., 2015;
Novak and Riener, 2015). For online performance, asynchronous
operations represent a particular challenge: the BCI should allow
the user to perform a command at any time, but should also
remain idle most of the time when the user does not desire to
use the BCI (Mason and Birch, 2000; Pan et al., 2013; Williams
et al., 2013). No restrictions were placed on feature extraction and
classification, as we again wanted to encourage teams to develop
novel classification methods.
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Inclusion and Exclusion Criteria for Human Pilots
The final part of planning the Cybathlon’s BCI benchmarking
process was to define the type of people that will operate the BCI.
A few generic requirements were set: pilots should be at least 18
years old, should understand the competition, and should not
suffer from epilepsy or cybersickness. This would be sufficient
for a general benchmarking competition; however, the Cybathlon
focuses on assistive technologies, so the pilots should be drawn
from the population that would use such technology.

The main target population for assistive BCIs are severely
paralyzed people who cannot use their limbs to operate
technology. For example, they could be used by tetraplegics
to control wheelchairs (Carlson and Millán, 2013). However, it
was difficult to define the minimal acceptable level of disability.
Should participation require tetraplegia or only paraplegia? And
should the disability be due to a specific cause (e.g., spinal cord
injury)? This was primarily a question of fairness, as there is
evidence that neural representation of different thoughts differs
between spinal cord injury and brain injury survivors (Murphy
and Corbett, 2009), that BCI classification accuracies differ
between tetraplegics and paraplegics (Müller-Putz et al., 2014),
and that brain activation after injury is affected by the degree of
clinical recovery (Kokotilo et al., 2009).

Several solutions were considered: allowing only tetraplegia,
allowing both tetraplegia and paraplegia, and having separate
BCI subdisciplines for severe and lighter impairment. At the
2015 rehearsal, we permitted teams to use unimpaired BCI pilots
if they were unable to field a pilot with motor impairment.
After the rehearsal, the inclusion and exclusion criteria were
finalized: pilots should be tetraplegic or tetraparetic (American
Spinal Cord Injury classification levels A to C) due to any
injury, with each pilot’s eligibility determined individually. This
requirement was chosen since all teams at the rehearsal agreed
that tetraplegic pilots represent the most promising target
population for assistive BCIs. No restrictions were implemented
with regard to available sensory channels (e.g., damaged sensory
nerves).

To ensure ethical integrity with regard to involvement of
human pilots, the Zurich Cantonal Ethics Commission was
consulted about the Cybathlon (request no. 2016-00161). The
Commission ruled that, as an event, the Cybathlon was exempt
from ethics approval since it was considered to be primarily
an exhibition and outreach event rather than a fundamental
scientific study. Nonetheless, informed consent was obtained
from all participating pilots, and participating teams were advised
to obtain ethics approval from their own institutions if required
for BCI training.

RESULTS OF THE CYBATHLON BCI
COMPETITION

Event Schedule
Both the 2015 rehearsal and 2016 Cybathlon began with two
inspections: a technical check of the hardware and software by
independent BCI experts (to ensure safety and general adherence
to the rules) and a medical check of each pilot’s health status

by a team of physicians. After that, qualification races were
performed, followed by two final races (A-final and B-final).

There were three qualification races, with four teams
participating in each race. As previously described, each race
contains four instances of each action field as well as four no-
input fields, for a total of 16 fields. All three qualification races
had these 16 fields appear in different orders that were not
known to participants in advance. In each race, the time needed
for each team to reach the finish line was measured. The four
fastest teams from all three races advanced to the A-final while
the next four teams (ranked 5–8) advanced to the B-final. Each
race lasted approximately 3min, though moving the teams to
and from the competition stage took approximately 15min per
race. Again, we acknowledge that such short races were likely
influenced by random factors and may not have captured the
best performance of each BCI technology; however, the need for
short and attractive races was dictated by the live audience of
laypersons.

Team Approaches and Results
Ten teams participated in the 2015 rehearsal. They were
affiliated with the Technical University of Graz (Austria),
INSEP Paris (France), Technical University of Darmstadt
(Germany), University of Padova (Italy), Ecole Polytechnique
Federale de Lausanne (Switzerland), Mahidol University
(Thailand), University of Essex (United Kingdom), Gray Matter
(United Kingdom), University of Ulster (United Kingdom), and
University of Houston (USA).

Eleven teams then participated in the 2016 competition,
though there were significant changes from the 2015 lineup: some
teams dropped out after the rehearsal because they could not
find a tetraplegic pilot (required in 2016 but not 2015) while
other teams either signed up after the rehearsal or had chosen
not to participate in the rehearsal. Tables 1–3 present a list of
the participating teams at the 2016 competition, as well as a brief
overview of the teams’ hardware (Table 1), software (Table 2) and
pilots (Table 3). While information about all teams’ approaches
was collected by the technical experts of the Cybathlon, it was
originally kept confidential. After the competition, we asked
teams if they would provide us with a brief publishable summary
of their approach; Tables 1–3 contain information for those
teams that provided a summary.

As can be seen from Tables 1, 2, the best approach is
difficult to identify. There was no clear advantage to using
a particular amplifier, a particular number of electrodes, or
particular electrode locations. Most teams used the g.USBamp
(g.tec Medical Technologies GmbH, Austria) or BrainVision
actiCHamp (Brain Products GmbH, Germany) amplifiers and
their associated electrodes, but this was partially for nonscientific
reasons: g.tec and Brain Products were sponsors of the
Cybathlon, and agreed to provide free BCI hardware to several
participating teams. Still, it is interesting that all teams used
gelled electrodes, and may suggest that dry electrodes are not
yet suitable for use outside the lab; however, due to lack of
data, this is only speculation. Furthermore, while some teams
originally expressed an interest in consumer-grade EEG devices
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TABLE 1 | The teams of the 2016 Cybathlon Competition and the hardware they used.

Team name/affiliation Race time (s)

qualifier

Race time (s)

finale

Signal amplifier Electrode number, locations Electrode type Prep time

Brain Tweakers/CNBI EPFL* 90 190 g.tec g.USBamp 16, mainly frontal and central Gelled, active 5–10min

Brain Tweakers/CNBI EPFL* 123 125 g.tec g.USBamp 16, mainly frontal and central Gelled, active 5–10min

BrainGain/Radboud University 135 156 TMSi Mobi 24, evenly spread Gelled, passive 20min

BrainStormers/University of Essex 146 161 BioSemi ActiveTwo 64, evenly spread Gelled, active 15min

Athena-Minerva/TU Darmstadt 148 146 BrainVision actiCHamp 128, evenly spread Gelled, active 30–60min

OpenBMI/Korea University 149 149

Neurobotics, Russia 161 132 Neurobotics

NeuroCONCISE/University of Ulster 165 136 g.tec g.Nautilus 16, evenly spread Gelled, active 15min

Mahidol University 167 not in final g.tec g.USBamp

Ebrainers/Pazmany Peter Catholic

University

186 not in final BrainVision actiCHamp 32, evenly spread Gelled, active 15min

Mirage91/TU Graz 196 not in final g.tec g.USBamp 32, mainly sensorimotor areas Gelled, active 20min

Ecole Supérieure de Lyon none** not in final g.tec g.USBamp 16, evenly spread Gelled, active 5–10min

Teams are ranked according to the time they needed to complete the qualifier race. The top four teams from the qualifier participated in the A-final while the next four participated in the
B-final. Blank spaces in equipment columns indicate the team did not provide this data.
*The Brain Tweakers team participated with two pilots, both of which used the same hardware and software.
**The pilot of the Lyon team did not pass the medical check and thus did not participate in the qualifier race.

from Neurosky (USA) and Emotiv Systems (Australia), none
participated with such devices.

Similarly, there is no clear advantage to any software
approach, and many teams had similar approaches (e.g., use
of spatial filtering and power spectral density based features).
This use of similar approaches was likely because we forbade
the use of additional external stimuli, which prevented teams
from using other approaches such as SSVEPs or visually evoked
P300 waves. There is also no clear advantage due to pilot age
or injury severity (Table 3), and we believe that Goal 3 was
not successfully fulfilled—we were unable to identify any factors
that clearly improve BCI performance. We believe that future
competitions should examine the effect of other human factors
on performance, as explored further in the Discussion section.

Spectator Feedback and Scope of
Outreach
The Cybathlon was highly effective from an outreach perspective.
In addition to coverage from Swiss news agencies, 140 media
representatives from 15 countries registered to cover the event.
They included representatives from, e.g., Al Jazeera English, BBC,
Bloomberg News, CNN, Die Zeit, ORF, Reuters, Wired Japan,
and many more. Over 300 articles were published about the
Cybathlon in 2016. Furthermore, the Cybathlon website (www.
cybathlon.ethz.ch) was visited by approximately 47,000 different
people in October 2016 alone, and approximately 4,800 people
from all over the world watched the Cybathlon live via the stream
on the Cybathlon website. Finally, the Cybathlon trailer has been
viewed over 152,000 times on Youtube (as of November 2017).

The Cybathlon was attended in person by more than 4,600
spectators; of those, 283 participated in a brief survey about their
experience. Themajority (54%) were between 19 and 30 years old,
and an additional 38% were between 31 and 60 years old. 70%
were from Switzerland, 25%were from other European countries,

and 5% were from outside Europe. 51% attended due to an
interest in research and technology while 27% attended due to an
interest in medical topics. When asked if the Cybathlon fulfilled
their expectations, 44% said that their expectations were fully
fulfilled and 47% said that the event exceeded their expectations.
Thus, we believe that we successfully generated significant public
interest, especially among young people with an interest in
technology.

The above data was collected for the entire Cybathlon event,
regardless of discipline. In addition to that, spectators were
also asked what their favorite discipline was. This result was
less encouraging: only 9% chose BCIs as their favorite among
the six disciplines (as opposed to, e.g., 33% for wheelchairs
and 20% for lower limb prostheses). Spectators commented
that BCIs were not as attractive as other disciplines because
they involved no physical movement—only pilots motionlessly
playing the benchmarking game with their mind. Furthermore,
some spectators still had difficulty understanding the cause-effect
relationship between the BCI and the in-game actions without
the help of the announcer, and requested live commentary of the
game in multiple languages.

Feedback from Teams and Cybathlon Staff
The participating teams and the Cybathlon volunteers also
provided feedback about how future BCI competitions could be
improved. First, the teams emphasized the need to keep locker
rooms close to the stage and carefully temperature-controlled.
This was because teams needed to set up the EEG cap in
the locker room, then wait for the competition and move the
(usually wheelchair-bound) pilot through the building to the
stage; reducing the distance between the stage and locker room
also reduces the need to readjust the EEG cap on stage.

Second, monitoring the pilots and ensuring fair play proved
to be a significant challenge. While we asked the teams to
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TABLE 2 | The teams of the 2016 Cybathlon Competition and the software they used.

Team name Filtering Imagery used for commands Feature extraction and classification

Brain Tweakers Bandpass, notch, spatial Hands, feet, hands+feet Power spectral density, feature selection with canonical

variate analysis, classification using bayesian maximum a

posteriori probability equivalent to qda

BrainGain Detrend, common average reference, spatial

whitening, bandpass

Left hand, foot, tongue Power spectral density, regularized logistic regression

BrainStormers Bandpass, spatial Left hand, foot, word

concatenation, auditory

Common spatial patterns, power spectral density, classifier

ensemble

Athena-Minerva Bandpass, spatial Hand, word association, mental

arithmetic

Power spectral density, multiple binary classifiers

NeuroCONCISE Neural-time-series-prediction-preprocessing,

subject-specific bandpass, common spatial

patterns

Left hand, right hand, feet Log variance of filtered signals, linear discriminant analysis

and multiple binary classifiers, postprocessing of classifier

output

Ebrainers Bandpass, spatial and temporal filtering Hand, feet, mental arithmetic Power spectral density, phase locking index, complex

covariance patterns

Mirage91 Bandpass Hand, feet, mental arithmetic,

auditory

Common spatial patterns + slda, adaptive classifier

Ecole Supérieure

de Lyon

Spatial, independent component analysis Left hand, right hand, tongue Power spectral density, common spatial patterns, support

vector machine

Reported only for teams that agreed to make this information public. All teams used imagery (motor or otherwise) to generate BCI commands.

provide access to EEG and EOG recordings for the judges, it
was practically impossible to obtain enough expert judges to
truly monitor all recordings during the competition. We limited
ourselves to watching for voluntary limbmovement and excessive
eye movement, but this also was not trivial. Impaired pilots could
make involuntary motions (e.g., spasms), and it was difficult to
draw the line between normal and excessive eye activity. At the
rehearsal, one team was warned after the qualification round
since their pilot appeared to be blinking very often; however, such
assessments are subjective and cheating can be difficult to prove.

Nonetheless, despite challenges in monitoring the pilots, both
the 2015 rehearsal and 2016 competition proceeded smoothly.
All teams were able to set up successfully, and no BCIs failed
to function. Furthermore, the teams agreed that the game was a
good testing ground for online BCIs, with three commands and a
“no input” state being realistic.

DISCUSSION

Based on our experiences, we believe that Goals 1, 2 and 4 of
the Cybathlon were successfully achieved while Goal 3 was not
fully achieved. Sections Goal 1: Benchmarking game, Goal 2:
Rules and inclusion criteria, Goal 3: Identifying effective BCI
approaches, and Goal 4: Outreach discuss each individual goal in
more detail. The discussion then concludes with a few words of
advice to teams whomay be interested in participating in the next
Cybathlon BCI competition (section Advice to future Cybathlon
competitors) as well as a few thoughts about the organizational
aspects of the Cybathlon BCI competition (section Importance
of organizational aspects).

Goal 1: Benchmarking Game
We successfully developed a benchmarking game that allowed
BCI performance to be measured via task completion time, and

the teams agreed that the game was an appropriate stand-in
for actual assistive technologies without the danger present in
actual assistive devices. Similarly to our game, actual assistive
technologies require users to choose among a small number
of possible BCI commands, such as left/right for wheelchairs
(Carlson and Millán, 2013), walk/idle for robotic gait orthoses
(Do et al., 2013), left/right/both/none for BCI-controlled artificial
arms (Onose et al., 2012) and so on. As in our game, the
command must be sent at an appropriate time in order to
avoid undesired consequences such as collisions. Furthermore,
an incorrectly sent command can be overridden by a correct
one—for example, if a BCI-controlled wheelchair is told to move
to the kitchen, this command can be overridden by a command
to move to the living room. Finally, the game was played in
a less structured setting with many possible distractors and
stressors, thus more closely approximating real-world conditions
compared to a laboratory.

One change that could easily be made to the game would be
to make some fields more common than others—for example,
to have 90% of the fields be “no-input” fields. This would likely
be a more realistic approximation of an assistive BCI, as BCIs
are expected to spend most of their time idle (Mason and Birch,
2000), and not all assistive actions would be required equally
often. This would also force teams to decide, for example, which
paradigm (e.g., motor or mental imagery) to assign to which
command. We originally chose to have all three actions equally
probable so that BCIs with only one possible command could
still compete; however, given that all teams at the 2016 Cybathlon
used a 3-command BCI, we believe that this modification would
be very useful in future BCI competitions.

Goal 2: Rules and Inclusion Criteria
Most of the rules of the Cybathlon BCI race were not
controversial, but it is worth briefly discussing acceptable BCI
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TABLE 3 | Characteristics of the pilots at the 2016 Cybathlon Competition.

Team name Pilot year of birth Type of injury Year and cause of injury

Brain Tweakers (winner, qualifier) 1968 SCI at C5/C6 with ASIA A 1989, traffic accident

Brain Tweakers (winner, finale) 1986 SCI at C5/C6 with ASIA A 2003, bike jumping accident

BrainGain 1960 SCI at C5-7 with ASIA A 1982, bleeding in blood vessel

BrainStormers 1963 SCI at C5/C6 with ASIA B 1987, diving accident

Athena-Minerva 1989 SCI at C5/C6 with ASIA B 2008, traffic accident

OpenBMI 1968 SCI at C4/C5 with ASIA C 1995, traffic accident

Neurobotics 1982 SCI, details not publicly disclosed 2002, diving accident

NeuroCONCISE 1971 SCI at C5 with ASIA A 1993, traffic accident

Mahidol University 1989 SCI at C4 with ASIA A 2006, gunshot

Ebrainers 1989 SCI at C6 with ASIA B 2006, sports accident

Mirage91 1979 incomplete locked-in syndrome 2014, brain stem infarction and cerebellar infarction

Ecole Supérieure de Lyon 1980 SCI at C5 with ASIA B 2012, traffic accident

SCI, Spinal cord injury; ASIA, American Spinal Injury Association impairment scale.

paradigms and inclusion/exclusion criteria. With regard to BCI
paradigms, we excluded approaches that require additional
external stimuli: SSVEPs, visually evoked P300 waves and others.
A few participating teams complained that they felt constrained
by the exclusion of these paradigms, and future real-time
benchmarking approaches could consider including all BCI types
in order to maximize potential impact. This may, however,
require a different game design: a SSVEP-based technology would
require the pilot to divide their attention between the game
and a secondary visual display, but would also support more
than 3–4 commands and would allow faster gameplay due to
higher information transfer rates (Nicolas-Alonso and Gomez-
Gil, 2012).

Furthermore, with regard to pilot inclusion criteria, we
focused on tetraplegic pilots since the Cybathlon is meant to
be a competition for people with disabilities who use cutting-
edge assistive technologies. Future online benchmarking events,
however, should choose the pilot inclusion/exclusion criteria
based on the characteristics of the target population. A general
BCI benchmarking competition could incorporate unimpaired
adults with a similar age and level of BCI experience in order
to minimize intersubject variability. A competition focused on,
for example, P300/SSVEP-based spelling devices, on the other
hand, may recruit only tetraplegics and people with locked-in
syndrome since these are the ones most likely to use spelling
devices (Li et al., 2008; De Vos et al., 2014). Finally, if the goal of
a competition is to test generalizability to a wide range of people
with disabilities, we could even ask multiple pilots (with different
disability levels) to test the same device.

Goal 3: Identifying Effective BCI
Approaches
The greatest weakness of the Cybathlon BCI competition was that
we were unable to identify any factors that had a clear effect on
BCI performance: there was no clear difference between different
hardware and software approaches with regard to the race results.
Furthermore, there was no clear effect of the measured pilot
characteristics (e.g., pilot age, ASIA A vs. ASIA B injuries). This

was partially likely due to the small sample size, as it is difficult to
find clear effects based on 11 competing teams. Furthermore, the
fact that some newer EEG technologies (e.g., dry electrodes) were
not present at the Cybathlon may imply that these technologies
are not yet ready for widespread use. Nonetheless, we cannot
consider Goal 3 to have been successfully completed. In future
competitions, this goal could be achieved more successfully by
collecting more data about factors that affect BCI performance
and/or using additional BCI performance metrics.

Factors that Affect BCI Performance
For future BCI competitions, we recommend not only increasing
the number of pilots, but also obtaining more information about
the pilots. For example, BCI performance tends to improve as
users train with the system (Neuper and Pfurtscheller, 2010; Lotte
et al., 2013), and there was significant variability in the amount of
time that Cybathlon pilots spent training with their BCI system,
from days to months. Furthermore, different user personalities
and cognitive profiles may be more effective at controlling BCIs
(Hammer et al., 2012; Jeunet et al., 2016), and pilots with higher
motivation may be more effective as well (Sheets et al., 2014).
None of these factors were evaluated at the Cybathlon, but
future BCI races could capture and analyze them by asking pilots
about the time they spent training as well as, for example, using
personality and motivation questionnaires. Some data on this
topic was reported by the winning team (Brain Tweakers), which
fielded two pilots: in the months leading up to the Cybathlon,
the pilot who eventually won the qualifier race completed 183
practice races while the pilot who won the final race completed 57
practice races against computer opponents (Perdikis et al., 2017).

In addition to training time and pilot characteristics, another
human factor should be investigated in more detail: the strategies
that pilots develop to deal with the game. For example, each pilot
must decide on their own whether to attempt sending a BCI
command on an action field as early as possible (and thus risk
sending the command too early, resulting in penalties) or to wait
until the avatar is comfortably on the field (thus reducing the
potential benefit). Several pilots told us that they had developed
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their own strategies, and the winning team emphasized that it was
critical for the pilot and BCI to adapt to each other (Perdikis et al.,
2017). However, information about this factor was not recorded
in detail, and we thus do not reliably know how it affected pilots’
scores.

Other factors that may have contributed to BCI performance
include for example, electromagnetic noise in the environment
and sudden distractions in the arena. Such factors could be
averaged out by holding multiple races. This would be a suitable
solution for in-house evaluations of BCIs by their developers, but
was not appropriate for the Cybathlon, which was broadcast on
television and over the Internet, necessitating a single exciting
race. The winning team compensated for possible distractions
in the arena by carrying out mock races in the lab with loud
spectators (Perdikis et al., 2017), and we believe that training
in uncontrolled environments is essential for optimal BCI
performance in any real-world setting.

Additional BCI Performance Metrics
We used only a single BCI performance metric: the time
needed to complete the race. However, a more detailed analysis
of performance could be achieved using more comprehensive
measurements of BCI behavior. For example, future races could
measure the total number of incorrectly sent commands, the
time needed to successfully send a command on an action
field, and the time needed to correct an incorrect command
(i.e., the time between an incorrectly sent command and a
follow-up correct command on the same action field). By
comparing these metrics between teams, such an analysis
could determine whether some BCI approaches are, for
example, slower or more prone to incorrect commands than
others.

Goal 4: Outreach
Based on the feedback obtained from spectators and the high
media profile of the Cybathlon, we believe that we were
successfully able to showcase BCI technologies to a general
public that has, with very few exceptions, only seen it in
science fiction movies, books and news articles. Admittedly, not
all reactions were positive: as mentioned in section Spectator
feedback and scope of outreach many spectators did not find
the BCI discipline as attractive as other Cybathlon disciplines
(e.g., powered wheelchairs) due to the lack of physical movement
and the difficulty relating the BCI to in-game commands.
Furthermore, some were surprised by the low accuracy and slow
speed of state-of-the-art BCI systems.

While future Cybathlon events will take steps to make the BCI
competition even more accessible to laypersons (by, for example,
providing more detailed live commentary), we believe that it is
very important to provide spectators with a realistic picture of
the technology: not only its advantages, but also its disadvantages.
This balanced presentation helps the public understand not
only the potential of the technology, but also its current state
and opportunities for improvement. Furthermore, it encourages
developers to take steps to improve BCI performance outside the
lab, bringing the technology closer to practical, real-world use.

Advice to Future Cybathlon Competitors
As the next Cybathlon is already planned for 2020, we wish to
provide a few suggestions to teams interested in participating.
Admittedly, these suggestions are purely subjective and based
only on our qualitative observations of the 2015 rehearsal and
2016 competition; nonetheless, we believe that they are worth
considering.

First, it is critical to find an appropriate pilot early: most of
the dropout from the 2015 rehearsal to the 2016 competition
was because teams could not find a tetraplegic pilot. Finding
an appropriate pilot early also allows training to start early,
providing critical BCI experience to the pilot and allowing
classification algorithms to be tailored to the pilot. Second, teams
should not only aim to improve offline classification accuracy,
but should work with the pilot on online testing of the BCI
and developing effective strategies for online BCI control (e.g.,
teaching the pilot how to compensate for possible systematic
errors). These points were also emphasized as critical by the
winning team (Perdikis et al., 2017). Third, we encourage teams
to develop BCI approaches not based only on motor imagery.
For example, a combination of motor and mental imagery
(used by some of our 2016 teams) could be combined with
detection of error-related potentials to provide immediate error
correction.

Importance of Organizational Aspects
Finally, we wish to briefly comment on a few additional
organizational aspects of the BCI competition: the pilot health
checks, the technical safety inspections, and judging the
competition for fairness. The Cybathlon 2016 organizational
structure was such that all six disciplines had roughly the same
technical safety inspections, which may have been excessive
for BCIs. BCI systems are safer than the technologies used
in the other disciplines, which can seriously injure the user
(e.g., via the powerful motors of a robotic wheelchair), and
all teams used commercially available hardware (unlike, e.g.,
the wheelchair discipline, where most devices were prototypes).
Thus, future BCI competitions may consider a more streamlined
safety check—for example, skipping the hardware check for
all cases where common commercial amplifiers are used. We
do consider pilot health checks, however, to be important and
appropriate: though BCI devices are relatively safe, the pilots
were tetraplegic and thus potentially at more risk than pilots in
other disciplines (who were either paraplegic or amputees), so it
was necessary to be aware of any possible health issues.

Judging the competition for fairness was expected in advance
to be difficult, as we did not have the resources to truly monitor
all pilots and collected signals during the competition, and even
checking for possible voluntary/involuntary movement is not
trivial (see section Feedback from teams and Cybathlon staff).
One way to address this issue would be to require teams to record
both EOG and the electromyogram (EMG) of different muscles
during the event, then have judges check the recordings after the
race and disqualify competitors later if necessary. This option
was considered before the Cybathlon, but ultimately abandoned
since it would be prohibitively time-consuming for the small
organizing team tomanually check all EOG/EMG recordings and
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cross-reference themwith EEG, BCI outputs, and in-game events
to determine whether cheating took place. As an alternative,
future events could use a “peer review” method where each
participating team leader would be randomly assigned tomonitor
another team during the race, ensuring fairness. Amember of the
Cybathlon organizing committee (who would be independent of
the participating teams) would then be responsible for resolving
any issues noticed by these peer reviewers. However, given that
we do not expect teams to intentionally try to cheat during the
competition, it is unclear whether such steps are truly necessary.

CONCLUSION

Having successfully concluded the Cybathlon 2016, we are
confident that our BCI race represents a valid method of
benchmarking BCIs online and is a reasonable approximation
of actual assistive BCI applications. Furthermore, it provides an
easily quantifiable outcome metric (the time needed to complete
the task) that reflects both the technical quality of the system as
well as the skill of the human user. Finally, different use scenarios
can be simulated by changing the game parameters—for example,
by changing how often each command is required, how often the
user needs to remain idle, and what the penalty for failure is.

Our procedure could be used for online BCI benchmarking
in academic and commercial settings. While our race involved
tetraplegics, EEG and motor/mental imagery, it could also
be modified for other user groups and BCI paradigms. This
would allow the advantages of different hardware and software
approaches to BCI to be evaluated for many applications.
Furthermore, by collecting data about the human user, future
benchmarking procedures could examine the influence of both
technological and human factors. In this way, the scientific
community will obtain a complete picture about how different
factors affect online BCI performance in different populations,
paving the way for broader adoption of BCIs in many
applications.

Finally, as the Cybathlon was streamed over the Internet and
recorded by camera teams from all over the world, it has the
potential to showcase this technology to a general public that

has only seen it in science fiction movies. The Cybathlon has
received extensive support, and will become a recurring event,
with a Cybathlon 2020 already in planning stages and smaller
spin-off competitions foreseen around the world.
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