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Challenges for the development
of a universal vaccine against
leptospirosis revealed by
the evaluation of 22
vaccine candidates
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André A. Grassmann2, Johnjoe McFadden3§,
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Leptospirosis is a neglected disease of man and animals that affects nearly half a

million people annually and causes considerable economic losses. Current

human vaccines are inactivated whole-cell preparations (bacterins) of

Leptospira spp. that provide strong homologous protection yet fail to induce

a cross-protective immune response. Yearly boosters are required, and serious

side-effects are frequently reported so the vaccine is licensed for use in

humans in only a handful of countries. Novel universal vaccines require

identification of conserved surface-exposed epitopes of leptospiral antigens.

Outer membrane b-barrel proteins (bb-OMPs) meet these requirements and

have been successfully used as vaccines for other diseases. We report the

evaluation of 22 constructs containing protein fragments from 33 leptospiral

bb-OMPs, previously identified by reverse and structural vaccinology and cell-

surface immunoprecipitation. Three-dimensional structures for each

leptospiral bb-OMP were predicted by I-TASSER. The surface-exposed

epitopes were predicted using NetMHCII 2.2 and BepiPred 2.0. Recombinant

constructs containing regions from one or more bb-OMPs were cloned and

expressed in Escherichia coli. IMAC-purified recombinant proteins were

adsorbed to an aluminium hydroxide adjuvant to produce the vaccine

formulations. Hamsters (4-6 weeks old) were vaccinated with 2 doses

containing 50 – 125 mg of recombinant protein, with a 14-day interval

between doses. Immunoprotection was evaluated in the hamster model

of leptospirosis against a homologous challenge (10 – 20× ED50) with

L. interrogans serogroup Icterohaemorrhagiae serovar Copenhageni strain

Fiocruz L1-130. Of the vaccine formulations, 20/22 were immunogenic and

induced significant humoral immune responses (IgG) prior to challenge. Four
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constructs induced significant protection (100%, P < 0.001) and sterilizing

immunity in two independent experiments, however, this was not

reproducible in subsequent evaluations (0 – 33.3% protection, P > 0.05). The

lack of reproducibility seen in these challenge experiments and in other reports

in the literature, together with the lack of immune correlates and commercially

available reagents to characterize the immune response, suggest that the

hamster may not be the ideal model for evaluation of leptospirosis vaccines

and highlight the need for evaluation of alternative models, such as the mouse.
KEYWORDS

Leptospira interrogans, outer membrane proteins, reverse and structural vaccinology,
cell-surface immunoprecipitation, animal model
Introduction

Leptospirosis is caused by pathogenic spirochetes of the

genus Leptospira and has a high morbidity in tropical and

subtropical countries (Costa et al., 2015; Picardeau, 2017;

Baquero and Machado, 2018). The infection is one of the most

widespread bacterial zoonosis in the world and is considered a

serious public health problem. Humans are accidental and

terminal hosts of the pathogen, exhibiting a wide variety of

symptoms, ranging from non-specific fever, chills, headache and

myalgia to severe leptospirosis, which can manifest as Weil’s

disease or leptospirosis-associated pulmonary haemorrhage

syndrome (McBride et al., 2005; Croda et al., 2010). Estimates

of annual global incidence are of approximately 1 million human

cases, but due to the neglected status of the disease this number

is likely underestimated (Costa et al., 2015). The disease affects

domestic and wild animals, causing economic losses in

subsistence and industrial farming (Adler and de la Pena

Moctezuma, 2010; Martins and Lilenbaum, 2017) .

Leptospirosis prevention is essential to reduce the rate of

disease and to interrupt the transmission cycle.

Vaccination of human and animal populations in endemic

regions is probably the most viable strategy to control the disease

(Adler, 2015b; Costa et al., 2015; Grassmann et al., 2017b;

Vernel-Pauillac and Werts, 2018). Commercially available

whole-cell inactivated vaccines (bacterins) are routinely used

in livestock and domestic animals throughout the world (Verma

et al., 2013). Although protective against lethal infection, these

vaccines elicit an immune response predominantly against

leptospiral LPS, a T-independent antigen that induces a short-

term immunity and requires annual booster immunizations. In

addition, protection elicited by bacterins are restricted to the

serovars included in the vaccine preparation. Some 64 different

species of Leptospira have been described to date, 17 of them are

potentially infectious and are classified into over 300 serovars

(Adler and de la Pena Moctezuma, 2010; Vincent et al., 2019).
02
Furthermore, bacterins are associated with adverse side-effects in

humans, and this has limited their use to high-risk populations

in only a few countries (Verma et al., 2013; Grassmann et al.,

2017b; Vernel-Pauillac and Werts, 2018; Felix et al., 2020).

The high genomic and phenotypic diversity of pathogenic

Leptospira spp. is a major drawback for vaccine development

(Pereira et al., 2018). The development of a cost-effective vaccine

with long-term protection against leptospirosis has been the goal

of several research groups around the world, yet it remains

elusive (Felix et al., 2020). A universal vaccine against

leptospirosis will likely be multivalent, protective against most

pathogenic Leptospira spp., induce long-term immunity, free of

adverse effects and effective for both human and animal use.

Most efforts have focused on developing a recombinant vaccine

as a substitute for the bacterins (Dellagostin et al., 2017;

Grassmann et al., 2017b; Silveira et al., 2017). Alternative

approaches based on stimulating the innate immune system

have shown interesting results (Potula et al., 2017; Vernel-

Pauillac and Werts, 2018; Santecchia et al . , 2019).

Furthermore, live attenuated mutants have been developed

that conferred cross-protective immunity to several pathogenic

Leptospira spp. and serovars (Srikram et al., 2011; Murray et al.,

2018; Wunder et al., 2021).

Reverse and structural vaccinology (RSV) has been

successfully used in the design of more effective vaccines for

several infectious diseases, reviewed in (Dormitzer et al., 2012;

Liljeroos et al., 2015; Rappuoli et al., 2016; Cable et al., 2020).

This approach allows a refined protein design for optimization

of antigen structure. The application of structural vaccinology

(SV) to leptospiral outer membrane proteins (OMPs) has proven

useful towards the identification and localization of

immunologically accessible epitopes which can bind to MHC-

II receptors (Hsieh et al., 2017; Lata et al., 2018). Previously, we

carried out a comprehensive bioinformatics analysis based on

RSV that identified b-barrel transmembrane proteins (bb-
OMPs) in L. interrogans (Grassmann et al., 2017a). bb-OMPs
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are of particular interest as they are integral components of the

outer membrane (OM) in diderm bacteria (Schulz, 2002; Wilson

and Bernstein, 2016), and usually play an essential role in the

survival and successful infection of the host, such as nutrient

acquisition and attachment (Adler, 2015a).

In addition, we used cell-surface immunoprecipitation

(CSIP) to experimentally identify leptospiral proteins localized

on the cell surface of host-adapted L. interrogans (Cunha et al.,

2017). This immunoproteomics technique was originally

developed to identify proteins in Neisseria meningitidis using

intact meningococcal cells with patient immune sera and

identifying precipitated proteins by mass spectrometry

(Mendum et al., 2009; Newcombe et al., 2014). This method

was successful in identifying protective antigens, including

several components of the 4CMenB vaccine (Serruto et al.,

2012). Host-adapted leptospires were subjected to CSIP with

sera from convalescent leptospirosis patients and the

immunoprecipitated proteins were identified by mass

spectrometry to detect potentially immunoprotective

seroreactive proteins.

In the current study, we report the application of RSV and

CSIP for the selection and design of recombinant 22 constructs

based on 33 newly described leptospiral OMPs. Structural

modelling of these proteins allowed us to predict surface-

exposed regions and to identi fy B-cel l and major

histocompatibility complex (MHC-II) binding epitopes.

Recombinant proteins (individual or combined in chimeras)

were evaluated as vaccine candidates in the hamster model of

acute leptospirosis.
Results

Identification of the 33 leptospiral
proteins used as vaccine candidates

Using an RSV approach, our group previously identified 165

putative leptospiral bb-OMPs, representing novel vaccine

candidates (Grassmann et al., 2017a). In addition, we adapted

the CSIP technique (Mendum et al., 2009; Newcombe et al.,

2014) to confirm these findings in vitro (Cunha et al., 2017).

Using CSIP we identified 157 immunogenic proteins expressed

in host-adapted leptospires and recognized by convalescent

human patient sera (unpublished data). In the present study,

we selected 33 of these proteins for evaluation as 22 novel

vaccine candidates against leptospirosis. Of these, six proteins

were identified by both RSV and CSIP techniques, and the

remaining 27 proteins were identified by RSV (Table 1). The

selection criteria focused on exposure on the leptospiral cell

surface, and was based on their predicted 3D structure and

function (Table 1). Based on the identities predicted by RSV we

selected several OM transporter families, including: eight TonB-

dependent receptors (TBDR): LIC10714, LIC10881*, LIC10896*,
Frontiers in Cellular and Infection Microbiology 03
LIC10964, LIC11268, LIC12374, LIC20151 and LIC20214; three

alginate exporters (AlgE): LIC13229, LIC13417*, LIC13477 (*,

see below); one orthologue for the COG4313 channel family:

LIC11086; and six putative porins: LIC10544, LIC11271,

LIC11366, LIC11506 (OmpG), LIC11975, LIC20019. Seven

proteins were also predicted to be orthologues of OM efflux

proteins (OEPs) and components of the type I secretion system:

LIC10496 (TolC), LIC11941, LIC12307, LIC12575, LIC12693,

LIC12990, LIC13135; and the leptospiral GspD orthologue

LIC11570, a secretin in the type II secretion system. Proteins

from other families with essential roles in OM biosynthesis such

as the leptospiral LptD orthologue (LIC11458); a protein that is

part of the subfamily of the FadL fatty acid transporter family

(LIC11211); and five proteins from the Omp85 family:

LIC10539, LIC11623 (BamA), LIC12252, LIC12254 and

LIC12258 were also included.

Multiple sequence alignments of LIC13417 and its

orthologues strongly suggested that it was likely to be a

truncated protein, similar to our previous observations for

LIC10881* and LIC10896* (Grassmann et al., 2017a). An

analysis of the LIC13417 locus in the L. interrogans Fiocruz

L1-130 genome, revealed the presence of a potentially erroneous

stop codon in the last nucleotide of LIC13417. When the point

mutation was altered to a serine codon (TAG ! TCG), we

reassembled LIC13417 and LIC13418 as a single CDS, named

hereafter as LIC13417*. A multiple sequence alignment of

LIC13417* and its orthologues showed an alignment with 80-

97% amino acid identity (AAI) over the full-length of the

modified protein (Figure S1 in Supplementary Material).
Conservation of the vaccine candidates
among the pathogenic Leptospira spp.

The level of conservation of the vaccine candidates among

nine pathogenic Leptospira spp. was evaluated by multiple

sequence alignment. The alignments were performed using the

full-length amino acid sequences of the proteins from the L.

interrogans Fiocruz L1-130 genome and their orthologues in

nine additional pathogenic species (Figure S2 in Supplementary

Material). Overall, the proteins showed high levels of

conservation; the AAIs ranged from 60.4 – 99.0% among the

pathogenic species. Of the selected proteins, 32/33 had

orthologues among the eight species that belong to node 1 in

the P1 subclade of pathogenic Leptospira spp. (Vincent et al.,

2019). While LIC10496 was the least conserved protein, it was

only found in L. interrogans, L. kirschneri and L. noguchii, these

species are generally recognised as the most virulent species of

the P1 subclade, and most often associated with severe

leptospirosis in humans. The bb-OMPs in these three species

were highly conserved, with AAIs > 90% in 31/33 of the vaccine

targets. LIC10496 (TolC) and LIC11506 (OmpG) were the least

conserved, while those with essential roles in metabolism, such
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as LIC11623 (BamA), LIC11570 (GspD) and LIC11458 (LptD),

demonstrated high AAI (88.6 – 99.0%) among the

genomes analysed.
Epitope prediction in the surface
exposed regions of the
vaccine candidates

As opsonophagocytosis likely plays an important role in the

clearance of leptospires during an infection, we predicted the

immunogenic potential of the selected bb-OMPs to induce T-
Frontiers in Cellular and Infection Microbiology 04
and B-cell responses. NetMHCII 2.2 server and BepiPred 2.0

were used to predict epitopes that could bind to MHC class II

molecules encoded by 51 HLA-DRB alleles and linear B-cell

epitopes, respectively. The 3D models of each bb-OMPs were

aligned with their corresponding analogues, as indicated by I-

TASSER (Table 1). All the bb-OMPs were predicted to contain

surface-exposed linear B-cell epitopes. T-cell epitopes to all 51 of

the HLA-DRB alleles were identified in surface-exposed regions

in all the bb-OMPs apart from LIC13229, which did not contain

epitopes for the DRB1_1502 allele. The list of the T- and B-cell

epitopes identified for each bb-OMP is provided (Table S1 in

Supplementary Material).
TABLE 1 Closest PDB structures and scores used to predict the 3D models of the b-barrel OMPs.

Gene ID Closest PDB structure, organism of origina Identification
method

Predicted
family

PDB TM-
score

RMSD IDEN CoV

LIC10496 Outer membrane protein TolC, E. coli RSV/CSIP OEP 1tqqA 0.87 0.94 0.14 0.88

LIC10539 Membrane transporter protein FhaC, Bordetella pertussis Tohama I RSV/CSIP Omp85 4qky 0.94 0.69 0.07 0.95

LIC10544 Outer membrane porin OprO, Pseudomonas aeruginosa RSV Porin 4rjwA 0.77 1.93 0.09 0.80

LIC10714 Ferrichrome-iron receptor FhuA, E. coli RSV TBDR 1fi1A 0.84 0.83 0.17 0.85

LIC10881* Ferredoxin receptor FusA, Pectobacterium atrosepticum RSV/CSIP TBDR 4zgvA 0.77 1.93 0.12 0.78

LIC10896* Ferripyoverdine receptor, Pseudomonas aeruginosa RSV TBDR 2w16A 0.72 1.97 0.12 0.74

LIC10964 Outer membrane transporter ZnuD, Neisseria meningitidis RSV TBDR 4rdrA 0.84 1.14 0.20 0.85

LIC11086 Outer membrane channel COG4313 protein, Pseudomonas putida F1 RSV/CSIP Channel 4rl8A 0.78 1.06 0.13 0.80

LIC11211 Outer membrane protein Tbux, Ralstonia pickettii RSV FadL 3bryB 0.88 2.20 0.09 0.96

LIC11268 Transferrin-binding protein A, Neisseria meningitidis serogroup B RSV TBDR 3v89A 0.98 1.24 0.09 1.00

LIC11271 Outer membrane protein W, E. coli RSV Porin 2f1tA 0.59 2.34 0.09 0.65

LIC11366 Outer membrane protease plasminogen activator Pla, Yersinia pestis RSV Porin 2x4mA 0.63 4.13 0.08 0.82

LIC11458 Lipopolysaccharide assembly protein LptD, Shigella flexneri RSV LptD 4q35A 0.73 1.21 0.15 0.74

LIC11506 Outer membrane protein OmpG, E. coli RSV Porin 2x9kA 0.66 3.29 0.11 0.78

LIC11570 Type II secretion system protein GspD, Vibrio cholerae RSV/CSIP GspD 5wq8A 0.68 2.29 0.27 0.71

LIC11623 b-barrel membrane protein BamA, Neisseria gonorrhoeae RSV BamA 4k3bA 0.79 0.91 0.20 0.79

LIC11941 Outer membrane channel CmeC, Campylobacter jejuni RSV OEP 4mt4A 0.87 1.97 0.12 0.92

LIC11975 Autotransporter adhesin AIDA-I, E. coli RSV Porin 4meeA 0.81 1.56 0.12 0.85

LIC12252 b-barrel membrane protein BamA, Haemophilus ducreyi RSV BamA 4k3cA 0.88 1.19 0.12 0.89

LIC12254 b-barrel membrane protein BamA, Haemophilus ducreyi RSV BamA 4k3cA 0.86 1.51 0.14 0.88

LIC12258 b-barrel membrane protein BamA, Haemophilus ducreyi RSV BamA 4k3cA 0.92 1.70 0.15 0.96

LIC12307 Outer membrane protein OprM, Pseudomonas aeruginosa RSV OEP 1wp1A 0.88 2.27 0.13 0.93

LIC12374 Outer membrane receptor HasR, Serratia marcescens RSV TBDR 3cslB 0.84 3.42 0.14 0.92

LIC12575 Outer membrane protein TolC, E. coli RSV OEP 1tqqA 0.85 0.91 0.14 0.86

LIC12693 Outer membrane protein TolC, E. coli RSV OEP 1tqqA 0.79 1.31 0.14 0.81

LIC12990 Outer membrane protein OprM, Pseudomonas aeruginosa RSV OEP 1wp1A 0.85 2.56 0.11 0.91

LIC13135 Outer membrane channel CmeC, Campylobacter jejuni RSV OEP 4mt4A 0.66 0.68 0.15 0.66

LIC13229 Outer membrane porin AlgE, Pseudomonas aeruginosa RSV AlgE 4afkA 0.71 1.29 0.14 0.72

LIC13417* Outer membrane porin AlgE, Pseudomonas aeruginosa RSV/CSIP AlgE 3rbhA 0.66 1.79 0.09 1.00

LIC13477 Outer membrane porin AlgE, Pseudomonas aeruginosa RSV AlgE 4afkA 0.83 1.72 0.14 0.87

LIC20019 Outer membrane protease plasminogen activator Pla, Yersinia pestis RSV Porin 2x4mA 0.78 2.10 0.13 0.83

LIC20151 Outer membrane vitamin B12 transporter BtuB, E. coli RSV TBDR 2gskA 0.80 1.09 0.21 0.81

LIC20214 TonB-dependent receptor, siderophore PirA, Acinetobacter
baumanni

RSV TBDR 5fr8A 0.78 1.44 0.13 0.80
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Construction of leptospiral bb-OMP
vaccine candidates

Using the data from the structure and function analysis

together with the epitope-mapping results, we constructed 22

recombinant proteins containing surface-exposed regions from

the 33 leptospiral bb-OMPs for evaluation as vaccine candidates.

Three different cloning strategies were used: 1) surface-exposed

regions, n = 10 (Figure 1A); 2) full-length proteins, n = 3

(Figure 1B); 3) chimeras containing combinations of surface-

exposed regions from 31 bb-OMPs, n = 9 (Figure 2). Details of

the 22 recombinant proteins and the 33 bb-OMPs used in their

construction are provided (Table S2 in Supplementary Material).

The recombinant prote ins were charac ter i sed by

immunoblotting with an anti-His antibody, see (Figure S3 in

Supplementary Material).
Evaluation of bb-OMP vaccine
candidates against lethal leptospirosis

In total, thirteen experiments were performed to determine the

efficacy of 22 vaccine candidates that were based on 33 bb-OMPs

identified by RSV and CSIP, (Figure 3 and Table 2). The vaccination

scheme used two doses that ranged from 50 – 125 mg total

recombinant protein, adsorbed to an aluminium hydroxide

adjuvant and administered intramuscularly. The endpoint for

50% (ED50) of infected hamsters was calculated as described

previously (Conrad et al., 2017) and was approximately 5

leptospires for the L. interrogans Fiocruz L1-130 challenge strain.

In two independent experiments, rLIC11570 (GspD), rLIC13229

(AlgE), rLIC13417* (AlgE) and rLIC20214 (TBDR) conferred

significant protection in 100% of vaccinated animals (P < 0.0001),

see (Figure 3A and Table 2). However, when we re-evaluated these

vaccine candidates in an additional three independent experiments,

they failed to induce a significant protective immune response;

protection ranged from 0 – 30% (Figures 2B–D and Table 2).

Endpoint criteria were observed in the control and vaccinated

groups from days 9 – 13 post-challenge (PC), these animals were

immediately euthanized, and all survivors were euthanized on day

28. Among the OEPs, only rLIC13135 significantly increased

survival (Log-rank, P < 0.05) among vaccinated hamsters,

(Figure 3E; Table 2). For LIC11941 and LIC12990, while the level

of protection was the same as LIC13135 (44.4%), these results were

not significant in terms of mortality or survival. An additional

experiment failed to improve on these initial findings (Figure 3F;

Table 2). Hamsters exhibited endpoint criteria on days 10 – 15 PC.

LIC10539 (Omp85), LIC10544 (porin) and LIC12258 (Omp85)

failed to induce significant protection in vaccinated animals, which

ranged from 0 – 22.2% (Figures 3G–H; Table 2). Most endpoint

criteria were observed on days 9 – 14 PC. For the remaining bb-
OMPs, LIC10496 (TolC), LIC10881* (TBDR) and LIC11086

(AlgE), protection was not significant; ranging from 0 – 20%, see
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(Figure 3I; Table 2). Hamsters exhibited endpoint criteria on days

10 – 14 PC. Vaccine preparations based on the chimera constructs

(C1 – C9) contained 25 mg for each protein in the chimera; each

dose ranged from 50 – 125 mg total recombinant protein. In three

independent experiments, most of the chimeras failed to induce

significant protective responses, which ranged from 0 – 22.2%, see

(Figures 3J–L; Table 2). However, vaccination with chimeras C1

(TBDRs: LIC10896* + LIC10964 + LIC12374) and C3 (LIC11458

(LptD) + LIC11506 (OmpG) + LIC11086 (OM channel) +

LIC20019 (porin)) resulted in increased survival compared to the

control group (Log-rank, P < 0.05), see (Figure 3I; Table 2).

Hamsters exhibiting endpoint criteria were observed on days 7 –

20 PC.
Humoral immune response in
vaccinated hamsters

The specific humoral immune response was evaluated by

ELISA using serum samples collected on day 0 (pre-immune)

and day 28 post-immunization and an anti-hamster IgG

secondary antibody (Figure 4). Of the recombinant constructs,

20/22 induced significant (P < 0.05) levels of IgG antibodies in

vaccinated hamsters. Only the chimeras C2 (LIC10714 +

LIC10881* + LIC20151) and C4 (LIC11623 + LIC12254 +

LIC11268) failed to induce significant levels of circulating anti-

bb-OMPs antibodies compared to the pre-immune sera

(Figure 4). An analysis of IgG subclasses was performed on

serum samples collected from animals that survived challenge

(Figure S5). Compared to the PBS/Alhydrogel control group,

immunization with rLIC11570, stimulated significant levels of

IgG1 and IgG2 (P < 0.05). rLIC13229, and rLIC13417* induced a

predominantly IgG2 response (P < 0.05), while rLIC20214

induced significant production of IgG2 and IgG3 (P < 0.05)

compared to the control group. No detectable levels of

antibodies were found in the pre-immune samples (data

not shown).
Discussion

The development of a universal vaccine against leptospirosis

is a challenge due to the wide antigenic diversity of pathogenic

Leptospira spp. (Picardeau, 2017; Vincent et al., 2019). RSV are

in silico, high-throughput, approaches that identify all proteins,

in a given genome, that are localised to the OM and that are

surface-exposed (Rappuoli et al., 2016). RSV has been applied to

a wide range of microorganisms and has achieved critical success

in the discovery of novel vaccine candidates, reviewed in

(Dormitzer et al., 2012). We applied this approach to the

L. interrogans Fiocruz L1-130 genome, initially identifying 165

bb-OMPs that were refined to 18 surface-exposed, highly

conserved bb-OMPs among the pathogenic Leptospira spp.
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A

FIGURE 1

Predicted 3D models of the individual leptospiral b-barrel OMPs and mapping of the surface-exposed regions. The 3D models were determined
using I-TASSER and the images were generated using UCSF Chimera software. (A) surface-exposed regions of 10 bb-OMPs (constructs do not
contain transmembrane or periplasmic regions); (B) full-length protein constructs. The orientation of the bb-OMPs in the OM was derived from
an interpretation of the best matching PDB structure. The upper, surface-exposed regions are shown in colour on the 3D models and these
regions were used in the design of the recombinant proteins. The horizontal bars under the 3D models are a graphical representation of the
composition of the chimeras.
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FIGURE 2

Predicted 3D models of the chimeric leptospiral b-barrel OMPs and mapping of the surface-exposed regions. Chimeras containing
combinations of surface-exposed regions are shown. The 3D models were determined using I-TASSER and the images were generated using
UCSF Chimera software. The orientation of the bb-OMPs in the OM was derived from an interpretation of the best matching PDB structure. The
upper, surface-exposed regions are shown in colour on the 3D models and these regions were used in the design of the recombinant proteins.
The horizontal bars under the 3D models are a graphical representation of the composition of the chimeras.
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(Grassmann et al., 2017a). For this study we focused on the bb-
OMPs, often regarded as low-hanging-fruit, as they are among

the easiest transmembrane proteins to predict in Gram-negative

bacteria due to their 3D structure and that they are only present

in the OM (Schulz, 2002). We updated the original bb-OMP list

and selected 33 novel surface-exposed proteins for evaluation in

the hamster model of leptospirosis. To further validate our in

silico findings, we cross-checked them with the latest data from

our CSIP experiment and found experimental evidence that six

of the proteins were recognised by patient sera (Table 1).

Immunoinformatics analysis and 3D structural modelling of

the bb-OMPs allowed us to design 22 recombinant constructs

such that each bb-OMP was evaluated in one or more challenge

experiments. The recombinant constructs were based on either:

full-length proteins; surface-exposed regions; or chimeras

containing surface-related immunogenic epitopes (SRIEs) from
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2 – 5 bb-OMPs. When considering a universal vaccine, one of

the main criteria is that vaccine candidates should be well

conserved among the pathogenic species of the target

microorganism. Of the vaccine candidates selected in this

study, 31/33 contained orthologues in the pathogenic

Leptospira spp. most often associated with human disease

(Vincent et al., 2019), and with AAIs > 60%, (Figure S2 in

Supplementary Material). Although LIC10496 was only present

in L. interrogans, L. kirschneri and L. noguchii, we included this

vaccine candidate as these three species are most likely to cause

severe human leptospirosis.

In two experiments, we observed 100% immunoprotection

and sterilizing immunity in hamsters vaccinated with either

rLIC13229, rLIC13417, rLIC11570 or rLIC20214, see (Figure 3A

and Table 2). In addition, rLIC13135, C1 (LIC10896* +

LIC10964 + LIC12374) and C3 (LIC11458 + LIC11506 +
B C D

E F G H

I J K L

A

FIGURE 3

Protection against lethal challenge in the hamster model of acute leptospirosis. Representative experiments showing survival of hamsters
vaccinated (days -28 and -14) with two doses of the rbb-OMPs vaccine candidates or injected with a PBS control, followed by challenge
(day 0) with a lethal dose of L. interrogans serovar Copenhageni strain Fiocruz L1-130, see (Table 2). Groups of hamsters were vaccinated with:
(A) rLIC11570 (GspD), rLIC13229 (AlgE), rLIC13417* (AlgE), rLIC20214 (TBDR) or the PBS control. All the rbb-OMPs induced 100% protection (P <
0.0001) and sterilizing immunity; (B–D) repeat experiments failed to reproduce the protective immune response seen previously; (E) vaccinated
with the OEPs rLIC11941, rLIC12290, rLIC13135 or the PBS control. While the level of protection was the same (44.4%) for all proteins, only
rLIC13135 significantly increased survival (P < 0.05) among vaccinated hamsters compared to the PBS control group; (F) a repeat experiment
using the OEPs failed to reproduce these results; (G, H) vaccinated with rLIC10539 (Omp85), rLIC10544 (porin), rLIC12258 (Omp85) or the PBS
control. None of the vaccine preparations protected against the challenge dose; (I), vaccinated with rLIC10496 (TolC), rLIC10881* (TBDR),
rLIC11086 (AlgE) or the PBS control. None of the vaccine preparations protected against the challenge dose; (J), hamsters were vaccinated with
chimeras C1-C5 or the PBS control. While none of the chimeras protected against the lethal challenge, chimeras C1 (TBDRs: LIC10896* +
LIC10964 + LIC12374) and C3 (LIC11458 (LptD) + LIC11506 (OmpG) + LIC11086 (OM channel) + LIC20019 (porin)) significantly increased
survival compared to the PBS control group; (K, L), hamsters vaccinated with chimeras C6-C9 or the PBS control group. None of the chimeras
induced a significant protective immune response.
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LIC11086 + LIC20019) significantly increased survival in

vaccinated animals compared to the control groups. Moreover,

four rbb-OMPs elicited significant levels of IgG antibodies,

characterized by several IgG subclasses, indicative of both Th1

and Th2 profiles (Mosmann & Coffman, 1989). These

observations are in broad agreement with previous studies on

recombinant subunit vaccines against leptospirosis (Lin et al.,

2016; Conrad et al., 2017; Fernandes et al., 2017; Oliveira et al.,

2018). However, the protective results were not reproducible in

subsequent experiments, see (Table 2). There is little

information as to the function of these proteins in Leptospira

spp. and most are annotated as conserved hypothetical proteins.

LIC13229 was reported to be excreted in the urine of infected

hamsters (Segawa et al., 2014) and its gene expression was

downregulated by temperature shift from 37°C to 28°C (Qin
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et al., 2006), suggesting that LIC13229 is involved in infection.

LIC13417* gene expression was significantly downregulated in

DMCs, with a possible role in the early stage of infection

(Caimano et al., 2014). In agreement with our RSV analysis,

several reports identified LIC20214 as an OMP and potential

vaccine candidate by genome comparative and reverse

vaccinology studies (Louvel et al., 2006; Viratyosin et al., 2008;

Zeng et al., 2017). Over the course of 13 independent

experiments, we evaluated different lots of recombinant

proteins, alhydrogel adjuvant and batches of hamsters, without

the success seen in the initial experiments. These findings and

our previous experience together with those reported by other

research groups has led us to question the suitability of the

hamster model for the evaluation of vaccine candidates against

leptospirosis, we discuss this further below.
TABLE 2 Evaluation of the vaccine candidates in the hamster model of acute leptospirosis.

Vaccine Dose (mg) Challenge(ED50) Protection (%)a

LIC11570 50/50 10× 100 (10/10)⁑ 100 (10/10)⁑ 0 (0/10) 10.0 (1/10)

LIC13229 50/50 10× 100 (10/10)⁑ 100 (10/10)⁑ 30.0 (3/10)

LIC13417* 50/50 10× 100 (10/10)⁑ 100 (10/10)⁑ 0 (0/9)

LIC20214 50/50 10× 100 (10/10)⁑ 100 (10/10)⁑ 11.1 (1/9)

Control 10× 0 (0/10) 0 (0/10) 0 (0/9) 10.0 (1/10) 0 (0/10)

LIC11941 50/50 10× 44.4 (4/9) 22.2 (2/9)

LIC12990 50/50 10× 44.4 (4/9) 11.1 (1/9)

LIC13135 50/50 10× 44.4 (4/9)† 11.1 (1/9)

Control 10× 11.1 (1/9) 0 (0/9)

LIC10539 50/50 10× 0 (0/9) 0 (0/9)

LIC10544 50/50 10× 11.1 (1/9) 11.1 (1/9)

LIC12258 50/50 10× 11.1 (1/9) 22.2 (2/9)

Control 10× 0 (0/9) 0 (0/9)

LIC10496 50/50 10× 0 (0/10)

LIC10881* 50/50 10× 10.0 (1/10)

LIC11086 50/50 10× 20.0 (2/10)

Control 10× 20.0 (2/10)

C1b 50/50 20× 44.4 (4/9)†

C2 50/50 20× 22.2 (2/9)

C3 50/50 20× 33.3 (3/9)†

C4 50/50 20× 0 (0/9)

C5 50/50 20× 11.1 (1/9)

Control 20× 0 (0/9)

C6 50/50 10× 0 (0/10)

Control 10× 10.0 (1/10)

C7 75/75 10× 20.0 (2/10)

C8 100/100 10× 10.0 (1/10)

C9 125/125 10× 20.0 (2/10)

Control 10× 0 (0/10)
fron
⁑ Significant protection induced (P < 0.001), otherwise not significant (Fisher exact test), and sterilizing immunity (100%) as determined by culture isolation and qPCR.
† Significantly increased survival (P < 0.05), Log-rank test.
aProtection (%), the number of survivors/total are shown in parentheses, in 13 independent experiments with matched controls.
bChimera constructs, C1: LIC10896*+LIC10964+LIC12374; C2: LIC10714+LIC10881*+LIC20151; C3: LIC11458+LIC11506+LIC11086+LIC20019; C4: LIC11623+LIC12254+LIC11268;
C5: LIC10496+LIC12575+LIC11211+LIC13417*; C6: LIC10496+LIC10881*; C7: LIC10539+LIC10544+LIC12258; C8: LIC11271+LIC11366+LIC11975+LIC12252; C9: LIC11941
+LIC12290+LIC13135+LIC12693+LIC12307.
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OMPs are considered important cellular structures of the

OM of Gram-negative bacteria and therefore represent good

vaccine candidates (Silhavy et al., 2010; Sperandeo et al., 2019;

Walker and Black, 2021). They are frequent targets for antibody-

based therapies and vaccines for several reasons: OMPs contain

surface-exposed epitopes, making them potentially accessible to

antibodies or T-cell receptors; they are involved in essential

cellular functions such as adhesion, biofilm formation,

regulation of quorum sensing, and the export of toxic

substances; these proteins tend to be conserved and highly

expressed, thereby increasing their bioavailability (Maiti et al.,

2020). RV uses a genomics-based approach to identify all

potentially surface-exposed proteins (Rappuoli et al., 2016). SV

takes RV a step further and identifies SRIEs based on the

structural characteristics (3D models) of the OMPs (Cozzi

et al., 2013). The ultimate goal is to identify and select protein

targets that can elicit robust immune and memory responses,

leading to specific and lasting protection (De Temmerman

et al., 2011).

Antigen presentation other than linear epitopes has been

largely overlooked during vaccine development, with a few

exceptions (Faisal et al., 2009a; Faisal et al., 2009b). The use of

subunit vaccine formulations could play a role in the failures

observed, despi te the promis ing resul ts f rom the

immunoinformatics analyses. In the current study, we

evaluated three TBDRs in a recombinant chimera construct

(C1). While C1 failed to induce significant protection, it did

significantly increase survival (P < 0.05, Log-rank) compared to

the control group (Figure 3J, Table 2). This can be an indication
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that the TBDRs were promising vaccine candidates and if they

were presented to the immune system using an alternative

approach, it could result in an improvement. As seen when a

Mycobacterium bovis BCG vector vaccine expressing a chimera

of these TBDRs was used to vaccinate hamsters, 100% protection

and sterilizing immunity was observed (Bettin et al., 2022).

All 33 of the bb-OMPs in the current study contained

putative antigenic B and T-cell epitopes on the surface-

exposed regions used for construction of the chimeras. These

SRIEs were predicted to induce humoral as well as cellular

immunity. Despite the observation that 20/22 of the

recombinant constructs were immunogenic, the use of linear

epitopes may have limited their impact. The practical challenges

associated with the insoluble expression of recombinant bb-
OMPs resulted in their exclusion from the Neisseria meningitidis

serogroup B vaccine (Pizza et al., 2000). However, an OM vesicle

vaccine preserved the conformational epitopes of the native

proteins and improved protection in clinical trials (Awanye

et al., 2019). The use of OM vesicles in vaccines for the

delivery of bb-OMPs is an interesting approach for the

maintenance of conformational epitopes (van de Waterbeemd

et al., 2010). The importance of conformational epitopes was

demonstrated using a Chlamydial OM complex (COMC) from

Chlamydia muridarum that contained several OMPs (Yu et al.,

2020). The COMC vaccine was highly immunogenic and

protected against infection. However, when the COMC

vaccine was denatured protection was significantly reduced,

suggesting conformational epitopes were required for

protection. Furthermore, the first report of protection against
FIGURE 4

Specific humoral immune response (IgG) in vaccinated hamsters. ELISAs were carried out to determine the antibody levels in hamsters
vaccinated with the recombinant proteins or the PBS control (Table 2). Pre-immune and pre-challenge serum samples were characterized using
an anti-hamster IgG secondary antibody. The serum samples were diluted at 1:100 except for rLIC10881 and C6 (1:50), rLIC11570, rLIC13229,
rLIC13417*, rLIC20214 (1:200) and LIC10496 and LIC11086 (1:400). The results represent the mean optical density (OD492) ± standard deviation
(bars) calculated from individual serum samples assayed in triplicate. Significance differences (P < 0.05) were determined by one-way ANOVA
(Tukey multiple comparison). *, indicates a significant difference between pre-immune sera and day 28 post immunization.
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leptospirosis reported synergy between OmpL1 and LipL41

when expressed as E. coli membrane-associated proteins

(Haake et al., 1999).

Another potential problem is the accessibility of antibodies

to bb-OMPs in Gram-negative bacteria, with several reports of a

shielding effect by lipopolysaccharides (LPS), resulting in the

lack of a protective immune response (van der Ley et al., 1986;

Bentley and Klebba, 1988; Murphy et al., 1990; Michaelsen et al.,

2001; Patel et al., 2016; Dominguez-Medina et al., 2020). This

shielding effect was proposed as an evolutionary advantage for

Gram-negative pathogens. Patel and colleagues modelled the

ability of LPS to interact with the E. coli OmpF polypeptide,

effectively camouflaging its epitopes from host immune

recognition during infection (Patel et al., 2016). Antibody

accessibility to OM proteins in Leptospira spp. is another issue

that should be considered, especially given its unusual LPS

composition (Vinh et al., 1986; Que-Gewirth et al., 2004).

Antibodies have several biological effects against

extracellular pathogens, such as neutralization, phagocytosis,

antibody-dependent cellular cytotoxicity and complement-

mediated lysis (Heesterbeek et al., 2018; Siegrist, 2018). In the

current study, the induction of significant levels of total IgG were

observed for 20/22 of the recombinant constructs evaluated

(Figure 4). However, the immunoglobulin levels did not

correlate with survival, as previously observed with other

vaccine candidates (Coutinho et al., 2011; Monaris et al., 2015;

Conrad et al., 2017; Raja et al., 2018). In contrast to the bacterin

vaccines, the available data for recombinant vaccines suggests

that a humoral response is not sufficient to clear the bacteria

from the host. These findings suggest that a more complex

immune response is required to control the infection, perhaps

one involving cellular immunity. Furthermore, positive

correlations were observed between TNF-a, IL-10, IL-4, IL-
12p40 and IFN-g mRNA levels and heterologous protection in

animals vaccinated with RecA and FliD using a prime-boost

protocol; a RecA/FliD recombinant vaccine only induced partial

protection (Raja et al., 2018). Again, there was no observable

association between antibody levels and protection. While it is

only possible infer cytokine levels in the hamster model by

quantitative real-time RT-PCR, the potential lack of correlation

between mRNA levels and protein abundance means that data

interpretation requires caution (Koussounadis et al., 2015; Liu

et al., 2016).

Recombinant proteins produced in E. coli are often

contaminated with LPS, this endotoxin is a known stimulator

of the immune system and is the main cause of septic shock

during a bacterial infection. The presence of endotoxins in

vaccine preparations is strictly controlled during clinical trials

as even trace amounts can have a major effect (Petsch and

Anspach, 2000; Wakelin et al., 2006). Given the ability of

endotoxins to stimulate the immune system, their presence in

recombinant vaccines requires further study. Of note, the C3H/

HeJ mouse model is resistant to LPS shock, further supporting
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its use as an alternative model for the evaluation of vaccine

candidates (Gomes-Solecki et al., 2017; Shetty et al., 2021;

Kundu et al., 2022).

The absence of correlation between antibody levels and

protection induced by recombinant vaccines, as well as a

potential role for cellular immunity in a protective immune

response, represent key challenges for the discovery of vaccine

candidates. The lack of immune correlates is a major limitation

to screening the hundreds of novel targets identified by RSV and

CSIP (Grassmann et al., 2017b; Felix et al., 2020; Vernel-Pauillac

et al., 2021). It is only possible to screen significantly reduced

numbers of vaccine candidates using animal models, with the

possibility that promising targets may be missed. The discovery

of an immune correlate would substantially reduce the use of

animals and allow the screening of hundreds of targets.

However, despite the evaluation of opsonophagocytosis assays

developed in other spirochaetes such as Treponema and Borrelia

spp. (Cruz et al., 2008; Hawley et al., 2017), this remains elusive

for Leptospira spp.

Syrian hamsters (Mesocricetus auratus) have long been used

as a model to isolate Leptospira spp., recover virulence in

laboratory-attenuated strains, investigate aspects of

pathogenesis, screen for the virulence of mutant strains and to

evaluate vaccine candidates in research laboratories (Haake,

2006; Zuerner, 2015). Additionally, hamsters are used to

evaluate the efficacy of commercial vaccines against

leptospirosis (Srinivas et al., 2013). They are the preferred

model as hamsters are susceptible to the disease, recapitulate

the symptoms of severe human leptospirosis and are easily bred

in animal units, while mice and rats are naturally resistant to

leptospirosis, reviewed in (Gomes-Solecki et al., 2017).

Nevertheless, the absence of immune correlates and the lack of

commercially available reagents to study the immune response

in hamsters has hampered further advances in the field (Adler,

2015b; Felix et al., 2020). Hamsters are notoriously susceptible to

leptospirosis and can succumb to infection with as little as one

leptospire (Haake, 2006). The hamster model is therefore of

limited use as a model of sublethal or chronic infection.

In contrast, most natural hosts of leptospires develop

chronic infection with kidney colonization, urinary shedding

and little or no clinical signs of disease (Athanazio et al., 2008;

Richer et al., 2015; Zuerner, 2015; Gomes-Solecki et al., 2017).

The mouse model has been used for the evaluation of vaccine

candidates; it was used in the first evaluation of a LigA vaccine

(Koizumi and Watanabe, 2004). Importantly, there is an

abundance of commercially available reagents for the

characterisation of the immune response. In addition, there

are mouse mutants e.g., the C3H/HeJ TLR4 mutant, SCID and

Rag1 KO mice, which are susceptible to leptospiral infection

(Bandeira et al., 2011; Shetty et al., 2021; Grassmann et al., 2021;

Kundu et al., 2022). The use of a mouse model would allow the

study of both lethal and sublethal forms of leptospirosis,

potentially allowing the discovery of immune correlates that
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can be used to screen vaccine candidates (Pereira et al., 1998;

Santos et al., 2010; Gomes-Solecki et al., 2017; Felix et al., 2020).

The limitations of the current study include the following:

the influence of endotoxins on the immune response induced by

the recombinant vaccine preparations remains unknown and

requires further study; due to a lack of commercially available

reagents, the cellular response cannot be evaluated in the

hamster model; and the lack of immune correlates for

leptospirosis is a major limitation for the screening of vaccine

candidates in vitro. The use of the C3H/HeJ mouse model could

resolve the first two limitations; it is susceptible to leptospirosis,

does not recognise E. coli LPS, and there are a wide range of

commercially available reagents available to study the humoral

and cellular immune response. Furthermore, these reagents

could assist in the development of an immune correlate

for leptospirosis.
Conclusion

We report the use of RSV and CSIP for the identification of

vaccine candidates in the L. interrogans Fiocruz L1-130 genome

and the evaluation of 22 vaccine candidates (based on 33 bb-
OMPs) against leptospirosis, four of which induced significant

protection in two independent experiments. Furthermore, these

recombinant proteins stimulated significant humoral immune

responses and sterilizing immunity in immunized hamsters. In

addition, two chimera constructs significantly increased survival

in vaccinated animals, suggesting they have potential as vaccine

candidates. However, when we tested the reproducibility of these

vaccine candidates in additional experiments, they failed to

induce protective immune responses. These results, together

with other reports in the literature have led us to question the

suitability of the hamster model of leptospirosis for the

evaluation of vaccine candidates. We further propose that

alternatives such as the mouse acute and chronic models

should be re-evaluated.
Material and methods

Bacterial strains and cultivation

E. coli strains were grown in liquid Luria-Bertani (LB)

medium (180 rpm) or on solid LB medium at 37°C.

Ampicillin (100 µg/ml) and chloramphenicol (34 µg/ml) were

used for selection when necessary. L. interrogans serogroup

Icterohaemorrhagiae serovar Copenhageni strain Fiocruz L1-

130 was maintained at 28°C in liquid Ellinghausen-McCullough-

Johnson-Harris (EMJH) (Difco, BD, Brazil) supplemented with

Leptospira enrichment EMJH commercial supplement (Difco,

BD, Brazil).
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Functional annotation and sequence
conservation among orthologs

The list of 165 putative bb-OMPs previously identified by

our research group RSV was updated as described (Grassmann

et al., 2017a). Functional annotation was performed using

UniProt and InterProScan (Zdobnov and Apweiler, 2001).

Orthologues were identified in genome sequences from 20

additional Leptospira spp., using the reciprocal best hit (RBH)

method based on protein BLAST (BLASTp) searches (Altschul

et al., 1997) as previously described (Grassmann et al., 2017a).

Protein sequences with >70% similarity and >40% coverage were

considered orthologous. A multiple sequence alignment was

performed with the orthologues from the available pathogenic

Leptospira spp. using the Clustal Omega tool (Sievers et al.,

2011). When this analysis was carried out there were 10

pathogenic Leptospira spp. genomes available, see (Figure S2

in Supplementary Material), corresponding to node 1 (9 species)

in the P1 subclade of pathogenic Leptospira spp. based on the

most recent genome diversity study and L. alsontii (Vincent

et al., 2019).
Structural modelling and functional
annotation

Given the likely importance of phagocytosis and clearance of

leptospires during the infection, we confirmed the presence of

SRIEs in the bb-OMPs. This was dependent on the ability to

predict the orientation of the bb-OMPs in the OM, and this was

achieved by analysing the closest PDB models with the

orientation of proteins in membranes database. These epitopes

are therefore likely to be exposed on the leptospiral surface and

be capable of binding to MHC class II receptors, thereby

stimulating the host immune response. The closest structural

analogues in PDB of each 3D model generated by I-TASSER

were used as references to determine the orientation of the

leptospiral bb-OMPs in the OM, as well the probable surface

exposed regions. The presence of MHCII epitopes (HLA-DRB

alleles) and linear B cell epitopes in the fragments exposed on the

OM was predicted using NetMHCII software and BepiPred-2.0,

respectively (Lundegaard et al., 2008).
bb-OMP structural membrane allocation
and epitope predictions

To identify proteins containing b-barrel transmembrane

domains, conserved sequences among pathogenic species were

subjected to 3D modelling by protein threading using I-TASSER

server (Zhang, 2008). I-TASSER results from the top-ranking

models with barrel structures were used to identify the PDB
frontiersin.org

https://doi.org/10.3389/fcimb.2022.940966
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Maia et al. 10.3389/fcimb.2022.940966
entries with the closest structures to the target protein models.

For protein 3D models with secondary or tertiary I-TASSER

rankings, a 3D structure-based functional annotation was

performed using COFACTOR (Roy et al., 2012), as previously

described (Grassmann et al., 2017a). The 3D structures were

visualized using UCSF Chimera software V. 1.11.2 (Pettersen

et al., 2004).
Identification of vaccine candidates by
cell-surface immunoprecipitation (CSIP)

This technique was used to experimentally identify

leptospiral proteins localized on the cell surface of host-

adapted L. interrogans, as described previously (Cunha et al.,

2017). Briefly, we produced host-adapted leptospires (L.

interrogans Fiocruz L1-130) by cultivating them within dialysis

membrane chambers that were surgically implanted in the

peritoneal cavity of Wistar rats and cultivated for 9 – 12 days

(Caimano et al., 2014; Grassmann et al., 2015). Intact, host-

adapted leptospires were recovered and surface-exposed

proteins were immunoprecipitated using pooled human sera

from convalescent leptospirosis patients. Serum samples were

kindly donated by the Public Health Central Laboratories

(LACEN) in Rio de Janeiro (RJ) and Porto Alegre (RS) in

Brazil. Leptospirosis was confirmed by the microscopic

agglutination test (MAT) and ELISA (WHO and ILS, 2003).

Following recovery, the immunoprecipitated proteins were

identified using mass spectrometry (Newcombe et al., 2014).
Design and cloning of the b-barrel OMPs

The predicted 3D models of the bb-OMPs were used to design

the recombinant proteins in this study. We used three strategies to

clone the vaccine candidates: 1) Cell-surface exposed regions of 10

bb-OMPs (without transmembrane or periplasmic regions) for the

following proteins: LIC10539, LIC10544, LIC11570, LIC11941,

LIC12258, LIC12990, LIC13135, LIC13229, LIC13417* and

LIC20214; 2) Three full-length proteins: LIC10496, LIC10881*

and LIC11086; and 3) Cell-surface exposed regions from 29

proteins in nine multi-chimeric constructions as follows: chimera

1 (C1): LIC10896* + LIC10964 + LIC12374; chimera 2 (C2):

LIC10714 + LIC10881* + LIC20151; chimera 3 (C3): LIC11458 +

LIC11506 + LIC11086 + LIC20019; chimera 4 (C4): LIC11623 +

LIC12254 + LIC11268; chimera 5 (C5): LIC10496 + LIC12575 +

LIC11211 + LIC13417*; chimera 6 (C6): LIC10496 + LIC10881*;

chimera 7 (C7): LIC10539 + LIC10544 + LIC12258; chimera 8 (C8):

LIC11271 + LIC11366 + LIC11975 + LIC12252; chimera 9 (C9):

LIC11941 + LIC12290 + LIC13135 + LIC12693 + LIC12307. The

chimera constructs were designed to include a range of protein

functions in each construct. For design strategies 1 and 3, the

surface-related regions were synthesised in series without linkers,
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see (Table S2 in Supplementary Material). The regions from each

protein were assembled using Vector NTI v.11 and commercially

produced, including codon optimization for E. coli expression, and

cloned into the expression vector pAE (Ramos et al., 2004), using

BamHI, KpnI or HindIII restriction sites.
Recombinant protein expression
and purification

Engineered recombinant proteins were expressed in E. coli

BL21 (DE3) Star or pLysS cells as described previously (Bettin

et al., 2022). Briefly, the product of each E. coli heat shock

transformation was cultivated in LB medium containing 100 mg/
ml of ampicillin and chloramphenicol (34 µg/ml for E. coli pLysS),

at 37°C. When cultures reached mid-log phase (OD600 0.6 – 0.8),

protein expression was induced with the addition of IPTG for 3-4 h.

Pellets were suspended in lysis buffer (0.2 MNaH2PO4, 0.5 M NaCl

and 20 mM imidazole, pH 8.0), sonicated by 6× 30s cycles on ice

and centrifuged (11.000 x g, 40 min at 4°C). After lysis, soluble

recombinant proteins were purified directly from the supernatant.

For the recovery of insoluble proteins (contained in inclusion

bodies) the pellets resulting from the post-lysis centrifugation

were solubilized in a denaturing buffer (lysis buffer, 8 M urea).

The recombinant proteins were purified by immobilized metal ion

affinity chromatography (IMAC) using HisTrap FF columns (GE

Healthcare, Brazil) using an AKTA Start chromatography system

(GE Healthcare, Brazil), as described previously (Conrad et al.,

2017). The fractions containing the soluble proteins were

pooled and dialyzed against PBS pH 7.5, or 50 mM Tris pH 8.5

buffer at 4°C for up to 24 h. The fractions containing insoluble

proteins were dialyzed against PBS pH 7.5 or 50 mM Tris pH 8.5

containing 0.05% Triton X-100 at 4°C. Protein concentrations were

determined using a BCA protein assay kit (Thermo Fisher

Scientific, Brazil) and the proteins were stored at –20°C.
Determining the challenge dose for the
hamster model

Male and female Syrian hamsters (Mesocricetus auratus)

were used as the animal model for acute leptospirosis. The

challenge dose for the pathogenic species L. interrogans

serogroup Icterohaemorrhagiae serovar Copenhageni strain

Fiocruz L1-130 was determined using 8-week-old hamsters, as

described previously (Silva et al., 2007). Briefly, groups of three

hamsters were infected by intraperitoneal injection with 100–103

leptospires in 1 ml EMJH medium. Leptospires were quantified

using a Petroff-Hauser counting chamber and darkfield

microscopy and only motile leptospires were counted.

Hamsters were monitored daily for clinical signs of

leptospirosis over a period of 28 days. Endpoint criteria

included: 10% weight loss (see Figure S4), nasal bleeding,
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prostration and failure to respond to stimulation (Coutinho

et al., 2011). Animals that fulfilled one or more of the endpoint

criteria were immediately euthanized by CO2 narcosis. The

endpoint dose that caused endpoint criteria in 50% of infected

animals (ED50) was calculated as previously described (Reed and

Muench, 1938).
Evaluation of immunoprotection in
hamster model of lethal leptospirosis

The vaccine preparations for the cell-surface exposed regions

and the full-length proteins contained 50 µg recombinant

protein, while the chimeric constructs contained 25 µg of each

protein in the construct (Table 2); this was based on previously

published data, see e.g., (Silva et al., 2007; Conrad et al., 2017).

For vaccine formulations, recombinant proteins were prepared

to a 15% (v/v) final concentration of aluminium hydroxide

adjuvant (2% Alhydrogel, In vivoGen, USA) and gently mixed

for 16 h at 4°C. For immunizations, male and female Golden

Syrian hamsters aged 4-6 weeks, were randomly allocated into

groups of 9-10 animals each. Animals were immunized by

intramuscular injection with two doses at 14-day intervals. To

evaluate vaccine-induced protection, hamsters were challenged

intraperitoneally 28 days after the first immunization with 10 –

20× ED50 of L. interrogans Fiocruz L1-130. The animals were

monitored 3× daily for up to 28 days PC. Animals that

developed endpoint criteria or that survived to day 28 PC were

euthanized by CO2 narcosis. Pre-immune blood samples were

collected on day 0, prior to vaccination, and day 28, prior to

challenge, and stored at –20°C. Thirteen independent

experiments were performed to evaluate the 22 recombinant

protein constructs.
Leptospiral renal burden

Kidney samples were collected, macerated and inoculated

into EMJH medium as previously described (WHO and ILS,

2003). Cultures were periodically examined by dark-field

microscopy for up to twelve weeks before being considered

negative. The leptospiral renal burden was evaluated by

quantitative real-time PCR (qPCR) as previously described

(Conrad et al., 2017), with the following differences. Genomic

DNA was extracted from the kidneys of infected animals using

the SV Genomic DNA Purification kit (Promega, Brazil). DNA

from L. interrogans Fiocruz L1-130 was extracted using the

Illustra Bacterium Genomic Prep Mini Spin kit (GE Healthcare,

Brazil) and quantified using Quant-iT dsDNA Assay Kit and the

Qubit fluorometer (Thermo Fisher Scientific Inc., USA),

following the manufacturer’s instructions. The purified

genomic DNA was diluted to generate a standard curve

ranging from 2×101 to 2×106 copies/reaction. Reactions were
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performed in triplicate using LipL32-f 5’-CTGAGCGAGGAC

ACAATC and LipL32-r 5 ’-ATTACGGCAGGAATCC

AA primers.
Evaluation of the humoral
immune response

The induction of the antibody-based immune response was

evaluated by indirect ELISA using purified recombinant proteins

as previously described (Conrad et al., 2017), with the following

modifications: polystyrene 96 well microtitration plates were

coated with 50-200 ng/well of each individual recombinant

protein. The plates were blocked with 5% non-fat milk

solution in PBS-T, and hamster sera were added at 1:50 –

1:400 dilution. Peroxidase-conjugated anti-Syrian hamster IgG

antibody (Jackson ImmunoResearch, USA) or anti-IgG

subclasses (anti-IgG1, IgG2/3 and IgG3) (Southern Biotech,

USA) were used as the secondary antibodies. Reactions were

developed by adding o-phenylenediamine dihydrochloride

(Sigma-Aldrich, Brazil) and hydrogen peroxide and stopped

with addition of 3N H2SO4. Optical density was read at 492

nm and mean values were obtained from serum samples assayed

in triplicate.
Statistical analysis

Protection against lethal leptospirosis and survival rates were

evaluated using the two-tailed Fisher’s exact test (GraphPad

QuickCalcs) and the Log-rank test (GraphPad Prism),

respectively. Antibody levels were analysed with ANOVA to

compare differences between the groups (Tukey’s multiple

comparisons). GraphPad Prism v.8. was used to perform

statistical analysis, and P values < 0.05 were considered significant.
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