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  The increased potential for vascular smooth muscle cell (VSMC) growth is a key abnormality in 
the development of atherosclerosis and post-angioplasty restenosis. Abnormally high activity of plate-
let-derived growth factor (PDGF) is believed to play a central role in the etiology of these pathophy-
siological situations. Here, we investigated the anti-proliferative effects and possible mechanism(s) of 
murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa Guillamin (Rutaceae), on 
PDGF-BB-stimulated VSMCs. Murrayafoline A inhibited the PDGF-BB-stimulated proliferation of VSMCs 
in a concentration-dependent manner, as measured using a non-radioactive colorimetric WST-1 assay 
and direct cell counting. Furthermore, murrayafoline A suppressed the PDGF-BB-stimulated pro-
gression through G0/G1 to S phase of the cell cycle, as measured by [3H]-thymidine incorporation assay 
and cell cycle progression analysis. This anti-proliferative action of murrayafoline A, arresting cell cycle 
progression at G0/G1 phase in PDGF-BB-stimulated VSMCs, was mediated via down-regulation of the 
expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, and proliferating cell nuclear 
antigen (PCNA), and the phosphorylation of retinoblastoma protein (pRb). These results indicate that 
murrayafoline A may be useful in preventing the progression of vascular complications such as 
restenosis after percutaneous transluminal coronary angioplasty and atherosclerosis.
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INTRODUCTION

  Abnormal proliferation of vascular smooth muscle cells 
(VSMCs) is a key feature of vascular disorders, including 
restenosis and neointimal hyperplasia [1]. VSMC prolifera-
tion and migration are induced by several cytokines and 
growth factors. One of the major stimulants of the mito-
genesis of VSMCs is platelet-derived growth factor (PDGF) 
[2]. PDGF is secreted from damaged blood vessel walls and 
stimulates cell proliferation and migration through signal 
transduction pathways [3]. PDGF, which is produced by ac-

tivated macrophages, VSMCs, and endothelial cells, exists 
in three isoforms (AA, AB, and BB). PDGF-BB is a consid-
erably more potent proliferative stimulus for VSMCs than 
PDGF-AA [4]. PDGF-BB, a growth factor secreted by in-
jured endothelial cells, VSMCs, platelets, and macrophages, 
promotes the proliferation of fibroblasts, glial cells, and 
VSMCs [5]. 
  The binding of PDGF-BB to PDGF receptor leads to dime-
rization and autophosphorylation of tyrosine residues, re-
sulting in the downstream activation of phosphatidylinosi-
tol-3-kinase (PI3K), phospholipase C (PLC)γ1, and/or mi-
togen-activated protein kinase (MAPK) pathways [6,7]. 
Signal transducer and activator of transcription 3 (STAT3) 
is also thought to participate in PDGF-induced cell pro-
liferation [8,9]. Activation of these mitogenic signals trig-
gers cell cycle progression [10,11].
  Cellular proliferation is regulated by the cell cycle, which 



422 JH Han, et al

consists of four distinct sequential phases: G0/G1, S, G2, and 
M. This tightly regulated temporal order is controlled by 
the sequential activation of serine/threonine protein kin-
ases, known as cyclin-dependent kinases (CDKs), which 
phosphorylate the retinoblastoma protein (pRb). The cell 
cycle transition is controlled by the action of CDKs and 
their activating subunits, cyclins [12,13]. After vascular in-
jury, VSMCs are stimulated to divide in response to mi-
togens, and they exit G1 phase and enter S phase. Cyclin 
D1/CDK4 and cyclin E/CDK2 complexes perform important 
roles in promoting the transition from G0/G1 to S phase and 
are required for cell cycle progression through this period 
[14].
  Murrayafoline A, a carbazole alkaloid isolated from 
Glycosmis stenocarpa Guillamin (Rutaceae), has been re-
ported to possess various pharmacological activities, includ-
ing antifungal and anticancer properties [15,16]. However, 
limited studies have been published on the effects of mur-
rayafoline A on VSMCs. The present study was designed 
to investigate the effects of murrayafoline A on PDGF- 
BB-induced VSMC proliferation and the cell cycle, and to 
determine the underlying molecular mechanism(s) respon-
sible for these effects. 

METHODS

Test compound and other materials 

  Murrayafoline A [Brown oil, C14H13NO, Rf: 0.25 (hexane/ 
EtOAc, 10: 0.5), EI-MS m/z: 211 (100%) 196 (M-CH3)+, 167, 
139, 115, 101, 77] was obtained as previously described 
[17]. The structure of murrayafoline A was established by 
1H- and 13C- NMR analysis. The purity of murrayafoline 
A was estimated to be higher than 97% by both HPLC and 
spectroscopic analysis. All cell culture materials were pur-
chased from Invitrogen (Carlsbad, CA, USA). Anti-phos-
pho-ERK1/2, anti-phospho-PLCγ1, anti-phospho-PDGF-R
β (Tyr751), anti-phospho-STAT3 (Tyr705), anti-ERK1/2, an-
ti-Akt, anti-PLCγ1, and anti-PDGF-Rβ antibodies were 
purchased from Cell Signaling Technology, Inc. (Beverly, 
MA, USA). Anti-phospho-Akt antibodies were purchased 
from Millipore Corp. (Billerica, MA, USA). Anti-phospho- 
pRb, anti-CDK2, anti-CDK4, anti-phospho PCNA, anti-cy-
clin D1, anti-cyclin E, anti-Akt, and anti-β-actin antibodies 
were purchased from Abfrontier (Geumcheon, Seoul, 
Korea). PDGF-BB was obtained from Upstate Biotechnol-
ogy (Lake Placid, NY, USA). All other chemicals used were 
of analytical grade.

Cell culture

  Rat aortic VSMCs were isolated by enzymatic dispersion 
as described previously [18]. Cells were cultured in Dulbecco’s 
Modified Eagle Medium (DMEM) supplemented with 10% fe-
tal bovine serum (FBS), 100 IU/ml penicillin, 100 μg/ml stre-
ptomycin, 8 mM HEPES, and 2 mM L-glutamine at 37oC 
in a humidified atmosphere of 95% air and 5% CO2. The 
purity of the VSMC culture was confirmed by immunocyto-
chemical localization of β-smooth muscle actin. The VSMCs 
used in these experiments were of passages 4-8.

Cell proliferation assay

  VSMC proliferation was measured by both direct count-

ing and a non-radioactive colorimetric WST-1 assay (premix 
WST-1; Takara Bio Inc., Otsu, Japan). For direct cell count-
ing, VSMCs were seeded into 12-well culture plates at 
4×104 cells/ml, and then cultured in DMEM containing 10% 
FBS at 37oC for 24 h. After reaching ∼70% confluence, the 
cells were incubated with serum-free medium for 24 h, 
treated with various concentrations of murrayafoline A for 
another 24 h in new, fresh serum-free medium, and stimu-
lated with PDGF-BB (50 ng/ml). Murrayafoline A was dis-
solved in dimethyl sulfoxide (DMSO); the final concen-
tration of DMSO in the medium did not exceed 0.1%. After 
24 h, the cells were trypsinized with trypsin-EDTA and 
counted using a hemocytometer. For the non-radioactive 
colorimetric WST-1 assay, all procedures were performed 
according to the manufacturer’s protocol, and the results 
are expressed as a percentage of the control.

Cell viability assay

  VSMCs were seeded in 96-well culture plates at 3×104 
cells/ml and then cultured in DMEM containing 10% FBS 
at 37oC for 24 h. When the cells reached ∼70% confluence, 
they were incubated with serum-free medium for another 24 
h and then exposed to 5 μM murrayafoline A or 100 μg/ml 
digitonin as a cytotoxic control for the given time [19]. After 
2 h of incubation with the WST-1 reagent, the absorbance 
was measured at 450 nm using a microplate reader (Packard 
Instrument Co., Downers Grove, IL, USA).

DNA synthesis assay

  DNA synthesis was determined using a [3H]-thymidine 
incorporation assay. The assay conditions were as described 
for the cell proliferation assay. Under stimulatory con-
ditions, PDGF-BB (50 ng/ml) added to serum-free medium, 
[3H]-thymidine (2 μCi/ml) was added for 4 h before harves-
ting. The reaction was terminated by aspirating the me-
dium and subjecting the cultures to sequential washes on 
ice with PBS containing 10% trichloroacetic acid and etha-
nol/ether (1:1, v/v). Acid-insoluble [3H]-thymidine was ex-
tracted into 250 μl of 0.5 M NaOH/well, and this solution 
was mixed with 3 ml of scintillation cocktail (Ultimagold; 
Packard Bioscience, Meriden, CT, USA) and quantified us-
ing a liquid scintillation counter (LS3801; Beckman, 
Düsseldorf, Germany).

Cell cycle progression analysis

  Cell cycle progression assay conditions were as described 
for the cell proliferation assay. After stimulation with 
PDGF-BB (50 ng/ml) for 24 h, cells were trypsinized and 
centrifuged (1,500×g, 7 min). The pellets were resuspended 
in 1 ml of 1×PBS, washed twice, and fixed with 70% ethanol 
for 48 h. The fixed cells were briefly vortexed and centri-
fuged (15,000×g, 5 min). The ethanol was discarded and 
the pellets were stained with 500 μl of propidium iodide 
(PI) solution (50 μg/ml PI in sample buffer containing 100 
μg/ml RNase A). Before analysis by flow cytometry, each 
sample was incubated at room temperature for 1 h. The 
PI DNA complex in each cell nucleus was measured with 
a FACSCalibur (Becton, Dickinson and Co., Franklin Lakes, 
NJ, USA). The nuclear DNA content was reflected by the 
fluorescence intensity of the incorporated PI. The numbers 
of cells in G0/G1, S, and G2/M phase were determined using 
ModFit LT software.
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Fig. 1. Effects of murrayafoline A on 
VSMC proliferation and viability. 
VSMCs cultured in serum-free me-
dium were stimulated with 50 ng/ml 
PDGF-BB for 24 h and the effects of 
various concentrations of murraya-
foline A (1-5 μM) on cell prolifera-
tion and viability were measured as 
described in the Experimental Sec-
tion. (A) Optical densities at 450 nm, 
as determined in the WST-1 assay 
(n=3). (B) Cell numbers counted 
using a hemocytometer (n=4). (C) Vi-
ability as determined by the WST-1 
assay (n=4) for various incubation 
times (0-48 h). All values are expre-
ssed as means±SEM. Statistical di-
fferences from the PDGF-BB control 
(PDGF-BB-stimulated, but no murra-
yafoline A) are indicated by *p＜0.05 
and **p＜0.01.

Immunoblotting

  VSMCs were stimulated with 50 ng/ml PDGF-BB for the 
phosphorylation of PDGF-Rβ (3 min), extracellular signal- 
regulated kinase 1/2 (ERK1/2, 5 min), PLCγ1 (5 min), 
STAT3 (10 min), and Akt (15 min). For the detection of 
cyclin D1, cyclin E, CDK2, CDK4, and PCNA expression, 
and pRb phosphorylation, cells were stimulated with 50 
ng/ml PDGF-BB for 24 h. Immunoblotting was performed 
as previously described [20].

Statistical analyses

  All data are expressed as means±SEM. A one-way 
ANOVA was used for multiple comparisons (GraphPad, San 
Diego, CA, USA). If a significant difference between the 
treated groups was found, Dunnett’s test was used; p-values 
＜0.05 were considered to indicate statistical significance.

RESULTS

Effects of murrayafoline A on VSMC proliferation

  To investigate whether murrayafoline A could inhibit 
VSMC proliferation, a non-radioactive colorimetric WST-1 
assay and direct cell counting were performed. PDGF-BB 
(50 ng/ml) increased VSMC proliferation by about two fold 
compared with unstimulated VSMCs (Fig. 1A). Murrayafo-
line A decreased PDGF-BB-stimulated VSMC proliferation 
in a concentration-dependent manner. Fig. 1B shows that 
the cell number decreased significantly, to 4.5±1.1×104, 
2.9±0.8×104, and 2.2±0.1×104 cells/well, as the concentra-
tion of murrayafoline A was increased to 1, 3, and 5 μM, 
respectively. The number of cells increased significantly af-
ter 50 ng/ml PDGF-BB treatment (6.5±1.5×104 cells/well) 
compared with the unstimulated group (2.6±0.8×104 cells/ 

well). Treatment with the highest concentration of mur-
rayafoline A (5 μM) for various incubation times (6-48 h) 
showed no VSMC cytotoxicity in serum-free medium (Fig. 
1C), indicating that the anti-proliferative effect of murraya-
foline A on VSMCs was not due simply to a cytotoxic effect.

Effects of murrayafoline A on the PDGF-BB-induced 
activation of receptors and downstream molecules in 
VSMCs

  Since PDGF-BB has been known to activate the PLCγ1, 
protein kinase B (Akt/PKB), ERK1/2, and STAT3 pathways 
[14,20,21], we examined the inhibitory effects of murrayafo-
line A on the levels of phosphorylated PDGF receptor β 
(PDGF-Rβ) and mitogens downstream of PDGF-Rβ sig-
naling pathways. Interestingly, pretreatment of the cells 
with murrayafoline A did not show any detectable effect 
on PDGF-Rβ, PLCγ1, Akt, ERK1/2, and STAT3 in PDGF- 
BB-stimulated VSMCs (Fig. 2). Therefore, these results 
suggest that the PDGF-Rβ, PLCγ1, Akt, ERK1/2, and 
STAT3 pathways are not involved in the murrayafoline 
A-induced inhibition of PDGF-BB-stimulated VSMC pro-
liferation.

Effects of murrayafoline A on DNA synthesis and 
G0/ G1 phase arrest in PDGF-BB-stimulated VSMCs 

  To examine the effects of murrayafoline A on DNA syn-
thesis, a [3H]-thymidine incorporation assay was performed 
in PDGF-BB-stimulated VSMCs. Fig. 3 indicates that the 
increased [3H]-thymidine incorporation into DNA caused by 
PDGF-BB treatment was inhibited significantly by mur-
rayafoline A in a concentration-dependent manner. Repre-
sentative results of cell cycle analyses showed that the cell 
population in G0/G1 phase of the cell cycle was increased 
as the concentration of murrayafoline A was increased in 
PDGF-BB-stimulated VSMCs (Fig. 4). These results in-
dicate that murrayafoline A induced an arrest at G0/G1 
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Fig. 2. Effects of murrayafoline A on the PDGF-BB-stimulated 
activation of PDGF-Rβ, PLCγ1, Akt, ERK1/2, and STAT3. 
Quiescent VSMCs cultured in serum-free medium were stimulated 
with 50 ng/ml PDGF-BB, and the effects of various concentrations 
of murrayafoline A (1-5 μM) in changing the PDGF-BB-induced 
phosphorylation of PDGF-Rβ, PLCγ1, Akt, ERK1/2, and STAT3 
were measured as described in the Experimental Section.

Fig. 4. Effects of murrayafoline A on 
cell cycle progression. VSMCs cul-
tured in serum-starved medium were 
stimulated with 50 ng/ml PDGF-BB, 
and the effects of various concen-
trations of murrayafoline A (1-5 μM) 
on cell cycle progression were mea-
sured as described in the Materials 
and methods.

Fig. 3. Effects of murrayafoline A on DNA synthesis. VSMCs 
cultured in serum-starved medium were stimulated with 50 ng/ml 
PDGF-BB, and the effects of various concentrations of murraya-
foline A (1-5 μM) on [3H]-thymidine incorporation were measured 
after the addition of 2 μCi/ml [3H]-thymidine, as described in the 
Experimental Section. The values are expressed as means±SEM
(n=4), and statistical differences from the PDGF-BB control (PDGF- 
BB-stimulated, but no murrayafoline A) are indicated by **p＜0.01.

phase of the cell cycle and inhibited progression of the cell 
cycle to later (S, G2, and M) phases for the proliferation 
of VSMCs.

Effects of murrayafoline A on the expression and acti-
vation of cell cycle-related molecules

  It has been known that the cells reach a restriction 
(check) point in late G1 phase [22]. Beyond this point, the 
cells are committed to DNA replication, and further cell cy-
cle progression proceeds independently of growth factor 
stimulation. pRb is a key component of the molecular net-
work controlling this restriction point. Although several 
CDKs are known to phosphorylate pRb, suppression of CDK2 
alone may be sufficient to prevent pRb hyper-phosphor-
ylation [23,24]. Hypo-phosphorylated pRb binds to E2F 
family transcription factors, and thus inhibits the tran-
scription of E2F-responsive genes necessary for cell cycle 

progression. To examine the underlying mechanism of the 
murrayafoline A-induced cell cycle arrest, we measured the 
expression of cyclin D1, cyclin E, CDK2, and CDK4 using 
immunoblotting. Fig. 5 shows that murrayafoline A sig-
nificantly inhibited the PDGF-BB-induced expression of cy-
clin D1/E and CDK2/4 significantly and in a concen-
tration-dependent manner. Moreover, murrayafoline A in-
duced the concentration-dependent inhibition of PDGF-BB- 
induced pRb hyper-phosphorylation. The expression of pro-
liferating cell nuclear antigen (PCNA), synthesized as a 
phospho-pRb-mediated gene product in early G0/G1 and S 
phase of the cell cycle [25], was also inhibited by murrayafo-
line A in the same pattern as shown for the inhibition of 
pRb phosphorylation. Taken together, this observation in-
dicates that murrayafoline A inhibits cell cycle progression 
from G0/G1 to S phase by inhibiting the expression of cyclin 
D1/E, CDK2/4, and PCNA, and the phosphorylation of pRb 
in PDGF-BB-stimulated VSMCs.



Murrayafoline A Inhibits VSMC Proliferation 425

Fig. 5. Effects of murrayafoline A on the inhibition of cell cycle 
regulatory proteins. Quiescent VSMCs cultured in serum-free 
medium were stimulated with PDGF-BB to express cell cycle 
regulatory proteins, and the effects of murrayafoline A on the 
expression of cyclin E, CDK2, cyclin D1, CDK4, and PCNA, and 
activation of pRb were assessed as described in the Experimental 
Section. β-Actin was used for normalization. Immunoblots were 
analyzed by densitometry and the values are given based on the 
control of 1.0. The results are an average of four similar expe-
riments, expressed as means±SEM. The insets display represen-
tative blots of four similar independent experiments. Statistical 
differences from the PDGF-BB control (PDGF-BB-stimulated, but 
no murrayafoline A) are indicated by *p＜0.05 or **p＜0.01.

DISCUSSION

  This study has two major findings: (1) murrayafoline A 
has an inhibitory effect on PDGF-BB-induced VSMC pro-
liferation, and (2) this inhibitory effect of murrayafoline A 
is mediated via an arrest in G0/G1 phase of the cell cycle 
by suppressing the expression of cyclin-CDK complexes and 
PCNA, and the pRb phosphorylation in PDGF-BB-stimu-
lated VSMCs. This is the first report of an anti-proliferative 
action of murrayafoline A in VSMCs. These results indicate 
that murrayafoline A may be a good candidate for the man-
agement of and protection from atherosclerosis and vas-
cular restenosis.
  Because the abnormal migration and proliferation of 
VSMCs in arterial walls are important pathogenic factors 
in vascular disorders, including atherosclerosis and reste-
nosis after angioplasty [26], the inhibition of VSMC pro-
liferation is a potentially important therapeutic strategy for 
treating these diseases [27]. In the present study, murraya-
foline A showed an inhibitory effect on PDGF-BB-induced 
VSMC proliferation and this effect was not due to cellular 
toxicity or apoptosis (Fig. 1). Further investigation indi-
cated that murrayafoline A inhibited DNA synthesis 
through a G0/G1 cell cycle arrest (Fig. 3, 4). It has been 
reported that VSMCs are stimulated to divide in response 
to mitogens after vascular injury, which results in their exit 
from G1 phase and entry into S phase [28]. Cyclin D1/E 

and cyclin 2/4 are known to play a positive role in G0/G1 
phase and p27 is a negative regulator of CDK/cyclin E com-
plexes, causing a G0/G1 arrest [29,30]. Treatment with mur-
rayafoline A resulted in the dose-dependent inhibition of 
expression of CDK2, CDK4, cyclin D1, and cyclin E (Fig. 
5). Although several CDKs are known to phosphorylate 
pRb, suppression of CDK2 alone may be sufficient to pre-
vent pRb hyper-phosphorylation [23,24]. The inhibition of 
CDK2, CDK4, cyclin D1, and cyclin E expression was suffi-
cient to inhibit phosphorylation of pRb (Fig. 5). Moreover, 
the expression of PCNA, which is synthesized as a phos-
pho-pRb mediated gene product in early G0/G1 and S phase 
of the cell cycle [25], was also inhibited (Fig. 5). Thus, our 
results indicate that the anti-proliferative actions of mur-
rayafoline A in PDGF-BB-stimulated VSMCs are mediated 
through inhibiting the expression of both cyclin D1/CDK4 
and cyclin E/CDK2, leading to a G0/G1 cell cycle arrest.
  In conclusion, the present study provides evidence that 
murrayafoline A inhibits PDGF-BB-induced VSMC prolifer-
ation by down-regulating the expression of cyclin D1, cyclin 
E, CDK2, CDK4, and PCNA, and the phosphorylation of 
pRb, resulting in arrest at the G0/G1 phase of the cell cycle. 
This observation indicates that murrayafoline A may be 
useful for preventing the progression of vascular complica-
tions such as restenosis after percutaneous transluminal 
coronary angioplasty and atherosclerosis.
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