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Heat shock protein 60 (HSP60) forms together with heat shock protein 10 (HSP10)

double-barrel chaperonin complexes that are essential for folding to the native state of

proteins in the mitochondrial matrix space. Two extremely rare monogenic disorders have

been described that are caused by missense mutations in the HSPD1 gene that encodes

the HSP60 subunit of the HSP60/HSP10 chaperonin complex. Investigations of the

molecular mechanisms underlying these disorders have revealed that different degrees

of reduced HSP60 function produce distinct neurological phenotypes. While mutations

with deleterious or strong dominant negative effects are not compatible with life, HSPD1

gene variations found in the human population impair HSP60 function and depending on

the mechanism and degree of HSP60 dys- and mal-function cause different phenotypes.

We here summarize the knowledge on the effects of disturbances of the function of the

HSP60/HSP10 chaperonin complex by disease-associated mutations.
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INTRODUCTION

The type I chaperonins, a subclass of the molecular chaperone family of proteins, assist folding
of proteins in the bacterial cytosol, the mitochondrial matrix space, and the chloroplast stroma.
Like its bacterial and chloroplast homologs the mitochondrial HSP60/HSP10 complex is composed
of two seven-meric rings of the large subunit (HSP60) stacked back to back (Nisemblat et al.,
2015; Figure 1A). The HSP60 ring structures enclose an inner cavity that is sealed by lids formed
by seven-meric rings of the small subunit (HSP10). With the exception of a few endosymbionts,
homologs of these proteins are abundantly expressed in mitochondria, chloroplasts and bacteria.
The functional folding cycle of the mammalian HSP60/HSP10 complex (Nielsen and Cowan, 1998;
Levy-Rimler et al., 2001, 2002) has to a large degree been elucidated in analogy to detailed studies of
the homologous GroEL/GroES complex of E. coli bacteria (Horwich, 2013; Hayer-Hartl et al., 2015).
Cycles including binding of proteins undergoing folding to the HSP60 rings, their encapsulation by
association of HSP10 rings and dissociation of both the HSP10 ring and the enclosed protein are
orchestrated by ATP binding, hydrolysis and release of ADP by the HSP60 subunits. These cycles
promote folding of proteins to the native state, but not every cycle results in successful folding.
Some proteins may require several rounds. Knock-out experiments have shown that the genes
encoding homologs of the HSP60/HSP10 complex are essential in organisms from bacteria to mice
(Cheng et al., 1989; Fayet et al., 1989; Perezgasga et al., 1999; Christensen et al., 2010). In humans
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FIGURE 1 | Position of gene variations in the HSPD1 gene and the HSP60 protein structure. (A) Structure of the HSP60/HSP10 complex and position of

mutations. 3d structure representations were created based on PDB coordinates 4pj1 (Nisemblat et al., 2015) using the software Discovery Studio 4.5.0.15071

(Biovia). Left: surface representation of the structure of the HSP60/HSP10 complex; HSP60 and HSP10 rings are indicated. The surface representation of one subunit

of the upper HSP60 ring is shown transparent and the carbon backbone and space filling representation of amino acid positions where missense variations have been

found are shown. Middle: upside view of the upper HSP60 ring. Right: enlarged view of the highlighted subunit from the complex shown on the left with numbering of

positions with missense variations. The mutations p.Gly559Asp and p.Gly563Ala are not shown because the C-terminal part of the HSP60 protein is not contained in

the crystal structure. The bound ATP molecule is shown as yellow sticks. (B) Exon structure of the human HSPD1 and HSPE1 genes encoding HSP60 and HSP10.

The two genes are situated in a head to head configuration on chromosome 2 with a common bidirectional promoter (red arrows). Exons are numbered and their

coding parts are given as broad bars. Positions of missense variations are shown; color coding is in relation to disease-association (see text).

only few gene variations altering the amino acid sequence of
HSP60 and HSP10 have been described (Table 1). However,
very rare disease-associated missense mutations in HSP60 have
been associated with a dominant form of hereditary spastic
paraplegia (HSP; Hansen et al., 2002) and a recessively inherited
white matter disorder called MitCHAP60 disease (Magen et al.,
2008). In another article published under this research topic
we describe the first potentially disease associated mutation in
HSP10 that has been identified in a patient with a neurological
and developmental disorder (Bie et al., submitted).

AMINO ACID SEQUENCE VARIATIONS IN
HSP60

The genomic structure for the human HSPD1 and HSPE1 genes
encoding the proteins HSP60 and HSP10, respectively, has

been characterized experimentally (Hansen et al., 2003). The
HSPD1 and HSPE1 genes are localized at chromosome locus
2q33.1 in a head to head arrangement with a bidirectional
common promoter (Figure 1). Such a head to head arrangement
is evolutionary conserved from C. elegans to humans (Bross,
2015). The two genes comprise ∼17 kb and consist of 12 and
4 exons, respectively (Figure 1B). The first exon of Hsp60 is
non-coding and the first exon of Hsp10 contains only the first
codon (Hansen et al., 2003). At present there are two amino
acid variations in HSP60 known for which a clear disease-
association has been established: the HSP60-p.Val98Ile mutation
associated with a dominantly inherited form of HSP (SPG13;
OMIM #605280; Hansen et al., 2002) and the HSP60-p.Asp29Gly
mutation causing a recessively inherited white matter disease
called MitCHAP60 disease (OMIM #612233; Magen et al., 2008).
Besides these two, a number of other variations have been
described (Figure 1 and Table 1; Hansen et al., 2002, 2007; Bross
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TABLE 1 | Missense variations in the HSPD1 gene encoding HSP60.

Variation Disease association Growth in genetic complementation assay ExAC allele count PolyPhen-2 prediction# References

p.Asp29Gly MitCHAP60 Slow, temperature-sensitive 0 benign Magen et al., 2008

p.Leu46Phe Not tested 29 possibly damaging ExAC

p.Val98Ile SPG13 No growth 0 possibly damaging Hansen et al., 2002

p.Arg142Lys Not tested 56 benign ExAC

p.Lys156Arg Not tested 17 benign ExAC

p.Asn184Ser Unaffected 61 benign Hansen et al., 2002

p.Asn265Ser Not tested 23 possibly damaging ExAC

p.Leu291Val Not tested 12 probably damaging ExAC

p.Arg370His Not tested 13 benign ExAC

p.Asp379Gly Unaffected 0 benign Bross et al., 2007

p.Gln461Glu SPG13* Impaired 0 probably damaging Hansen et al., 2007

p.Gly559Asp Unaffected 0 possibly damaging Bross et al., 2007

p.Gly563Ala Unaffected 1904 probably damaging Bross et al., 2007

Missense variations recorded in the literature and/or in the ExAC consortium database with ≥10 alleles are shown. The basis for scoring growth in the genetic complementation assay

is explained in Section Functional analysis in vivo. Prediction of possible impact of amino acid substitutions was performed using the PolyPhen-2 webserver (Adzhubei et al., 2010).
#PolyPhen-2 has three prediction output options, from the highest probability score for being damaging to the lowest: “probably damaging,” “possibly damaging” and “benign.” The

asterisk denotes that the variation/disease relationship for the p.Gln461Glu variation is not fully established. For further details see text.

et al., 2007). The Exome Aggregation Consortium webserver
(ExAC; Cambridge, MA (URL: http://exac.broadinstitute.org)
[June, 2016 accessed]) lists 95 missense variations for the protein
product of the canonicalHSPD1 transcript. This website provides
high quality exome sequencing data from more than 60,000
unrelated adults without severe pediatric disease. Of the 95
HSPD1 missense variations 60 have only been seen in one
single allele and only 9 have been observed in more than 10 of
the∼120,000 alleles recorded (Table 1).

FUNCTIONAL ANALYSES OF HSP60
VARIANT PROTEINS

Table 1 lists both the HSPD1 missense variations described in
the literature and those present in ≥10 alleles in the ExAC
Consortium Website. The functional consequences for some of
these variations have been investigated previously and the results
are summarized in this review.

In vitro Analyses of Disease-Associated
HSP60 Variant Proteins
Expression in E. coli had indicated that the two disease-
associated variant proteins HSP60-p.Val98Ile and HSP60-
p.Asp29Gly displayed similar stability as wild type HSP60
suggesting that the amino acid replacements caused functional
impairment (Hansen et al., 2002; Magen et al., 2008). Indeed,
the purified HSP60-p.Val98Ile protein assembled into native
ring complexes in the same way and with similar efficiency as
the wild type HSP60 protein but displayed a reduced ATPase
hydrolysis rate and a severely decreased in vitro refolding activity
with malate dehydrogenase as substrate (Bross et al., 2008).
The ATPase function and refolding activity of the purified
HSP60-p.Asp29Gly variant protein associated with MitCHAP60
disease was found decreased in a similar way (Parnas et al.,

2009). This study also indicated impaired stability of HSP60-
p.Asp29Gly oligomers causing their disassembly at low protein
concentrations.

Functional Analysis In vivo
A sophisticated genetic complementation assay for analyzing the
function of variants of the human HSP60/HSP10 chaperonin
complex has been developed in the lab of Costa Georgopoulos
(Richardson et al., 2001). This assay is based on knocking out
the chromosomal groESgroEL operon and testing whether cell
viability and growth properties can be maintained by providing
the bacterial cells with a plasmid encoding the chaperonin
gene variants to be investigated. Knock-out cells are not viable,
but providing the cells with plasmids with cDNAs encoding
the wild type human HSP60 and HSP10 genes maintains cell
viability demonstrating that the human HSP60/HSP10 complex
can functionally replace the bacterial GroEL/GroES complex
(Richardson et al., 2001).

Seven human HSP60 missense variants have so-far been
investigated using this functional assay (Table 1). These studies
showed that the SPG13-associated mutant HSP60-p.Val98Ile was
unable to functionally replace the bacterial chaperonin. However,
cells expressing the HSP60-p.Asp29Gly variant displayed slow
and temperature-sensitive growth. Cells with the HSP60-
p.Gln461Glu variation found in a sporadic spastic paraplegia
patient also displayed impaired growth. The four other HSP60
variants studied: p.Asn184Ser, p.Asp379Gly, p.Gly559Asp, and
p.Gly563Ala, behaved like wild type HSP60 in the genetic
complementation assay suggesting that they have no significant
effect.

Bioinformatics prediction of the effects of the variations using
the PolyPhen-2 tool (Adzhubei et al., 2010) predicts damaging
effects for the HSP60-p.Val98Ile and HSP60-Gln461Glu
variations, but benign for the HSP60-p.Asp29Gly for which a
clear disease relationship has been established. PolyPhen-2 also
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predicts “damaging” for the two carboxy-terminal variations and
four of the six missense variants found in more than 10 alleles in
the ExAC dataset. Given the discrepancy between experimental
and prediction results this prediction results must be taken with
caution. Inspection of the position of the variations in the crystal
structure of the HSP60/HSP10 complex (Nisemblat et al., 2015)
shows that the variations with an established disease-association
(HSP60-p.Asp29Gly and HSP60-p.Val98Ile) are localized in the
core of the equatorial domain of the HSP60 protein, whereas
most of the other variation sites are localized on the surface of
HSP60 subunits (Figure 1A).

The SPG13-associated mutation HSP60-p.Val98Ile is
dominantly inherited, i.e., the patient cells express both a wild
type and a mutant allele and these two variant proteins are likely
on equal terms incorporated into HSP60 ring structures resulting
in heteromeric rings with stochastically distributed content of the
two variants. To test whether incorporation of mutant HSP60-
p.Val98Ile subunits together with wild type HSP60 subunits
into HSP60 ring complexes would cause a dominant negative
effect, the complementation assay was further engineered. E. coli
cells with the deletion of the endogenous groESgroEL operon
and containing a plasmid with an IPTG-inducible operons
comprising HSP10 and wild type HSP60 were transformed with
a second plasmid comprising an arabinose-inducible operon
with the respective mutant HSP60 variant and HSP10 (Bross
et al., 2008). There was no effect on growth in cells expressing
both wild type HSP60 and HSP60-p.Val98Ile. As a control,
expression of an artificially constructed ATPase-deficient HSP60
variant together with wild type HSP60 blocked growth. These
experiments strongly indicated that the HSP60-p.Val98Ile
mutation exerts no significant dominant negative effect on
co-expressed wild type HSP60 protein.

CLINICAL PHENOTYPES OF SPG13 AND
MITCHAP60 DISEASE

Notwithstanding the rarity, studies of the very large index family
that led to the discovery of the association of the HSP60-
p.Val98Ile mutation with HSP has given a firm basis for the
mutation/disease relationship (Hansen et al., 2002). SPG13 is
dominantly inherited with a pure spastic paraplegia phenotype
with high penetrance (Fontaine et al., 2000). Hereditary spastic
paraplegia is a complex disease both genetically and clinically
with mutations in more than 60 different genes established as
causal and with all inheritance modes (Kumar et al., 2015; Tesson
et al., 2015; Di Fabio et al., 2016). The characteristic spastic gait
has given the acronym SPG and subsequent numerals distinguish
the different genetic forms of HSP. Spastic gait and spasticity
in the lower limbs are also observed as a side phenotype in
many other neurological diseases. The disease is only classified
as HSP if the paraplegia is the major clinical characteristic.
Clinical analysis of the 10 MitChap60 patients homozygous for
the HSP60-p.Asp29Gly mutation revealed also spastic paraplegia
in all them (Magen et al., 2008). However, this “side-phenotype”
was overshadowed by the much more severe presentation
characterized by early-onset, profound cerebral involvement and

lethality of these patients. A number of other SPG genes are
also disease genes in other neurological diseases illustrating that
maintaining the classical distinctions becomes more and more
difficult (Tesson et al., 2015). Rather, the phenotype in a given
patient depends on multiple factors, like the mutated gene, the
nature of themutation and its location in the protein, the zygosity
of the mutation, and influences of modifier variants and the
environment.

POTENTIAL DISEASE-ASSOCIATION OF
OTHER MISSENSE VARIATIONS IN HSP60

In spite of widely spread genetic screening, so far only one single
additional spastic paraplegia patient heterozygous for another
mutation in HSP60 (HSP60-p.Gln461Glu) has been reported
(Hansen et al., 2007). The causative nature of this mutation
is uncertain because two siblings carrying this mutation were
asymptomatic. However, as the genetic complementation test
showed a mild functional impairment (See Section Functional
analysis in vivo), this variation may be disease-associated with
reduced penetrance. The most frequently observed amino acid
variation in HSP60, HSP60-p.Gly563Ala, has been found in
homozygous form in one sporadic Danish spastic paraplegia
patient (Svenstrup et al., 2009). Frequency analysis of this
polymorphisms in Danish controls showed an allele frequency
of 1.3% and similar allele frequencies were observed in all
ethnic groups in the ExAC database. In addition, the number
of homozygotes in the ExAC database is consistent with Hardy
Weinberg distribution and the genetic complementation assay
did not indicate impaired function of the HSP60-p.Gly563Ala
protein. Taken together this suggests that this variation has no
significant effect on function (Bross et al., 2007).

CELLULAR AND MOUSE MODELS FOR
HSP60 DEFICIENCY

Effects of expressing the SPG13- and MitCHap60-associated
mutant proteins on mitochondrial morphology have been
assessed in Cos-7 cells transfected with cDNAs encoding the
disease-associated mutant proteins (Miyamoto et al., 2015,
2016). Cos-7 cells expressing either the mutant variants HSP60-
p.Asp29Gly, HSP60-p.Val98Ile or HSP60-p.Gln461Glu displayed
increased mitochondrial fission and decreased mitochondrial
membrane potential whereas Cos-7 cells transfected with wild
type HSP60 cDNA did not. This indicates that the studiedmutant
proteins interfere with the function of the endogenous wild type
protein.

ShRNA-mediated knock-down of HSP60 in human HEK293
cells decreased the steady state levels of the mitochondrial
medium-chain acyl-CoA dehydrogenase (Corydon et al., 2005),
an enzyme whose subunits transiently interact with HSP60
before assembling into functional tetramers (Yokota et al.,
1992; Saijo et al., 1994). Folding of ectopically expressed
mitochondria-targeted green fluorescence protein (GFP) was
decreased both in HEK293 cells in which HSP60 was knocked
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down and in HEK293 expressing a dominant negative ATPase-
deficient HSP60 variant (Corydon et al., 2005; Bie et al., 2011).
Furthermore, a series of assays of HSP60 knock-down in the
mouse hypothalamic cell line N25/2 revealed decreases in
mitochondrial respiration, levels of respiratory chain subunits,
mitochondrial DNA levels and an increase in mitochondrial
volume and mitochondrial superoxide (Kleinridders et al., 2013).
These cellular models can be used for further studies elucidating
themultiple effects of deficiency of theHSP60/HSP10 chaperonin
complex.

Knock-out of both HSP60-encoding alleles in mice is
not compatible with life. Such embryos died early during
development (Christensen et al., 2010). However, mice which are
heterozygous for one HSP60 knock-out allele, and which express
half levels of HSP60 protein, developed normally and were borne
in the expected Hardy-Weinberg frequency. More thorough
long-term analysis of these mice revealed a late onset and slowly
progressive deficit in motor functions recapitulating features of
HSP SPG13 in humans (Magnoni et al., 2013). The phenotype
was accompanied by morphological changes of mitochondria
in spinal cord axons. Furthermore, decreased ATP synthesis
was observed in mitochondria isolated from brain cortex and
spinal cord. The respiratory chain defect could be narrowed
down to impaired activity of respiratory chain complex III.
Proteomic analysis of mitochondria from mutant mouse tissues
consistently revealed decreased levels of the UQCRC1 subunit
of complex III in these tissues. As UQCRC1 transcript levels
were even increased and an effect on translation is improbable,
this suggested that deficiency of the HSP60/HSP10 chaperonin
complex resulted in impaired folding of the UQCRC1 protein
entailing premature degradation of the UQCRC1 protein. Based
on the same criteria and supported by direct interaction with
HSP60, the manganese-dependent superoxide dismutase SOD2
was identified as another protein that is highly dependent
on appropriate HSP60/HSP10 chaperone complex function
(Magnoni et al., 2014).

Proteins like UQCRC1 or SOD2 thus appear to depend more
than others proteins on folding assistance by the HSP60/HSP10
complex. For E. coli 85 proteins that display obligate dependence
on folding assistance by the bacterial chaperonin complex
have been characterized (Kerner et al., 2005). Identification of
those proteins whose folding obligatorily requires the human
HSP60/HSP0 complex is still lacking. Such knowledge would be
very helpful to identify further mitochondrial functions affected
by deficiencies of the HSP60/HSP10 complex.

PERSPECTIVES

Different mutations in HSP60 or its partner protein HSP10
lead to distinct phenotypes of neurological disorders with a
clear mitochondrial dysfunction pattern. These diseases are
very rare as deleterious effects of mutations in these essential
genes are not compatible with normal embryonal development
(Christensen et al., 2010). The broader use of exome sequencing
will likely reveal more cases also including de novo mutations
in the HSPD1 and HSPE1 genes in sporadic diseases. Clinical

geneticists should therefore be aware of this and it will be
important to collect the knowledge of these rare cases to be
able study genotype/phenotype relationships and to assess the
disease-causing nature of variations.

Besides being affected by mutations, the activity and function
of the HSP60/HSP10 complex can also be regulated by its
expression levels. The regulation of the transcription levels of
both proteins occurs via different elements in the bidirectional
promoter. SP1 elements provide robust house-keeping levels of
expression and on top of that heat-shock elements, mitochondrial
unfolding protein response elements, and STAT3 elements
further modulate expression adapting it to specific situations
(Zhao et al., 2002; Hansen et al., 2003; Horibe and Hoogenraad,
2007; Kim and Lee, 2007; Kim et al., 2007; Kleinridders et al.,
2013). One study also shows that Hsp60 mRNA is a direct
target of miR-1 and miR-206 in cardiomyocytes (Shan et al.,
2010).

Indeed, dysregulation of HSP60 expression in hypothalamus
has been implicated with type 2 diabetes mellitus (Kleinridders
et al., 2013) and changes in chaperonin expression and activity
have been observed in several diseases such as cardiomyopathies,
autoimmune disorders, and cancer (Cappello et al., 2014).

Finally, posttranslational modifications of the HSP60/HSP10
complex may regulate the activity of the complex. Like other
molecular chaperones HSP60 is a highly modified protein
with a long list of PTMs recorded in the UniProt database
(Consortium, 2015): phosphorylation, acetylation, succinylation,
malonylation, nitrosylation, sumoylation, ubiquitination,
N-glycosylation, and O-GlcNAcylation. Acetylation of the
co-chaperonin HSP10 has been indicated to affect activity
of the chaperonin complex (Lu et al., 2014). One of the
HSP60 missense variations shown in Table 1, Lysine-156,
has been described before as modified by acetylation both
in the human acute myeloid leukemia cell line MV4-
11 (Choudhary et al., 2009) and in mouse liver HSP60
(Rardin et al., 2013). The p.Lys156Arg missense variation
is classified as benign by the bioinformatics tools due to
conservation of the positive charge, but elimination of this
acetylation site may affect regulation of HSP60 function.
Regulation of the activity of the HSP60/HSP10 complex at
different levels may thus be a crucial hub for development
of mitochondrial dysfunction, a hallmark in many disease
processes.
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