
Observational Study

1

Medicine®

Comprehensive metabolomics study on the 
pathogenesis of anaplastic astrocytoma via 
UPLC-Q/TOF-MS
Chao Du, MD, Zhehao Huang, MD, Bo Wei, MD, Miao Li, MD* 

Abstract 
Anaplastic astrocytoma (AA) is a malignant carcinoma whose pathogenesis remains to be fully elucidated. System biology 
techniques have been widely used to clarify the mechanism of diseases from a systematic perspective.

The present study aimed to explore the pathogenesis and novel potential biomarkers for the diagnosis of AA according to 
metabolic differences. Patients with AA (n = 12) and healthy controls (n = 15) were recruited. Serum was assayed with untargeted 
ultraperformance liquid chromatography-quadrupole/time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) metabolomic 
techniques. The data were further evaluated using multivariate analysis and bioinformatic methods based on the KEGG database 
to determine the distinct metabolites and perturbed pathways.

Principal component analysis and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) identified the 
significance of the distinct metabolic pattern between patients with AA and healthy controls (P < .001) in both ESI modes. 
Permutation testing confirmed the validity of the OPLS-DA model (permutation = 200, Q2 < 0.5). In total, 24 differentiated 
metabolites and 5 metabolic pathways, including sphingolipid, glycerophospholipid, caffeine, linoleic acid, and porphyrin 
metabolism, were identified based on the OPLS-DA model. 3-Methylxanthine, sphinganine, LysoPC(18:1), and lactosylceramide 
were recognized as potential biomarkers with excellent sensitivity and specificity (area under the curve > 98%).

These findings indicate that the perturbed metabolic pattern related to immune regulation and cellular signal transduction is 
associated with the pathogenesis of AA. 3-Methylxanthine, sphinganine, LysoPC(18:1), and lactosylceramide could be used as 
biomarkers of AA in future clinical practice. This study provides a therapeutic basis for further studies on the mechanism and 
precise clinical diagnosis of AA.

Abbreviations:  AA = anaplastic astrocytoma, ALALA = α-linolenic acid and linoleic acid, AUC = area under the curve, DOS = 
degradation of superoxide, ESI = electrospray Ionization, HC = healthy Control, HMDB = human metabolites database, IDH = isocitrate 
dehydrogenase, KEGG = Kyoto Encyclopedia of Genes and Genomes, METC = mitochondrial electron transport chain, MGMT = 
methylguanine-DNA methyltransferase, MT = mutant type, NOS = not otherwise specified, OPLS-DA = orthogonal projections to 
latent structures-discriminant analysis, PC = phosphocholine, PCA = principal component analysis, PE = phosphoethanolamine, 
QC = quality control, THS = thyroid hormone synthesis, UPLC-Q/TOF-MS = liquid chromatography-quadrupole/time-of-flight-mass 
spectrometry, WT = wide type.
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1. Introduction

Anaplastic astrocytoma (AA) is a type of diffusely infiltrating 
malignant astrocytoma.[1] Nuclear atypia, increased cellularity, 
and absence of the pathologic hallmarks of glioblastoma are the 
characteristic features of AA.[2] The pathogenesis of AA is mark-
edly associated with molecular immunological mechanisms 
such as macrophages and T cell activation,[3,4] and biochemi-
cal reactions in vivo.[5] Regulation of AA has been confirmed 

to be related to various inflammatory and immunological path-
ways.[6,7] Moreover, the mechanism has been demonstrated to 
be closely associated with nutrient metabolism and epigenetic 
regulation.[8,9] Although mutations in the IDH gene have been 
confirmed as one of the critical factors of AA,[10] a limited under-
standing of its mechanism is not sufficient to provide more sup-
port for precise diagnosis and treatment in clinical practice.

System biology methods have been widely used to explore 
the pathogenesis of various diseases in recent years.[11,12] 
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Metabolomics, as a novel omics technology, focuses on small-
weight molecules <1 kDa, and is considered the best indicator of 
the inner mechanism of diseases.[11] High-resolution mass spec-
trometry-based untargeted metabolomics is emergingly used to 
reveal novel biological significance.[13] Recently, several metab-
olomics studies have been performed to illustrate the pathogen-
esis of glioma[14]; however, the majority of these studies only 
examined the metabolic pattern of glioblastoma or the profile in 
vitro.[15] The most recent study has also only focused on the met-
abolic differences between low- and high-grade glioma speci-
mens.[16] A noninvasive identification of prediagnostic metabolic 
patterns for AA is urgently required to improve the therapeutic 
strategy of AA. Systematic metabolomics studies on the patho-
genesis of AA are rarely reported.

Therefore, the present study recruited patients with AA and 
explored their metabolic profiles based on ultraperformance 
liquid chromatography-quadrupole/time-of-flight-mass spec-
trometry (UPLC-Q/TOF-MS). The hypothesis that there were 
significant perturbations in the metabolic profile of patients 
with AA compared with that of healthy controls (HCs) was 
evaluated. In addition, the differentiated metabolites have the 
potential to be biomarkers for the diagnosis of AA.

2. Materials and Methods

2.1. Subjects recruitment and ethics assessment

Patients with AA were recruited from the China-Japan Union 
Hospital of Jilin University. The patients were diagnosed with 
computed tomography and nuclear magnetic resonance imag-
ing as AA for the first time, and finally confirmed with patho-
logical sections of the tumor tissue after surgical operations. 
The age of the patients ranged from 50 to 60 years, with the 
gender balanced. Age- and sex-matched volunteers of the HC 
group were also recruited. The HC subjects were not diagnosed 
with any diseases and did not have any history of neurological 
diseases. Current smokers or those with a history of smoking 
were excluded. All subjects provided written informed consent. 
This study was approved by the China-Japan Union Hospital 
Ethics Committee of Jilin University (approval number: 2018-
NSFC-003) and was registered at the International Clinical 
Trials Registry Platform and Chinese Clinical Trial Registry (no. 
ChiCTR1900024766).

2.2. Patient sample collection and preparation

Peripheral venous blood was obtained from all subjects after 
a 12-h fasting period when they were first diagnosed. A total 
of 10 mL blood was collected into coagulation-promoting tubes 
for serum separation and then stored at –80°C for further pro-
cessing. The serum samples were thawed on ice and mixed with 
methanol (1:3, v/v; cat. no. A4521; Thermo Fisher Scientific, 
Inc.). The mixture was vortexed for 3 minutes, incubated on 
ice for 15 minutes, and centrifuged at 4°C and 10,000 × g to 
remove the protein content from the samples. The supernatant 
(without protein) of all samples was lyophilized (12N-60A 
model, HNZXIB, Inc.) at –60°C and 10 Pa air pressure for ≥24 
hours. The residues were redissolved in 100 μL of methanol-wa-
ter (4:1, v/v). A quality control (QC) sample was prepared by 
pooling 20 μL from each sample.

2.3. UPLC-Q/TOF-MS assay

All samples were injected into the UPLC system (ACQUITY; BEH 
C18 column, 2.1 mm × 100 mm, 1.7 mm; Waters Corporation) 
and Q/TOF-MS (Xevo G2-S; Waters Corporation). The condi-
tions and parameters of the chromatographic systems were opti-
mized as described previously.[17] In brief, the temperatures of the 
BEH column and autosampler were 30°C and 15°C, respectively. 

Mobile phase A (0.1% formic acid; cat. no. PI85170; Thermo 
Fisher Scientific, Inc.) and B (0.1% formic acid in acetonitrile; 
cat. no. A998-4; Thermo Fisher Scientific, Inc.) was used to elute 
from 90% to 10% (mobile phase A) at a flow rate of 0.4 mL/
min. The collection modes of the spectrometry included pos-
itive electrospray ionization (ESI+) and negative electrospray 
ionization (ESI–). Consecutive injections of aliquots of the QC 
sample were performed to ensure the stability and precision of 
the system before injecting the analytes. In addition, another 6 
aliquots of the QC sample were inserted randomly throughout 
the sample lists of the 2 ESI modes.

2.4. Data processing

The alignment, deconvolution, and reduction of the raw MS 
data were first performed with MassLynx software (v4.1; Waters 
Corporation) to align the retention time and mass peaks of all 
samples for further analysis. The main processing parameters 
were set as follows: The involved retention time of the data was 
from 0 to 29 min. All metabolic features were captured from 
100 Da to 1300 Da, with a mass tolerance of 0.10 and a mini-
mum peak intensity of 0.5 minutes. Noise was eliminated at level 
6. Other parameters were described in a previous report (9). The 
data were analyzed primarily with MarkerLynx (v4.1; Waters 
Corporation) and then exported to SIMCA P (v14.1; Umetrics) 
for further multivariate analysis. Principal component analysis 
(PCA) and orthogonal projections to latent structures-discrim-
inant analysis (OPLS-DA) models were established. The met-
abolic features associated with the distinct metabolic profiles 
were summarized to identify the metabolites.

2.5. Compound identification

The remarkably distinct metabolic features (variable importance 
of project > 1 and P < .05 between the groups) were identified 
based on their precise molecular mass weight according to the 
Human Metabolites Database (HMDB, v4.0).[18] Then, the iden-
tified metabolites were further firmly determined by matching 
the tandem MS/MS fragments with the HMDB and METLIN 
databases.[19] Metabolites with a mass molecular weight error 
of < 15 ppm were included. Adducts of the metabolites were M 
+ H⌉+ and M + Na⌉+ for ESI+, and M-H⌉− and M + FA⌉− for ESI 
− according to the chemical composition of the solvent and the 
mobile phases.

2.6. Bioinformatic analysis

The perturbed metabolic pathways were identified based on 
the MetaboAnalyst 4.0 platform (https://www.metaboana-
lyst.ca/).[13] Related metabolic functions were enriched via 

Table 1

Characteristics of the subjects

Groups/indexes Anaplastic astrocytoma Healthy control P 

Number 12 15 >.05
Gender (F/M) 6/6 7/8 >.05
Age 58.42 ± 4.48 60.02 ± 5.31 >.05
BMI 22.33 ± 2.87 21.80 ± 3.51 >.05
KPS 76.25 ± 11.01 98.06 ± 2.25 <.01
Courses/Months 3.73 ± 1.71 NA NA
Grade III NA NA
Tumor Localization (P/T/F) 4/4/4 NA NA
IDH-WT/MT/NOS 4/5/3 NA NA
Steroid Usage 4 2 >.05

courses = courses of diseases, IDH = isocitrate dehydrogenase, KPS = Karnofsky Performance 
Status, MT = mutant type, NOS = not otherwise specified, tumor localization (P/T/F) = tumor 
localization in brain including parietal (P), temporal (T), frontal (F), WT = wide type.

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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the Network Explorer module. The sensitivity and specificity 
of the potential metabolic markers from the OPLS-DA mod-
els were examined by receiver operating curve (ROC) with 
the pROC package (https://cran.r-project.org/web/packages/
pROC/index.html). Evaluation of the stability and suitability 
of the UPLC-Q/TOF-MS system relied on the relative standard 
deviation of the QC samples. Interaction among the distinct 
metabolites was identified based on the Kyoto Encyclopedia of 
Genes and Genomes (updated on Jun 25, 2019) database,[20] 

while the interaction network was established using Cytoscape 
software (v3.7.1).[21]

2.7. Statistical analysis

Statistical analysis of the homogeneity of variance and normal-
ity of the data was performed first with F and Kolmogorov-
Smirnov tests. The data set that did not meet the normality 
criteria was analyzed with the Mann-Whitney-Wilcoxon test for 

Figure 1. Chromatographic plots of the serum extraction sample under different ESI modes (ESI + and ESI–). (A) Base peak ionization and (B) total ionization 
chromatography plots of serum under ESI + mode. (C) Base peak ionization and (D) total ionization chromatography plots of serum under ESI– mode. The 
metabolites peaks were eluted and separated clearly and evenly. ESI, electrospray ionization.

Table 2

Evaluation on the stability of the chromatographic and spectrometry (UPLC-Q/TOF-MS) system

ESI Modes Ion features (RT_MASS) 

RT (RSD/%) Peak area (RSD/%) Mass (RSD/%)

Rep Pre Rep Pre Rep Pre 

+ 0.54_300.0396 0.00320 0.00100 0.06 0.16 0.000012 0.000065
11.48_328.2453 0.00021 0.00310 0.12 0.35 0.000030 0.000032
0.80_418.1915 0.00005 0.00290 0.06 0.17 0.000010 0.000004
6.54_508.9713 0.00068 0.00010 0.09 0.68 0.000004 0.000027
20.55_551.3241 0.00031 0.00050 0.63 0.45 0.000040 0.000031
26.25_672.4604 0.00047 0.00600 0.41 0.33 0.000001 0.000007
6.87_724.7766 0.00072 0.00040 0.02 0.54 0.000001 0.000007
7.04_820.7493 0.00168 0.00120 0.03 0.76 0.000004 0.000002
14.57_966.3624 0.00096 0.00680 0.10 0.49 0.000031 0.000048
6.90_1105.6546 0.00071 0.00037 0.74 0.36 0.000002 0.000003

- 9.95_220.0499 0.00063 0.00023 0.28 0.06 0.000003 0.000001
21.56_391.4096 0.00214 0.00281 0.63 0.08 0.000001 0.000016
16.80_429.4010 0.00364 0.00098 0.49 0.01 0.000001 0.000000
25.39_511.4481 0.00210 0.00038 0.10 0.54 0.000002 0.000011
25.53_567.4573 0.00057 0.00003 0.26 0.31 0.000021 0.000023
20.56_610.3386 0.00127 0.00091 0.37 0.13 0.000035 0.000004
5.98_672.1523 0.00001 0.00010 0.56 0.25 0.000048 0.000002
5.60_757.6745 0.00007 0.00035 0.64 0.29 0.000029 0.000001
25.17_824.3254 0.00089 0.00064 0.51 0.05 0.000034 0.000012
11.93_922.2472 0.00037 0.00015 0.44 0.18 0.000038 0.000000

Maximun RSD/% NA 0.00364 0.00680 0.74 0.76 0.000048 0.000065

Pre = intermediate precision, Rep = repeatability, RSD = relative standard deviation, RT = retention time.

https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/pROC/index.html
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statistical significance. Student t test and Welch t test were used 
to analyze the data with or without homogeneity of variance, 
respectively. P < .05 was considered to indicate a statistically sig-
nificant difference. Statistical and bioinformatic analyses were 
conducted using R software (v3.6.1).

3. Results
Univariate and multivariate statistical analyses were performed. 
Significant differences in metabolic profile, metabolite biomark-
ers, and metabolic pathways were reported.

3.1. Clinical characteristics of all participants

In total, 12 patients with AA and 15 age- and sex-matched HC 
subjects were included in the present study. The clinical demo-
graphics of the participants are summarized in Table  1. The 
living status, as indicated by the Karnofsky Performance Scale 
index showed a relatively normal living status of patients with 

AA, although it was remarkably lower than that of the HC 
group (P < .05). In addition, the tumor location of AA and the 
IDH phenotypes among the AA samples were distributed evenly 
and did not display a significant bias. The cumulative dosage of 
steroid used in the previous 3 months was equivalent to < 2000 
μg beclomethasone propionate.

3.2. Evaluation of the quality of the UPLC-Q/TOF-MS 
system

The chromatographic peak plots, including the total ion chro-
matogram and base peak intensity in ESI + and ESI– modes are 
displayed in Figure 1. The molecules were eluted successively. 
Evaluation of the stability and suitability of the UPLC-Q/
TOF-MS system was first performed based on the QC sample. 
A total of 10 abundant ion features were selected randomly 
from the dataset table from 200 to 1000 kDa in both modes. 
The retention times, peak areas, and masses of the 20 ions were 
assessed as critical indices. The relative standard deviation 

Figure 2. PCA result of ESI + and ESI–. (A) PCA plot of ESI + in (2D). (B) PCA plot of ESI + in 3 dimensions (3D). (C) PCA plot of ESI– in 2D. (D) PCA plot of 
ESI– in 3D. (PC1 = 0.172, PC2 = 0.108, PC3 = 0.0889 for ESI+; PC1 = 0.127, PC2 = 0.0859, PC3 = 0.0724 for ESI–). AA was further abbreviated as A, HC as 
H and QC as Q in the plots above. The metabolic patterns of the different groups in both ESI + and ESI– modes were significantly distinct. QC samples were 
clustered at the center of the plots. PCA, principal component analysis; ESI, electrospray ionization; 2D, 2 dimensions; 3D, 3 dimensions; QC, quality control; 
HC, healthy control; AA, anaplastic astrocytoma.
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of repeatability and the intermediate precision of the reten-
tion time, peak area, and mass were < 1.0% and displayed 
remarkable stability, particularly the retention time and mass 
(<0.001%) (Table 2).

PCA, an unsupervised clustering model, displayed the relative 
similarity of the samples (Fig. 2). Nearly all the samples were 
included in the ellipse of the plot, which indicated the absence 
of a significant abnormal sample (the confidence interval was 
95%). The PCA of ESI + consisted of 5 principal components 
with a sum of 68.24%, while the PCA of ESI– was formed by 
6 main components and summed 64.68%. The PCA plots rep-
resented the major features of the metabolic patterns of all the 
samples. There was a significant separation between the AA 
and HC groups. Moreover, the QC sample aliquots distributed 
throughout the entire injection list were tightly clustered at the 
center of the plot, and displayed adequate stability and repeat-
ability. In addition, a batch effect did not exist, according to the 
clustered QC sample points.

OPLS-DA models based on PCA were further built to discrim-
inate significant differences between the AA and HC groups. A 
total of 4386 metabolic features in ESI + and 1942 in ESI– were 
included in the OPLS-DA models. As shown in Figure 3A and 
B, the samples of the groups were significantly located on dif-
ferent sides of the plot, and displayed notably explicit sepa-
ration, indicating that remarkably different metabolic features 

existed. To avoid overfitting errors, the OPLS-DA models were 
validated with permutation. As a result, the grouping sam-
ple lines were located underneath the random sampling lines 
(Fig. 3C and D). The Q2 values of the permutation tests were < 
0.05. Therefore, these OPLS-DA models were evidently reliable 
for the identification of characteristic metabolite biomarkers 
(P < .001).

3.3. Identification of distinct metabolites and their levels

In total, 24 metabolites were identified based on the OPLS-DA 
model. Detailed information about the identified metabolites 
is summarized in Table 3. The metabolites were distributed in 
S-plots (Fig. 4A and B). All of them were located on the edge of 
the plot, which indicated potentially high correlation and cova-
riance (Table 4). The relative content level and fold change of 
these metabolites are displayed as a heatmap and a volcano plot 
in Fig. 4C and D, respectively. All samples were clustered into 
their own biological groups, which indicated their potential to 
be used as biomarkers.

3.4. Mining of biomarkers

The above 24 metabolites were evaluated for their potential 
as biomarkers with ROC. As shown in Figure 5, 8 metabolites 

Figure 3. OPLS-DA models and validation plots. (A) OPLS-DA model for AA vs HC in ESI + mode (P < .0001, Coefficient of Variation, CV-ANOVA) and (B) its 
validation with permutation (R2 = 0.974, Q2 = -0.331). (C) OPLS-DA model for AA vs HC in ESI– mode (P < .001, CV-ANOVA) and (D) its validation with permu-
tation (R2 = 0.905, Q2 = -0.249). The discriminant models displayed significant separation between AA and HC. Permutation test showed a high confidence 
about the validity of the OPLS-DA models. OPLS-DA, orthogonal projections to latent structures-discriminant analysis; ESI, electrospray ionization; HC, healthy 
control; AA, anaplastic astrocytoma.
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passed the examination with a high sensitivity and specificity 
(area under the curve > 90%). Among them, 4 metabolites, (S3) 
3-methylxanthine, (S12) sphinganine, (S15) LysoPC(18:1), and 
(S19) lactosylceramide (d18:1/12:0) could be used as reliable 
biomarkers because of their markedly high sensitivity and spec-
ificity (area under the curve > 98%).

3.5. Global profile of perturbed metabolic pathways and 
integrated network

The 24 metabolites identified above involved 6 metabolic path-
ways. Five of these, including sphingolipid, glycerophospholipid, 
linoleic acid, caffeine, and porphyrin metabolism, were perturbed 
significantly (impact > 0.1, –log(P) > 4.0). The extent of perturba-
tion of these metabolic pathways is shown in Fig. 6A. Although 
retinol metabolism-related metabolites were identified in the pres-
ent study, this pathway was not significantly perturbed (impact < 
0.1, –log(P) < 4.0). The related pathways of all the metabolites 
involved are presented in Table 3. Besides, the metabolic func-
tions of these metabolites were enriched (Fig. 6B), and the top 
enriched metabolic functions of these metabolites were nearly in 
complete agreement with the results of pathway prediction.

Systematic metabolic interactions were integrated and con-
structed, as shown in Fig. 7. Different metabolic pathways were 
clustered and had various connections with other pathways. The 
network of all metabolites directly displayed the systematic per-
turbation and the related critical metabolites, and comprehen-
sively revealed the changed metabolic profile of AA.

4. Discussion
Astrocytoma is a type of glioma that easily relapses after surgi-
cal operation with poor prognosis. The 2-year survival rate is 
<30%.[22] Previous studies have reported that the pathogenesis 
of AA is associated with environmental factors as well as epi-
genetic and immune regulation.[3,23,24] Recently, metabolomics 
techniques have been used to explore the mechanisms of var-
ious diseases due to their characteristics of the focused objects 
and metabolites. In the present study, UPLC-Q/TOF-MS was 
used to explore metabolic features. The differences in meta-
bolic profiles between patients with AA and HC subjects were 
compared using multivariate analysis. A total of 24 distinct 
metabolites were identified, and 4 metabolites were confirmed 
to be biomarkers for diagnosis with markedly high precision. 

Figure 4. Identified multivariate and content level of the differentiated metabolites. S-plots of the orthogonal projections to latent structures discriminant analysis 
model in (A) ESI + and (B) ESI– modes. All distinct metabolites were highlighted as red circles. The other metabolic features were displayed as green points. 
Metabolites of both ESI modes were located on the edge of the S-plots, which indicated a high correlation and covariance. (C) Heatmap displayed the relative 
content level of all perturbed metabolites in both ESI modes. The samples of both groups were naturally clustered into their biological groups, indicating an 
exemption of the abnormal samples and excellent representativeness of metabolic distinction between the groups. (D) Volcano plot of the FC and P-values of all 
metabolites after logarithmic transformation. All the differentiated metabolites features identified scattered largely with significant FC and/or P-values and were 
marked with their labels. ESI, electrospray ionization; FC, fold change.
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Furthermore, 5 significantly perturbed metabolic pathways 
(Sphingolipid, Glycerophospholipid, Linoleic acid, Caffeine, 
and Porphyrin metabolism) were reported. The detailed roles 
of these pathways in the pathogenesis of AA are discussed in 
detail below.

Metabolomics has been widely used to study the pathogen-
esis of various types of glioma, such as glioblastoma[25] and 
glioma with different grades.[16,26] Several prediagnostic mark-
ers have been associated with glioblastoma risk, including α- 
and γ-tocopherols.[27] Differentiated choline and amino acids 
were found in glial tumor tissues of different grades.[16] In 
addition, a multiomics study on glioblastoma in vitro revealed 
an association between genes and metabolic features.[28] 
However, little is known about the underlying systematic 
metabolic alterations associated with the aggressive process 
of AA. Until now, more molecular pathogenetic evidence has 
clarified the promoting role of IDH mutation in the patho-
genesis of glioma, while brain glioma containing mutated 
IDH could also give rise to specific metabolic signatures.[29] 
In details, IDH mutation could cause competitive inhibi-
tion of α-ketoglutarate-dependent dioxygenase TET2 via 
oncometabolite-2ʹ-hydroxgluterate.[30] As a result, the whole 
genome of the tumor cell shows a global hypermethylation 
status, including O6-Methylguanine-DNA Methyltransferase 
(MGMT) promoter.[31] The methylation of MGMT is highly 
associated with the effect of chemotherapy with temozolo-
mide.[32] Therefore, in the present study, the potential risk of 
difference caused by IDH mutation was balanced. Long-term 
metabolic reprogramming is a result of adaptive alterations of 
brain tumor cells, which involve changing lipids, amino acids, 
nucleic acids, and other metabolites necessary for cellular pro-
liferation, tumor growth, and survival.[15] In the present study, 
5 significantly perturbed metabolic pathways were identified, 
with their roles explained as follows.

It has been reported that sphingolipids, glycerophospho-
lipids, and linoleic acid could participate in the processes 
of energy metabolism and immune and inflammatory regu-
lation,[33,34] which indicates a potential association with the 
pathogenesis of AA.[35] Albers et al reported increased levels 

of glycerophospholipid compounds with proton-decoupled 
[31]P and [1]H magnetic resonance spectroscopy metabo-
lomics techniques, which were consistent with our findings 
regarding the level of phosphoethanolamine (PE). However, 
the detailed mechanism might be related to the upregulation 
of diacylglycerol-acyltransferase 1 by glioma cells.[36] The 
normal function of mitochondria in the brain is essential 
for the physiological role of neurons, and its alteration has 
been regarded as a critical hallmark of various cancer types. 
Kiebish et al observed that mice with metabolic abnormalities 
of phosphocholine (PC) and PE in the brain were more sus-
ceptible to spontaneous glioma.[37]

Recently, the sphingolipid system has been promoted as a tar-
geting pathway for glioblastoma therapy.[38] Various molecules 
of this pathway play roles ranging from activation to suppres-
sion in the pathogenesis of glioblastoma.[39] In our study, phy-
tosphingosine has been demonstrated to induce the autophagy 
of glioma.[40] Ceramide and sphingomyelin can promote apop-
tosis of glioma,[41,42] while galabiosylceramide has the potential 
to participate in killing glioma cells by dendritic and natural 
killer cells.[43] In addition, derivatized sphingolipids have been 
reported to be at a high level in high-grade gliomas.[44] To date, 
only the study by Sullards et al in 2003 systematically evalu-
ated the detailed biological function of various sphingolipids in 
vitro.[45] In the present study, perturbations of glycerophospho-
lipid metabolism and systematic changes in sphingolipid metab-
olism were observed in patients with AA. The dysregulation of 
these pathways is highly consistent with the prediction model 
of metabolic profile.[46] However, more detailed mechanisms 
of these differentiated compounds in the pathogenesis of AA 
require further experimental confirmation.

Linoleic acids, which are important polyunsaturated fatty 
acids, regulate the cell cycle, including peroxidation activities 
and apoptosis.[47,48] In a previous study, the direct effects of lin-
oleic acids on AA tumor cells varied and were specific to the 
tumor type,[49] which is similar to the results of our study on 
the level of linoleic acids. The current study observed opposite 
trends in linoleic and bovinic acid in patients with AA. Gamma-
Linolenic acid has been recently demonstrated to alter the 

Table 4

Change fold and multivariate statistics of the perturbed metabolites

Metabolites Relative comparison Fold change (AA/HC) Log2(FC) Covariance Correlation 

S1 AA > HC 1.5958 0.6743 –0.069700 –0.557837
S2 AA < HC 0.3207 –1.6406 –0.156779 –0.512242
S3 AA < HC 0.0888 –3.4940 0.039407 0.408745
S4 AA < HC 0.5932 –0.7534 –0.093510 –0.804158
S5 AA < HC 0.7430 –0.4286 0.123863 0.52474
S6 AA < HC 0.4831 –1.0495 –0.095251 –0.547364
S7 AA < HC 0.1463 –2.7729 –0.198145 –0.467091
S8 AA < HC 0.6415 –0.6406 –0.079232 –0.787085
S9 AA > HC 7.8625 2.9750 –0.069506 –0.0693994
S10 AA > HC 4.0314 2.0113 0.142604 0.727986
S11 AA < HC 0.4408 –1.1819 0.103230 0.871756
S12 AA < HC 0.2991 –1.7416 –0.125151 –0.764926
S13 AA < HC 0.5247 –0.9304 0.086365 0.655545
S14 AA < HC 0.1481 –2.7553 0.123863 0.52474
S15 AA < HC 0.0511 –3.5898 –0.091843 –0.373945
S16 AA > HC 2.6543 1.4083 0.123863 0.52474
S17 AA < HC 0.6174 –0.6958 0.100587 0.640483
S18 AA < HC 0.0293 –4.0932 0.365943 0.423538
S19 AA > HC 5.4326 2.4416 –0.156779 –0.512242
S20 AA < HC 0.4923 –1.0223 0.335006 0.784899
S21 AA < HC 0.3468 –1.5280 0.405920 0.82348
S22 AA < HC 0.3500 –1.5145 0.039407 0.408745
S23 AA > HC 7.0080 2.8090 0.125187 0.594305
S24 AA < HC 0.3058 –1.7092 0.128666 0.834996

AA = Anaplastic astrocytoma, FC = fold change, HC = healthy control.
It is the ratio of the log-transformed intensity.
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migration, proliferation, and apoptosis of glioblastoma cells.[50] 
The exhaustion of these bioactive molecules may be responsible 
for the deterioration of AA.[51] A homolog of PC (16:0/16:0), 
which is involved in several metabolic pathways, including 
linoleic acid and glycerophospholipid, was also noticed to be 
markedly perturbed in AA, although the mechanism remains 
unknown.

Caffeine metabolism has been reported to participate in 
the regulation of signaling pathways associated with cellular 
apoptosis of glioma, including activation of cathepsin B, mito-
gen-activated protein kinase, and caspase-3.[52,53] In addition, the 
metabolites of the caffeine metabolite pathway may regulate the 
activity, cellular cycle, and proliferation of glioma negatively.[54] 
The present study identified for the first time the potential asso-
ciation between xanthine, 3-methylxanthine, theobromine, 
paraxanthine, and the pathogenesis of AA. These compounds 
could potentially prevent malignant glioblastoma proliferation 
by negatively regulating phosphodiesterase-4, extracellular 
signal-regulated kinase, Akt/mammalian target of rapamycin 
kinase, and nuclear factor kappa-light-chain-enhancer of acti-
vated B cells.[55]

Porphyrin metabolism perturbed with changes in several 
metabolites was also observed in AA in this study. Emerging 
evidence shows that protoporphyrin IX,[56,57] as an intermedi-
ate compound of the heme-biosynthesis cascade, can produce 
fluorescence and is used as a standard for surgical resection 

of glioma,[58] since it accumulates within the tumor tissues.[59] 
Bilirubin has been demonstrated to activate endoplasmic retic-
ulum stress-induced autophagy of neuronal cells, which is a 
critical method of apoptosis of tumor cells.[60,61] The other 
distinct metabolites in the porphyrin metabolic pathway have 
rarely been reported to participate in the pathogenesis of AA or 
other gliomas. The potential regulatory and biological roles of 
these novel markers on the tumor cells of AA may provide new 
insights into the pathogenesis of AA.

Importantly, the present study identified several biomark-
ers for precision diagnosis. Of the 24 metabolites, 4, including 
3-methylxanthine, sphinganine, LysoPC(18:1), and lactosylce-
ramide, displayed an excellent predictive effect for AA. These 
biomarkers are bioactive molecules and are in critical topolog-
ical positions of the metabolic network. However, the regula-
tory mechanism and detailed biological role of these biomarkers 
in the pathogenesis of AA needs further study. Tissue-specific 
energy metabolism dysfunction was not observed at the system 
level compared with the previous study.[62] Given the small sam-
ple size of this study, which is the most important limitation 
of our study, a larger patient cohort needs to be included in 
future studies to test the accuracy of other metabolites for phe-
notyping. Due to the extremely limited quantitative ability of 
untargeted metabolomics techniques, a targeted metabolomics 
experiment is required for further investigation. In addition, 
genetic and pathogen background-controlled murine models 

Figure 5. Receiver operating curve analysis results of all distinct metabolites for biomarkers mining. The metabolites S3, S12, S15 and S19 showed marked 
potential as biomarkers with extremely high precision (AUC > 98%), while some metabolites, including S2, S6, S10, and S21, have a relatively high potential to 
be used as biomarkers (98%>AUC > 90%). AUC, area under the curve.
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Figure 6. Metabolic pathways and functions enrichment from MetaboAnalyst 4.0 platform. (A) The statistical result of the impact extent of all the perturbed 
metabolic pathways. A total of 12 metabolic pathways were reported. However, only 5 pathways, including Sphingolipid, Glycerophospholipid, Linoleic acid, 
Caffeine and Porphyrin pathways (impact > 0.1, -log(P) > 5) were identified as perturbed significantly. (B) Metabolic functions enrichment based on the metabo-
lites identified. Several top metabolic functions were also observed. DOS, degradation of superoxide; THS, thyroid hormone synthesis; ALALA, α-linolenic acid 
and linoleic acid; METC, mitochondrial electron transport chain.

Figure 7. Interaction network of remarkably perturbed metabolic pathways and the distinct metabolites identified. Different metabolic pathways were clustered 
and shown in different colors, with the critical metabolites highlighted as large nodes. The various metabolic pathways formed an integrated network and gen-
erally described the systematic metabolic perturbation and the interaction of all critical metabolites.
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could be fully utilized in the future to further explore the mech-
anism of AA. A quantitatively accurate, larger sample size-based 
targeted metabolomics study could also correlate with clinical 
information more confidently to mine the in-depth biological 
implications. In the present study, we performed a cross-sec-
tional study on the mechanism of AA in samples from different 
patients. However, assessment of the metabolic profile of AA 
patients using a longitudinal method is very informative. It will 
be helpful to explore the mechanism of AA by determining the 
metabolic profile change in a longitudinal follow-up study in the 
future. Comparison of different cancers via metabolomics will 
also be another direction to elucidate the differentiated mecha-
nism and unique features of various cancers.

5. Conclusion
The perturbed metabolic pattern related to immune regulation 
and cellular signaling transduction is associated with the patho-
genesis of AA. 3-Methylxanthine, sphinganine, LysoPC(18:1), 
and lactosylceramide could be used as biomarkers of AA in 
future clinical practice. This study provides a therapeutic basis 
for further studies on the mechanism and clinical precision 
diagnosis of AA. Targeted metabolomics verification based on 
a larger sample cohort is necessary to improve the diagnosis 
strategy.
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