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Introduction
The presence of apical adherens junctions (AJs) is a defining 
feature of all epithelial sheets (Fristrom, 1988). AJs are con-
structed on a foundation of homophilic contacts between epi-
thelial cadherin (E-cadherin) clusters on the surface of adjacent 
epithelial cells. This adhesion is modified by other adhesion 
molecules, such as the Nectin–Afadin complex (or Echinoid–
Canoe in Drosophila melanogaster; Wei et al., 2005; Sawyer  
et al., 2009) to produce mature junctions. E-Cadherin belongs 
to the family of classical cadherin adhesion molecules, which 
facilitate the dynamic regulation of adhesive contacts (for a re-
view of the cadherin family of proteins see Gumbiner, 2005).

E-Cadherins are characterized by long extracellular and 
cytoplasmic domains. Although the extracellular domain of  
E-cadherin establishes homophilic interactions between neighbor-
ing cells (Gumbiner et al., 1988), its cytoplasmic tail associates 
with an array of intracellular proteins. These proteins link cell–
cell adhesion to the actin–myosin network, vesicle transport, 
and cell polarity machinery. The best studied of these links is 

the binding of the cytoplasmic tail of E-cadherin to the Arma-
dillo repeat protein -catenin, which in turn binds -catenin, 
which interacts with actin and several actin-binding proteins 
(Fig. 1 A; Bershadsky, 2004; Yonemura et al., 2010). Through 
the action of these intracellular binding partners, E-cadherin 
contacts modulate actin filament organization at the underlying 
cortex (Baum and Perrimon, 2001; Perez-Moreno et al., 2003; 
Drees et al., 2005). Signals generated at cell–cell junctions, 
such as those in response to changes in cell–cell contact, can 
also be transduced through the cytoplasmic tail of E-cadherin to 
the nucleus to alter gene expression (Okada et al., 2007; Balda 
and Matter, 2009). For example, -catenin, a component of AJs 
and a transcriptional coactivator, has been implicated in the 
transduction of mechanical signals from junctions to the nucleus 
(Farge, 2003). Moreover, in mouse models for colon cancer, 
mechanical stimulation leads to -catenin phosphorylation at 
the site of its interaction with E-cadherin and increased -catenin 
nuclear localization, leading to the transcription of the onco-
genes Myc and Twist1. All of these effects can be prevented by 
blocking -catenin phosphorylation using Src kinase inhibitors 
(Whitehead et al., 2008). Additionally, recent work has impli-
cated E-cadherin, -catenin, and vinculin in participating in a 
mechanosensory pathway that allows cells to modulate their 
actin cytoskeleton in response to applied force (le Duc et al., 
2010; Yonemura et al., 2010). These data suggest that AJs can 
detect changes in cell–cell contacts and mechanical stress.

The basic features of E-cadherin–catenin-
based AJs
Junctional E-cadherin–catenin complexes exhibit several im-
portant characteristics that are critical for the proper functioning 
of epithelia. First, homophilic interactions between the extra-
cellular portions of E-cadherin molecules help to provide me-
chanically strong adhesive links between cells in the tissue. 
Second, AJs help to define an epithelial cell’s apical–basal axis 
in many systems and, in doing so, act as a reference point for the 
coordination of cell polarity across the epithelial sheet (Fig. 1 B). 
Third, individual junctions linking cells in an epithelium can 
form polarized cortical domains in the plane of the epithelium, 

The epithelial cadherin (E-cadherin)–catenin complex binds 
to cytoskeletal components and regulatory and signaling 
molecules to form a mature adherens junction (AJ). This 
dynamic structure physically connects neighboring epi-
thelial cells, couples intercellular adhesive contacts to the  
cytoskeleton, and helps define each cell’s apical–basal 
axis. Together these activities coordinate the form, polar-
ity, and function of all cells in an epithelium. Several mol-
ecules regulate AJ formation and integrity, including Rho 
family GTPases and Par polarity proteins. However, only 
recently, with the development of live-cell imaging, has the 
extent to which E-cadherin is actively turned over at junc-
tions begun to be appreciated. This turnover contributes to 
junction formation and to the maintenance of epithelial 
integrity during tissue homeostasis and remodeling.
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states (Baum et al., 2008), which because of this turnover, occur 
unperturbed even in systems in which E-cadherin is ubiqui-
tously overexpressed (Oda and Tsukita, 1999).

Several recent studies have analyzed the turnover of  
E-cadherin in the context of stable epithelial AJs, in which it 
can be easily measured (Delva and Kowalczyk, 2009). When  
E-cadherin turnover was monitored using surface biotinylation 
and recycling assays in cultured epithelial cells, Le et al. (1999) 
showed that E-cadherin is actively internalized and recycled 
back to the plasma membrane via a process that is dependent on 
clathrin-mediated endocytosis (Fig. 2). Similar observations 
have been made in vivo, where live imaging of E-cadherin traf-
ficking in the Drosophila pupal notum showed that E-cadherin 
is recycled from the basolateral membrane to AJs (Langevin  
et al., 2005). In this tissue, dynamin- and actin-dependent endo-
cytosis was shown to be required to remove surface E-cadherin 
to maintain the position and stability of mature AJs (Georgiou 
et al., 2008; Leibfried et al., 2008). Recycling requires the exo-
cyst complex for the delivery of E-cadherin to AJs (Langevin  
et al., 2005; Blankenship et al., 2007). The AJ component  
-catenin was shown to directly interact with the Sec10 exocyst 

a process known as planar cell polarity. Although it is not yet 
understood how AJs achieve and coordinate these multiple 
tasks, recent work has begun to reveal many of the underlying 
molecules and cell biological processes involved. Because these 
features of epithelia are generic, many of them are likely to be 
conserved features of epithelia in multicellular animals.

AJ dynamics
A key feature of AJs is that they are dynamic, both when as-
sessed in vivo and in cell culture (Fujita et al., 2002; Pilot et al., 
2006; Cavey et al., 2008; de Beco et al., 2009). In fact, the ability 
for individual AJs to be continually formed and disassembled 
is vital for the preservation of epithelial integrity because this 
must be maintained in the face of constant changes in cell pack-
ing that accompany changes in tissue organization, cell divi-
sion, cell death, and delamination. As a result of this plasticity, 
changes in the length of AJs can release stresses that have accu-
mulated in an epithelium and can accommodate morphoge-
netic movements—from intercalation to epithelial bending.  
In addition, the turnover of E-cadherin–mediated adhesions is 
critical for rapid transitions between epithelial and mesenchymal 

Figure 1.  Factors required to polarize an epi-
thelium. (A) E-Cadherin can dimerize and form 
trans-homophilic interactions to form cadherin 
clusters. Ca2+ ions are required to stiffen the 
extracellular domain and are essential to form 
homophilic interactions. The E-cadherin intra-
cellular domain contains binding sites for the 
catenins p120 and -catenin, thereby forming 
the cadherin–catenin complex. p120 catenin 
links cadherin to microtubules and is also im-
portant to prevent cadherin endocytosis and 
degradation. -Catenin binds -catenin, which 
in turn binds actin and several actin-associated  
proteins, including -actinin, vinculin, and 
formin-1. The cadherin–catenin complex also 
binds many other proteins, including signaling 
proteins, and cell surface receptors and forms 
a hub for protein–protein interactions. (B) AJ 
maturation promotes the assembly of the tight 
junction (TJ) in vertebrates and the septate junc-
tion (SJ) in Drosophila epithelial cells, which 
both function to provide a paracellular diffusion 
barrier. The AJ is also necessary to form distinct 
apical and basolateral domains within the cell 
with conserved protein complexes that are re-
quired to establish and maintain these domains. 
Apical polarity proteins are highlighted in red; 
basolateral polarity proteins are highlighted 
in blue. Apical polarity proteins are found  
throughout the apical domain but are found con-
centrated just above the AJ (red boxes). Basolat-
eral proteins are found concentrated just below  
the AJ (blue boxes), and a mutual inhibition 
between apical and basolateral complexes 
maintains this apicobasal polarity. (C) The cyto-
skeleton is also polarized within epithelial cells 
and several Rho GTPases, and polarity proteins 
influence the localization and activity of these 
cytoskeletal structures (Georgiou and Baum, 
2010). Other subcellular structures, although 
not depicted, are also organized along the api-
cobasal axis, including the centrosome and the 
Golgi. Baz, Bazooka. Crb, Crumbs. DaPKC, 
Drosophila aPKC. DLG, discs large. LGL, lethal 
giant larvae. Sdt, Stardust. Yrt, yurt.
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MCF7 and MDCK cells, de Beco et al. (2009) found that most 
E-cadherin did not diffuse along the membrane in mature junc-
tions. Instead, it was rapidly recycled between internal and plasma 
membrane pools. Thus, when endocytosis was pharmacologi-
cally inhibited, fluorescence recovery at individual junctions 
was also blocked, suggesting that the majority of E-cadherin 
membrane redistribution in these cells occurs through recycling 
via vesicle trafficking (de Beco et al., 2009). Recent work by 
Hong et al. (2010) suggests a more complex mechanism to 
maintain AJ homeostasis. By expressing two mutant forms of 
E-cadherin in epithelial A-431 cells and in CHO cells lacking 
endogenous cadherin, the authors suggest a three-step process: 
(1) cadherin is directionally recruited to contact sites, in an  
energy-dependent process; (2) cadherin forms clusters within 
the membrane, in part via lateral catenin-dependent association; 
(3) cadherin is actively removed from these clusters to maintain 
a dynamic equilibrium. It was noted, however, that clathrin- 
mediated endocytosis alone did not account for the turnover of 
cadherin at AJs in this study.

Similarly, experiments in developing animals point to 
high rates of E-cadherin turnover throughout the life of an AJ, 
even when actively engaged in strong cell–cell adhesions. In the 
early Drosophila embryo, E-cadherin complexes can be found 
in clusters with interesting dynamic properties that depend on 
links with the underlying actin cytoskeleton. Small stable actin 
patches stabilize E-cadherin microdomains, whereas a dynamic 
actin network acts in a manner dependent on -catenin to pre-
vent the lateral movement of adhesive complexes. This suggests 
a functional separation of E-cadherin turnover and lateral mo-
bility (Cavey et al., 2008).

Regulation of E-cadherin and AJs  
by GTPases
Although the regulation of AJs varies across experimental sys-
tems, in cases in which it has been examined, the formation and 
maintenance of adhesive cell–cell contacts (Bowers-Morrow  
et al., 2004) involves an intimate relationship between E-cadherin–
mediated AJ protein complexes, the actin cytoskeleton and its 
regulators, and the Rho family GTPases Rho, Rac, and Cdc42 
(Braga, 2002). These interactions occur in both directions, so 
that whereas Rho family GTPases help to regulate AJ dynamics 
and to position E-cadherin–based AJs, AJs also modify the  
activity of these GTPases to alter cell structure and polarity 
(Fig. 1, B and C). These interactions are discussed in the follow-
ing sections, during the establishment, maintenance, and re-
modeling of epithelia.

Rho family GTPases in AJ establishment and 

maintenance. The establishment of the initial zone of  
E-cadherin–mediated cell–cell contacts has been shown to re-
quire local activation of the Rho family GTPase Rac (Ehrlich 
et al., 2002; Kovacs et al., 2002; Lambert et al., 2002; Gavard  
et al., 2004; Hoshino et al., 2004). By driving the formation of 
actin-based protrusions (Ridley et al., 1992; Braga et al., 1997; 
Ridley, 2006) that carry E-cadherin (Vasioukhin et al., 2000), 
Rac can promote the formation of new E-cadherin–based con-
tacts between neighboring cells. Conversely, the establishment 
of initial contacts between adjacent epithelial cells induces 

subunit (Langevin et al., 2005), suggesting the possibility that 
-catenin can direct exocytosis of AJ components to specific 
sites on the plasma membrane (Grindstaff et al., 1998; Hsu  
et al., 1999; Yeaman et al., 2004).

These data suggest that E-cadherin recycling plays a key 
role in modulating the number and distribution of E-cadherin 
molecules actively engaged in adhesive interactions between 
cells. Although the relative contributions of E-cadherin traffick-
ing and diffusion to AJ maintenance have yet to be analyzed in 
detail in developmental systems, researchers have begun to ex-
amine this question in cell culture. Through the use of 2-photon 
FRAP and fast 3D wide-field fluorescence microscopy in 

Figure 2.  The regulation of E-cadherin recycling. (A) p120 catenin 
inhibits cadherin endocytosis and degradation by preventing the asso-
ciation of adaptor complexes with the cadherin juxtamembrane intracel-
lular region (Fujita et al., 2002; Ishiyama et al., 2010), which prevents 
cadherin recruitment into clathrin-coated pits. (B) Dissociation between 
cadherin and p120 allows adaptors, such as AP-2 and -arrestin, to 
recruit clathrin and other accessory proteins to promote internalization. 
Additionally, specific ubiquitin conjugates (E2) and ligases (E3) may act 
as adaptors for clathrin or as connectors to AP-2 adaptors to activate the  
clathrin-coated endocytosis machinery. Cdc42–Par6–aPKC, via TOCA pro
teins and Arp2/3, promotes dynamin-mediated endocytosis. (C) E-Cadherin 
can undergo either clathrin-dependent (red) or -independent (blue) endo-
cytosis (Delva and Kowalczyk, 2009), and its possible trafficking routes 
are depicted here together with several proteins that have been shown to 
have a demonstrated role in E-cadherin trafficking (Lock and Stow, 2005; 
Palacios et al., 2005; Bryant et al., 2007; Toyoshima et al., 2007). 
Both trafficking routes converge onto the Rab5-positive early endosome, 
which sorts its cargo for recycling or degradation. It is not known whether  
E-cadherin uses the Rab4-dependent rapid recycling route to facilitate 
its trafficking.
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In vivo studies have come to similar conclusions in sup-
porting a role for actin-based protrusions in intercellular junction 
formation during development. Filopodia carrying E-cadherin 
help to bring together the free edges of epithelial sheets during 
embryonic development in Caenorhabditis elegans (Raich et al., 
1999), Drosophila (Jacinto et al., 2000), and in vertebrates 
(Fig. 3 B; Brock et al., 1996; Vasioukhin et al., 2000). Also, 
during Drosophila tracheal development, E-cadherin is found 
accumulating at the tips of filopodia as cell–cell contacts are 
generated before the fusion of epithelial-based tracheal branches 
(Tanaka-Matakatsu et al., 1996).

This collaboration between Rho GTPases and AJ compo-
nents is maintained during AJ maturation, as tight junctions and 
apical–basal polarity are established through the action of both 
Rac and Cdc42. Interaction between these activated Rho family 
GTPases and Par6 leads to the activation of atypical PKC 
(aPKC), which has been shown to be required for the maturation  

local membrane remodeling and promotes the formation of 
lamellipodia (in MDCK cells or IAR-2 cells; Adams et al., 1998; 
Krendel and Bonder, 1999; Ehrlich et al., 2002) and/or filopodia 
(in primary mouse keratinocytes; Vasioukhin et al., 2000). In addi-
tion, nascent sites of adhesion rich in E-cadherin often appear to 
be coupled to bundles of actin filaments. These data imply a 
tight link between de novo contact formation and Rho family 
GTPase-dependent actin polymerization and/or remodeling 
(Fig. 3; Adams et al., 1998; Nakagawa et al., 2001; Kovacs et al., 
2002; Lambert et al., 2002). Active GTP-bound Rac can also 
stimulate the activity of phosphatidylinositol 3-kinase (leading to 
the formation of PIP2) and the activation of Cdc42- and Arp2/3-
mediated actin nucleation as well as the recruitment of cortac-
tin, Mena, PAK4, and formin-1 (Vasioukhin et al., 2000; Ehrlich 
et al., 2002; Kovacs et al., 2002; Kobielak et al., 2003; Rivard, 
2009; Wallace et al., 2010); all of which may help to promote an 
increase in the zone of cell–cell contact.

Figure 3.  AJ assembly in vitro and in vivo. 
(A, 1) Cell contact and E-cadherin engage-
ment in vitro leads to a remodeling of the actin 
cytoskeleton (green), promoting lamellipodial 
and filopodial protrusions via Rac, Cdc42, 
and Arp2/3 activity. (2) These dynamic protru-
sions promote further E-cadherin interactions 
and clustering. The nascent AJs are connected 
to the circumferential actomyosin cable via  
contractile actin bundles (blue). (3) Myosin-
mediated contraction expands intercellular con-
tact and aligns cadherin–catenin complexes 
(red bars), leading to the maturation of the 
junction. (B) Fusion between epithelial sheets 
in vivo again shows cooperation between dy-
namic protrusions (green arrows) and acto-
myosin cables (blue arrows). (1 and 2) An 
actomyosin cable assembles at the edge of 
each epithelial sheet, forcing the two sheets to-
gether. (3) Individual cells on the leading edge 
of each epithelial sheet form filopodia (green) 
that engage with one another, forming cad-
herin–catenin clusters at the points of contact 
(red), which are required to seal the two sheets 
together. In the case of the Drosophila embryo 
during dorsal closure, the ectodermal sheets 
migrate over a squamous epithelium called the 
amnioserosa. Here, the apical constriction of 
amnioserosa cells has been shown to promote 
dorsal closure (inset). Green arrows represent 
protrusive activity; blue arrows represent con-
tractile activity.
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apicobasal polarity (Tepass et al., 1996; Uemura et al., 1996), 
under these conditions, the integrity of the ventral neuroecto-
derm was lost. Thus, the ventral neuroectoderm requires higher 
levels of E-cadherin to maintain AJ stability in the face of cell 
rearrangements than the dorsal epithelium. Because blocking 
neuroblast specification and delamination within this tissue 
restores tissue integrity, even in the absence of zygotic E-cadherin 
(Tepass et al., 1996; Uemura et al., 1996), newly expressed  
E-cadherin appears to be required to support AJ plasticity and 
morphogenetic movements within this tissue.

Harris and Tepass (2008) went on to show that Cdc42 and 
Par proteins regulate the trafficking of AJ components and api-
cal polarity proteins in the ventral ectoderm to maintain AJ sta-
bility in the face of cell rearrangements. Once again, AJ integrity 
was specifically disrupted within the ventral neuroectoderm  
after a reduction in Cdc42 activity, which was mediated by the 
expression of a dominant-negative construct or as the result of 
loss-of-function mutations. Reducing Cdc42 activity also led to 
a mislocalization of both junction and apical polarity proteins in 
the ventral ectoderm, including - and -catenin, apical Par 
proteins, Crumbs, and PatJ. Again, all these defects could be  
restored by blocking neuroblast specification and delamination. 
Genetic interaction studies suggested that these defects in AJ 
integrity followed Cdc42-dependent changes in the endocytosis 
and trafficking of apical polarity proteins, such as Crumbs.

Interestingly, they also showed that the apical Par proteins 
(Bazooka/Par3, Par6, and aPKC) act together with Cdc42 in the 
regulation of endocytosis in this system, as loss-of-function  
mutants for each gene phenocopied the cdc42 phenotype (Harris 
and Tepass, 2008). The authors proposed a model in which 
Cdc42, together with the Par complex, is required to decrease 
the endocytic uptake of apical proteins and to promote the pro-
gression of apical cargo from the early to the late endosome.  
In line with this need for active membrane recycling to support 
AJ plasticity, Rab11, a small GTPase required for vesicle recy-
cling, was also found to be required to maintain epithelial integ-
rity in the ventral ectoderm (Roeth et al., 2009).

The connection between Cdc42, apical Par proteins, and 
junctional endocytosis has also been borne out in work in other 
systems. In mammalian cell culture, both Rac and Cdc42 activ-
ity are required to modulate the actin cytoskeleton to affect  
E-cadherin endocytosis (Akhtar and Hotchin, 2001; Izumi et al., 
2004). Also, a genome-wide RNAi screen in C. elegans (Balklava 
et al., 2007) showed that Cdc42 and Par proteins promote endo-
cytosis. More recently, Par complex proteins were shown to 
modulate and to be the substrates for dynamin-mediated endo-
cytosis in the C. elegans zygote (Nakayama et al., 2009).

In addition, two studies using live imaging and somatic 
genetic mutant clones to investigate the relationship between 
Cdc42 and AJs in the developing pupal notum or dorsal thorax 
of the fly (Georgiou et al., 2008; Leibfried et al., 2008) showed 
that the loss of Cdc42, Par6, or aPKC function led to AJ breaks 
and ectopic junctional structures. When using transmission EM 
to image the electron-dense AJ, a reduction in Cdc42 activity 
was associated with extensive junctional spreading (Georgiou  
et al., 2008). Significantly, a similar phenotype was observed 
when the function of dynamin, a protein known to be required 

of AJs from simple cell–cell adhesions to junctional complexes 
(Yamanaka et al., 2001). Additionally, TIAM1, a Rac-specific 
guanine nucleotide exchange factor (GEF), is required for the 
establishment of functional tight junctions in keratinocytes and  
in MDCK cells (Takaishi et al., 1997; Chen and Macara, 2005; 
Mertens et al., 2005). Several other GEFs have also been  
implicated in E-cadherin cell–cell adhesion, including Tuba  
(a Cdc42-specific GEF; Otani et al., 2006) and Asef (a Rac GEF; 
Kawasaki et al., 2003).

In addition, RhoA helps to maintain E-cadherin–mediated 
adhesion via the action of Dia1 (Sahai and Marshall, 2002) and 
nonmuscle myosin II (Shewan et al., 2005). A recent paper re-
vealed that two isoforms of myosin II differentially affect junc-
tion integrity through different mechanisms, with myosin IIA 
promoting E-cadherin homophilic adhesion and clustering and 
myosin IIB supporting the integrity of the apical cortical actin 
ring (Smutny et al., 2010). Rho activity and actomyosin con-
tractility have also been implicated in cell–cell junctional ho-
meostasis in cell culture systems and in developing animals 
(Bertet et al., 2004; Dawes-Hoang et al., 2005; Blankenship  
et al., 2006; Yamada and Nelson, 2007; Abraham et al., 2009; 
Martin et al., 2009; Rolo et al., 2009; Liu et al., 2010). Rho sig-
naling has additionally been implicated in the disassembly of 
cell–cell contacts during epithelial–mesenchymal transition, in 
which active RhoA is important for hepatocyte growth factor– 
and TGF-–induced disruption to cadherin contacts (Takaishi 
et al., 1994; Bhowmick et al., 2001). AJ complex components 
together with polarity complexes, the balanced activities of 
Rho, Rac, and Cdc42, and the actomyosin cytoskeleton are, 
therefore, all required to establish and maintain junctions be-
tween adjacent cells in an epithelium.

Rho GTPases, polarity, and regulation of AJ 

turnover. A role for the apical Par proteins (Par3/Bazooka, 
aPKC, and Par6) and the Crumbs complex (Crumbs, PALS-1/
Stardust, and PATJ/Discs lost) in defining the apical domain of 
epithelial cells has long been established in a wide variety of 
systems. Significantly, interactions between these functional 
modules together with the complexes that define the basolateral 
domains (the Scribble and Yurt complexes) generate zones of 
mutual exclusion around AJs that define the apical–basal axis of 
epithelial polarity (Assémat et al., 2008) and help lead to the for-
mation of a fully differentiated (Müller and Wieschaus, 1996) 
and properly positioned (Harris and Peifer, 2005) AJ (Fig. 1 B).

Once stable AJs have been established, Cdc42, its associ-
ated Par complex components, and the apical Crumbs complex 
continue to play roles in the regulation of AJ stability by con-
trolling the active turnover of AJ components. This is especially 
important in tissues undergoing active remodeling. This is most 
striking when observing the ectoderm of the developing Dro-
sophila embryo. In this system, AJs in the relatively stable 
dorsal ectoderm can be compared with those of the ventral neuro
ectoderm, where approximately one third of cells within the 
epithelial sheet delaminate to form neuroblasts (neural stem cells), 
which occurs in waves and takes 3 h to complete (Campos-Ortega 
and Hartenstein, 1997). Although most epithelial tissues in 
mutant embryos lacking zygotic expression of E-cadherin 
were found to maintain functional cell–cell junctions and 
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During Drosophila germband extension, the tissue doubles 
its length and reduces its width by half (Irvine and Wieschaus, 
1994) as the result of changes in individual cell–cell contacts 
that results in cell neighbor exchange within the tissue and is a 
direct result of junction remodeling (Fig. 4, A and B; Bertet  
et al., 2004; Zallen and Wieschaus, 2004; Blankenship et al., 
2006). Using an E-cadherin GFP fusion protein to label the AJs 
of all cells within the epithelium, AJ behavior over the course of 
germband extension revealed a directional remodeling of the 
junction (Bertet et al., 2004; Blankenship et al., 2006). These 
cell rearrangements require the polarized distribution of proteins 
that localize to the cortex at the level of the AJ. Among these, 
myosin II and F-actin are asymmetrically localized to interfaces 
that shrink over the course of germband extension (interfaces be-
tween anterior and posterior germband cells), whereas E-cadherin, 
Armadillo/-catenin, and Bazooka/Par-3 are enriched at inter-
faces that grow during germband extension (Fig. 4 A; Bertet et al., 
2004; Zallen and Wieschaus, 2004; Blankenship et al., 2006). 
Recent work suggests that the myosin II activator Rho kinase is 
required to limit Bazooka/Par-3 localization at the cortex, pre-
venting its localization to shrinking junctions (de Matos Simões 
et al., 2010). These results implicate the actomyosin network in 
mediating the contraction of junctions over time. Additionally, 
Rho activity and myosin II have been shown to destabilize AJs, 
and conversely, Bazooka/Par-3 has been shown to promote AJ 
stability (Sahai and Marshall, 2002; Harris and Peifer, 2004; 
Chen and Macara, 2005). Although myosin II can promote 
neighbor exchange through the contraction of single-cell bound-
aries, high tension actin–myosin II cables (Fernandez-Gonzalez 
et al., 2009) spanning multiple pairs of cells are also involved in 
forming multicellular rosette patterns within the tissue, which 
resolve in a directional fashion to promote tissue elongation 
(Fig. 4 B; Blankenship et al., 2006). In addition, Rauzi et al. 
(2010) showed that anisotropies in cadherin localization at junc-
tions bias the flow of the medial actin–myosin network to induce 
polarized junctional tension during intercalation. Therefore, 
asymmetries in cell–cell adhesion and contractility combine to 
drive intercalation. Similarly, experiments in the fly wing have 
shown that epithelial cell packing and the generation of polarity 
in the plane of the epithelium are coupled (Classen et al., 2005) 
and are remodeled in parallel in response to external forces 
(Aigouy et al., 2010).

Gastrulation, another major tissue-remodeling event, re-
quires a coordinated apical cell constriction in the mesoderm, 
which requires the Rho1–Rok1 pathway and myosin II activity 
(Tan et al., 1992; Barrett et al., 1997; Nikolaidou and Barrett, 
2004; Dawes-Hoang et al., 2005). Recently, the Drosophila 
afadin homologue Canoe has been shown to be required to link 
the actomyosin cytoskeleton to the AJ during mesoderm apical 
constriction (Sawyer et al., 2009). This apical constriction in the 
fly mesoderm is thought to be mediated by pulses of actomyosin 
contractility driven by a medial actomyosin weblike network 
(Fig. 4 C; Martin et al., 2009). Therefore, during gastrulation, 
the mesoderm is using a different actomyosin network to that of 
the ectoderm during germband extension, with the former net-
work forcing apical constriction and the latter using the local 
cortical enrichment of actin and myosin to drive cell intercalation. 

for the scission of clathrin-coated endocytic vesicles (Hill et al., 
2001) was inhibited, implicating a failure of correct endocytosis 
in these mutants. In this system, in contrast to the Drosophila 
embryo (Harris and Tepass, 2008), Cdc42, Par6, and aPKC ap-
pear to promote AJ turnover, raising the possibility that there 
are tissue-specific roles for the Cdc42–Par6–aPKC complex in 
the regulation of junction turnover.

Cdc42 is an important regulator of the actin cytoskeleton 
and is known to bind to and activate WASp, which in turn pro-
motes actin nucleation via the Arp2/3 complex (Takenawa and 
Miki, 2001; Pollard, 2007). Consistent with these findings, 
both WASp and components of the Arp2/3 complex were found 
to be required to maintain AJ integrity in the pupal notum 
(Georgiou et al., 2008; Leibfried et al., 2008). F-actin dynam-
ics have been shown to be required at multiple stages of clathrin-
coated vesicle formation and scission (Yarar et al., 2005), and 
both WASp and the Arp2/3 complex have previously been 
implicated as key downstream targets in promoting endo
cytosis (Sokac et al., 2003; Martin et al., 2006). Additionally, 
recent evidence from C. elegans and in mammalian cells impli-
cated both WASp and the F-BAR domain containing TOCA 
(transducer of Cdc42-dependent actin assembly) proteins  
in both membrane trafficking and epithelial morphogenesis 
(Giuliani et al., 2009; Bu et al., 2010). The TOCA family of 
proteins regulate actin dynamics via a WASp-interacting SH3 
domain and additionally bind to and deform the membrane via 
a BAR domain, which can trigger the formation of plasma 
membrane invaginations. This is thought to enable TOCA pro-
teins to promote the internalization of plasma membrane pro-
teins (Itoh et al., 2005). Consistent with this notion, the single 
Drosophila TOCA protein, Cip4, contributes to E-cadherin 
trafficking downstream of Cdc42 (Leibfried et al., 2008). 
Therefore, the apical polarity complex Cdc42–Par6–aPKC 
seems to induce the local activation of WASp and TOCA fam-
ily proteins to drive dynamin-mediated endocytosis of AJ ma-
terial and the recycling of E-cadherin complexes (Fig. 2 B). 
Moreover, this appears to be essential to maintain junction sta-
bility and plasticity throughout development, even in relatively 
stable epithelia.

Cdc42, Par6, and aPKC have additionally been implicated 
in regulating Rho activity at the junction, providing further  
evidence of extensive cross talk between Rho GTPases, Par 
polarity proteins, and the endocytic pathway in maintaining 
AJs. Work in the Drosophila eye has shown that Cdc42–Par6–
aPKC-mediated regulation of apical Rho activity is required to 
maintain AJ integrity and to regulate epithelial cell apical ten-
sion (Warner and Longmore, 2009a,b).

AJ remodeling as a driving force for 
morphogenesis
Organism growth and development is accompanied by complex 
cell shape changes and movements within epithelia that neces-
sitate apical adhesive junctions that are both strong and plastic. 
Moreover, changes in AJ length play a critical role in driving 
many morphogenetic processes, from gastrulation to cell inter-
calation. Several studies have begun to explore junctional dy-
namics that accompany and drive these processes.
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a randomly oriented web of actomyosin, as observed apically, 
basal actomyosin fibers were organized into parallel bundles 
along the dorsoventral axis (Fig. 4 D). This led to contractions 
that were directional, leading to a change in cell length along 
the dorsoventral axis. This contraction, however, is temporary 
(unlike apical constriction). Here, cells do not change their 
shape permanently, rather the constriction generates a force that 
constrains the shape of underlying tissue (He et al., 2010). Basal 
actomyosin accumulation required Rho activity as well as 
cadherin-mediated adhesion but, additionally, was subject to regu-
lation through cell–ECM interactions. In summary, a complex pic-
ture is emerging, which involves the interplay of interconnecting 
pathways that determine the location, orientation, and type of 
force generated to drive specific morphogenetic movements.

Trafficking in mediating cell rearrangements
Intracellular trafficking has been also implicated in regulating 
cell intercalation in Drosophila trachea (Shaye et al., 2008; 
Shindo et al., 2008). Here, cell intercalation occurs in epithelial 
tubes, causing tubular elongation with an accompanying reduc-
tion in tube circumference. Tracheal cell intercalation relies on 
the migratory behavior of the leading tip cell of the tracheal 
branch, which generates a pulling force believed to promote 
intercalation (Ribeiro et al., 2002). Remarkably, the lumen of 

It is clear from these experiments in the Drosophila embryo 
that the differential regulation and coordination of medial and 
junctional actomyosin are critical factors in determining the 
path of AJ dynamics and morphogenesis. Thus, ectodermal cells 
appear to actively repress apical constriction mediated via 
the formation of a medial actomyosin weblike network (Bertet  
et al., 2009).

The actomyosin weblike network is also required to pro-
mote apical constriction in the amnioserosa during Drosophila 
dorsal closure (Gorfinkiel et al., 2009; Solon et al., 2009). The 
amnioserosa is a squamous epithelium connecting the epi
dermis of the embryo and is required to guide epidermal tissue 
rearrangements during embryonic development (Jacinto and 
Martin, 2001). Additional to Rho activity and the actin cytoskel-
eton, the Par complex has recently been implicated in regulating 
apical constriction within this epithelium (David et al., 2010). 
Each pulse of actomyosin contractility was found to be based 
on the repeated assembly and disassembly of the actomyosin 
network. Furthermore, genetic interaction studies suggested that 
Bazooka/Par3, Par6, and aPKC support myosin activity and 
determine the rate and duration of contractile pulses.

Oscillating actomyosin contractions have also been ob-
served on basal cell surfaces, in the epithelial follicle cells of the 
Drosophila egg chamber (He et al., 2010). However, rather than 

Figure 4.  Different effects of actomyosin- 
mediated constriction during tissue remodeling. 
(A) Cell intercalation requires a polarized 
redistribution of proteins within the plane of 
the epithelium to limit remodeling to specific 
junctions. Before cell intercalation, actin and 
myosin (blue) as well as E-cadherin, Arma-
dillo/-catenin, and Bazooka/Par-3 (red) lo-
calize uniformly at the cortex. At the onset of 
cell intercalation, planar symmetry is broken, 
with F-actin and myosin II concentrating at 
anteroposterior interfaces (blue). Conversely, 
Bazooka/Par-3, E-cadherin, and Armadillo/ 
-catenin accumulate at dorsoventral interfaces 
(red). This limits actomyosin contractility to the 
anteroposterior interfaces (blue arrows). (B) The 
same polarized redistribution of proteins is 
required to form actomyosin cables that span 
multiple pairs of cells. Contraction results in the  
formation of multicellular rosettelike patterns. 
Blue arrows represent contractile activity. (C) The 
apical actomyosin medial weblike network (blue)  
can force apical constriction by shortening all 
junctions. (D) Basally localized and highly 
polarized actomyosin parallel bundles (blue) 
force an oscillating directional constriction at 
the base of the cell.
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rearrangements, a certain level of reorganization of cell inter
actions would be required for tissue maintenance and to respond 
to changes in internal and external mechanical forces over time, 
especially during processes such as cell division and cell death.

The diverse cell shape changes and movements that are 
required for complex morphogenetic processes to take place 
can be stripped down to the regulation of two core mechanical 
properties: cell–cell adhesion and contractility (Montell, 2008). 
The asymmetric localization of cortical myosin II and F-actin to 
shrinking junctions together with the enrichment of E-cadherin 
and junctional proteins to nonshrinking junctions to drive cell 
intercalation is a perfect example of this. The localization of a 
contractile force to specific junctions is required to break tissue 
homeostasis and force cell movements. Implicated in this pro-
cess are polarity complexes and Rho GTPases, which are re-
quired to asymmetrically localize proteins, remodel the actin 
cytoskeleton, and pattern and regulate protein trafficking. 
Additionally, cell–cell adhesion and cortical tension have been 
implicated in directing tissue organization during several devel-
opmental processes in which cell rearrangements, such as cell 
sorting and compartmentalization, are required (Hayashi and 
Carthew, 2004; Krieg et al., 2008; Landsberg et al., 2009; Manning 
et al., 2010; Monier et al., 2010).

It is also apparent that the subcellular localization of the 
actomyosin cytoskeleton must be tightly regulated to control 
different cell shape changes. Depending on the tissue and stage 
of development, constriction can be limited to the medial region 
of the apex, to junctions in some cells, or to the basal surface in 
others. Constriction forces can also be focused to a single junc-
tion, allowing polarized cell movements to take place. In each 
case, actomyosin is required, but its localization, organization, 
and regulation determine its effect. The observation that interca-
lating epithelial cells have to actively inhibit constriction high-
lights the fact that these cells possess the ability to form several 
cytoskeletal structures and carry out numerous cell shape changes. 
It is the coordinated regulation of the cytoskeleton in all cells 
within the epithelium that allows complex morphogenetic 
events to take place.
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