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When a single molecule is detected in a wide-field microscope, the image approximates the point spread
function of the system. However, as the distribution of molecules becomes denser and their images begin to
overlap, existing solutions to determine the number of molecules present and their precise
three-dimensional locations can tolerate little to no overlap. We propose a localization scheme that can
identify several overlapping molecule images while maintaining high localization precision. A solution to
this problem involving matched optical and digital techniques, as here proposed, can substantially increase
the allowable labeling density and accelerate the data collection time of single-molecule localization
microscopy by more than one order of magnitude.

I
n single-molecule localization microscopy1–3, sparse sets of emitters are localized by identifying well separated
single-molecule images and fitting them to high precision, thereby achieving resolution better than the
diffraction limit. Similar problems appear in many biological and biophysical experiments where two or more

molecules need to be resolved or their distance estimated4–6. Localization precision can be much better than the
diffraction limit, depending on the number of photons detected from the emitter and noise conditions7. Lately,
photoswitching, photoactivation, and other mechanisms were proposed and developed to overcome the problem
of overlapping molecule images in a time sequential form1–3,8. The trade-off for super-resolution in these methods
is a slower acquisition rate—typically, tens of thousands of frames are collected and processed to generate a single
super-resolution image. To ameliorate this problem, researchers have proposed fitting schemes that allow for a
few emitters generating overlapping images9–13. Unfortunately, all methods reported so far are limited to two-
dimensional imaging9–12 or provide a modest increase in emitter density13. A related technique based on statistical
fluctuation of emitters, SOFI14, provides moderately super-resolved images15. However, SOFI does not provide
the locations of individual molecules or convey three-dimensional (3D) information without scanning.

Three-dimensional information is required for complete understanding of many biological structures and
phenomena. However, 3D localization microscopy suffers from poor temporal resolution. The ability to obtain
3D localization information from dense molecule arrays could enable faster data acquisition and addresses a
fundamental problem in 3D imaging. In this report, we propose and investigate methods to increase the allowable
labeling density, namely finding the number and 3D locations of clustered emitters from a single image. The
experimental demonstration of the technique in biological samples opens up new opportunities to acquire
quantitative information about single molecules and other emitters that remain unresolved in three dimensions
with conventional methods. We use microtubules to demonstrate the method’s ability to measure the full 3D
shape of intracellular structures. In particular, we measure the radius of an antibody labeled microtubule while
detecting only about 600 photons per emitter. The methods also enable faster acquisition times for 3D single-
molecule localization microscopy, which is critical for live-cell super-resolution imaging. Furthermore, the
technique is applicable in other areas such as tracking of multiple particles or 3D surface characterization.

Results
Theory. In what follows we emphasize the distinction between the image generated by an emitter, such as a single-
molecule, and the point spread function (PSF). While the former depends on the emission pattern of the emitter,
noise, sample induced aberrations, and the detector array, the latter is only a function of the optical imaging
system.
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The key observation behind the methods proposed here is the fact
that raw images in single-molecule localization microscopy are a
combination of sparse (possibly overlapping) molecule images and
noise from different sources. This raw image can be efficiently repre-
sented with a dictionary consisting of the images of transversely and
longitudinally shifted point emitters. A dictionary is a set of vectors
that spans the space of possible images. In addition, the 3D PSF can
be engineered to facilitate the resolution of dense emitters.

Dictionaries provide alternate representations to the pixel-based
image; i.e. a set of coefficients describing the degree to which each
dictionary element is present in the image. Interestingly, a scene that
appears dense to our eyes (contains numerous overlapping images)
may be sparse in a properly chosen dictionary. Sparse means the
image can be expressed by a number of coefficients K that is signifi-
cantly smaller than the number of pixels used in the scene N (K=N).
We note that the most efficient representation of a scene with over-
lapping single-molecule images contains a single coefficient for each
emitter in the scene. Since each coefficient in the solution corre-
sponds to an emitter, they are intrinsically resolved, and the coeffi-
cients are easily converted to locations and photon counts.

The method for resolving and localizing 3D clusters of single
molecules involves a combination of optical and digital techniques:
(a) Imaging the sample with a proper 3D PSF imaging system; (b)
Creating a model of the system via experimental measurements,
theoretical calculations, or a combination of both; (c) Establishing
a dictionary composed of the image of a point source for different
locations in a dense 3D grid; (d) Solving the estimation problem of
determining the coefficients of the dictionary elements that best
represent the data. Once the non-zero coefficients are known, the
number of molecules and their locations and brightnesses can be
determined.

Several techniques can encode depth information onto a two-
dimensional image by utilizing an engineered PSF16–18. Without los-
ing generality, we chose the double-helix (DH) PSF because of its
inherent precision and depth of field advantages18. Accordingly, a
single emitter in the focal plane generates an image with two hori-
zontally displaced lobes. The transverse location of the emitter is
related to the center of the two lobes, and the axial location is encoded
in the orientation of the lobes19. For illustration, a few dictionary
elements for a DH-PSF system are shown in Fig. 1. Each dictionary
element contains the 2D cross-section of the PSF corresponding to a
different discrete emitter location in the full 3D space. Note that the
methods demonstrated here can be applied to any 3D PSF and are
not limited to the DH-PSF. However, the particular PSF structure
can become a significant factor in the overall performance. The
Supplementary Information presents a demonstration of these meth-
ods with an astigmatic PSF and a comparison with the DH-PSF.

The most important design parameter for a dictionary is the step
size between adjacent elements. Small step sizes are desirable so that
the localization precision is not limited by step size. Conversely,
smaller steps require more elements, hence a more computationally
intensive reconstruction. Typical imaging system designs and de-
sired localization precision necessitate sub-pixel steps. Further-
more, the dictionary extends along the axial direction. These two
factors mean we require dictionaries that are overcomplete, i.e. there
are more elements D in the dictionary than there are pixels per image
(D . N).

To solve the coefficient estimation problem, we investigate two
methods that are representative of large classes of solvers. The first
method is Matching Pursuit (MP). In MP, an iteration consists of
projecting the image onto the dictionary, finding and storing the
largest coefficient, and subtracting that element from the image20.
Iterations continue until a stopping criterion is met. The second
method uses Convex Optimization (CO)21. The reconstruction prob-
lem is formulated as a convex problem in which the variable to be
optimized is the sparsity of the coefficient vector (quantified as the L1

norm). Convex optimization attempts to arrive at a solution for the
significant coefficients in parallel. See the methods section for a
thorough description of the estimation techniques.

Monte Carlo Simulations. To demonstrate the performance of the
two methods, we present the results of Monte Carlo simulations.
Increasing numbers of emitters are placed randomly within a
volume, and reconstructions with MP and CO are compared.
When making comparisons, we quantify the accuracy of the
number of returned emitters and also their locations. To match
our experimental system, the effective pixel size in sample space is
160 nm, which is due to the use of a 1003 objective with a Numerical
Aperture (NA) of 1.45 and a camera with 16 mm pixel size. The
emission wavelength is 670 nm. To reflect typical experimental
conditions, each emitter is assumed to produce between 1900 and
2000 detected photons. Noise is simulated by adding a constant
background of 20 photons per pixel, and Poissonian shot noise is
also included. For eight different emitter densities, we simulate three
frames of sample volumes that map to an image 47 3 47 pixels on a
side. We process these frames using CO and MP and quantify the
results in terms of the number of emitters that are correctly localized
and the accuracy to which they are localized in each dimension. A
graphical summary is shown in Fig. 2.

For MP, the dictionary step size is 10 nm in the transverse dimen-
sions and 15 nm in depth, yielding 1.27 million dictionary elements.
Even with such a large dictionary, one MP solution on an 11 3 11
window can be completed in tenths of a second on a desktop com-
puter. If the reconstruction returns the correct elements, there will
still be localization errors due to the quantization of the solution
space. For this dictionary, the standard deviation of the quantization
error will be 2.9 nm in each transverse dimension and 4.3 nm axially.
The quantization error bounds indicate the error if the correct dic-
tionary element is chosen every time. In the simulations, MP does not
perform to the limit of the dictionary. The source of the non-ideal
performance of MP is likely due to the so-called ‘‘greedy’’ nature of
the algorithm; namely, with each iteration, the largest possible por-
tion of the image is subtracted. This drawback is easily offset by using
a finer dictionary. The density of correctly localized emitters (herein
named the ‘‘recovered density’’) can be as high as 1 emitter/mm2,
which is twice the maximum recalled density of 3D-DAOSTORM
with an astigmatic PSF13. More importantly, this recovered molecule
density is more than seven times higher than existing 3D methods,
including DH-PSF, astigmatic, and bi-plane techniques.

Figure 1 | Example of elements of an overcomplete dictionary for a 3D
PSF. These images show a selection of dictionary elements for a Double-

Helix system for a few different locations in x and z.
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Due to current computational limitations, the dictionary for CO
cannot be as large because it is a much more computationally intens-
ive algorithm. Thus, we select a coarser dictionary with transverse
steps of 80 nm and axial steps of 120 nm (2904 elements). The effect
of quantization error for this dictionary is 23 nm in the transverse
dimensions and 35 nm axially. The simulations in Fig. 2 indicate CO
performs very close to the limit of the dictionary. Even with such a
significantly smaller dictionary, CO still requires an order of mag-
nitude more computation time than MP with a finer dictionary (see
the Supplementary Information for more details regarding the cal-
culation time of the algorithms). However, CO performs better than
MP in terms of recoverable density. The enhancement enables the
reconstruction of frames with an emitter density of more than
1.5 emitters/mm2, which is a three-fold improvement in recoverable
density over 3D-DAOSTORM13, and more than an order of mag-
nitude improvement over established 3D localization schemes (DH-
PSF, astigmatic, and bi-plane).

The simulated images in Fig. 3 exemplify the degree to which
molecule density is increased to accelerate 3D localization micro-
scopy. Previous localization methods required completely isolated
single molecule images, with even nearby emitters causing errors. By
enabling the localization algorithm to reconstruct an image with a
ten-fold increase in the number of emitters per frame, single mole-
cule microscopy can be accelerated proportionally.

The Monte Carlo simulations show that while MP is fast, the
results are suboptimal. Conversely, the reconstruction obtained with
CO is slower, but the returned locations achieve the limit imposed by
the fineness of the dictionary. To attain a method that is fast, accur-
ate, and precise we developed a hybrid algorithm that takes advant-
age of the strengths of both methods. First, MP provides a rough
estimate of the number of emitters and their locations. Since the
precise location is not needed at this stage, we use a coarse dictionary.
Next, CO provides a finer estimation with a refined dictionary.
Interestingly, because coarse estimates of the locations are already

available from the MP method, we can limit the dictionary to only
include elements located close to those estimates. Therefore, we
implement a dictionary with the desired fineness while the problem
is still computationally tractable. This hybrid algorithm reduces the
size of the fine dictionary by nearly two orders of magnitude, enab-
ling CO to be performed in a reasonable time. We refer to this
technique as ‘‘MP1CO.’’ At very high densities, MP recalls far fewer
sources than CO. In such cases, we have used a CO1CO method,
which consists of two or more steps of CO with progressively finer
dictionaries. If one were to use MP1CO for very high densities, the
initial round of MP might eliminate dictionary elements that are
required for the solution. In such cases, the increased computational
cost of an additional round of coarse CO is justified.

Experiment. Two examples of experimental scenes (raw data) of
dense molecule clusters are shown in Fig. 4. These images are
acquired using a SPINDLE system22 incorporating a DH-PSF and
stochastic optical reconstruction using photoswitchable dyes2. In the
scene in Fig. 4 (a), there are two bright lobes, with a third dim lobe
nearby. There are likely two emitters; one bright emitter, and a dim
emitter nearby with one lobe coinciding with a lobe of the bright
emitter. The hybrid method is able to identify the individual emitters
despite the overlap of the lobes. The scene in Fig. 4 (d) is even more
complex. MP1CO is able to resolve and localize three emitters in this
scene. Such a scene would be rejected from typical localization
algorithms, and none of the emitters would contribute to the final
image.

An example application in a large-scale super-resolution image is
shown in part (b) of Fig. 5. For comparison, a standard fluorescence
image is shown in part (a) of the same figure. The sample is com-
posed of PtK1 cells (Rat Kangaroo Epithelial cells) in which tubulin is
labeled with Alexa-647 and Alexa-488 dyes. The reconstruction
image was compiled from more than 30,000 frames, and the image
clearly demonstrates 3D super-resolution capabilities. In the stand-

Figure 2 | Performance of different super-resolution methods as a function of the molecule density evaluated via Monte Carlo simulations. For each

density, three simulated frames with a size of 55 mm2 were generated. Then, the results from Matching Pursuit (MP) and Convex Optimization (CO) are

quantified and compared to 3D-DAOSTORM (3DDS) (data from13). (a) shows the number of correctly localized emitters. This plot shows that CO can

recover the highest molecule density. The localization error is shown in (b–d) for transverse (x,y) and axial(z) localization, respectively. These plots

demonstrate it is possible to maintain good localization precision, even at very high densities. For MP, the dictionary had 10 nm transverse step sizes and

15 nm axial steps. The dictionary for CO had 80 nm and 120 nm steps in the transverse and axial dimensions, respectively.

www.nature.com/scientificreports
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ard fluorescence image of this scene, many of the individual micro-
tubules either cannot be resolved or are out of focus due to the limited
depth of focus of the standard PSF of high-NA objectives.

The super-resolution image in Fig. 5 (b) was generated by assign-
ing a Gaussian spot to each localized emitter. The width of the
Gaussian is inversely related to the square root of the number of
photons received by the emitter (a higher photon count means the
Cramer-Rao bound is lower, i.e. the localization precision is better).
The color of the spot is determined by the depth of the emitter.

Although simulations already indicate these sparsity-based meth-
ods can allow high label densities without sacrificing the ability to
achieve super-resolution, we also evaluated the performance on
experimental data. Fig. 6 (a) shows a small region of the super-

resolution image from Fig. 5. As opposed to the prior image, here
the localizations are visualized in a scatter plot, although depth is
indicated with color as before. The set of 131 locations was fit to a
straight line in 3D space (see the Supplementary Information for an
analysis of the 3D sampling of this structure). These points were then
converted to a 2D space which defines the transverse and axial dis-
tance from the fit line to each point. Here, ‘‘axial’’ is referring to the
optical axis of the microscope. This view is shown in Fig. 6 (b).
Equivalently, one can think of this as a view of the 3D cloud of points
from a position along the microtubule. The ellipse shows the stand-
ard deviation of the points along each axis. The dimensions of this
ellipse are 82 nm axially (z) and 32 nm in the transverse dimension
(x,y). These points are then converted to cylindrical coordinates and

Figure 3 | Examples of sparse reconstructions for different density levels. In both simulated images, we randomly placed emitters in the simulation

space, and we applied our localization method. The resulting locations are marked as x’s. In (a), the recovered density is 0.12 emitters/mm2, which is

approximately the limit of existing localization schemes for the DH-PSF. The recovered density in (b) is an order of magnitude higher. This increased

recoverable density means 3D super-resolution imaging experiments can now be performed in 1/10th the time. In these images, system parameters were

matched to experimental conditions, as discussed later in the article.

Figure 4 | Experimental demonstration of 3D super-resolution and super-localization from overlapping single-molecule images. (a) and (d) Two

examples of raw data of overlapping molecule images using a DH-PSF system. (b) and (e) show the estimated locations of the molecules using the MP and

hybrid methods. The regions used for the refined dictionary are marked with blue cubic boxes. The images in (c) and (f) show the reconstructed image

using MP1CO. In all images, scale bars are 1 mm.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5388 | DOI: 10.1038/srep05388 4



plotted in Fig. 6 (c), revealing a lack of molecules for low radial
distances. The ellipse from (b) is also converted to cylindrical coor-
dinates and shown in (c). Next, we calculate a histogram of the radial
distance from the fit line, which is shown in (d). From this histogram,
we observe that the object we are reconstructing is not simply a line,
but in fact a cylinder. The method is not only able to generate large
images with enhanced resolution as in Fig. 5, but is in fact producing
quantitative measurements of 3D properties of the microtubules.
Since the precision differs significantly in the axial dimension, we
classify the location of the points as either ‘‘axial’’ or ‘‘transverse’’, as
indicated by the color and shape of the points in (b) and (c). The
anisotropy in localization precision is responsible for more points
being classified as ‘‘axial’’ rather than ‘‘transverse,’’ i.e. even with a
uniform distribution of labels, the distribution of localizations will be
skewed along the axial direction. The simulations presented in the
Supplementary Information exhibit the same behavior (see Fig. S1).
We calculate the separate histograms of the radial distance for the
two classifications of points and plot them in (e) and (f). From these
histograms, we measure the median radial distance to be 49 nm and
75 nm in the transverse and axial dimensions, respectively.

Prior reports have shown that antibody labeled microtubules have
a radius of about 30 nm23. We performed an analysis taking into
consideration the anisotropic precision of 3D localization leading
to an estimate of the radius at 35 nm. Our analysis based on the
results of Fig. 6 was obtained with a median of 614 detected photons
per molecule. The experimental photon count is lower than the
values used in simulations, resulting in lower localization precision24.
On the other hand, lower precision enables the use of a coarser
dictionary. The predicted experimental localization precisions for
that intensity level are 30 nm and 66 nm in the transverse and axial
dimensions, respectively22. Such anisotropy causes the circular cross-
section of the microtubule to appear elliptical, as mentioned prev-
iously. Subsequently, we estimate the radius of the antibody labeled
microtubule based on the known localization precision of 131 emit-

ters fitted to the observed elliptical cylinder, leading to a precision
surpassing that of an individual localization. The estimation result
for the radius, including the antibody labeling structure, is
35 nm612 nm. The error is given as one standard deviation. A
slightly larger radius could be attributed to a minor bending of the
microtubule or simply to the low photon count of our measurements.
It should be noted that a cylindrical shape of microtubules has been
previously observed25, albeit in 2D and with emitters that yield more
than 100 times more photons than in our experiment.

Discussion
The origin of the super-resolution capability is interesting to ponder,
given that the raw images are limited by diffraction and deconvolu-
tion techniques provide only limited success26. First, an engineered
3D PSF is essential to retrieve 3D information, as is a 3D dictionary.
Second, the fundamental assumption of sparsity, i.e. only up to a
handful of emitters are located within the PSF area, provides the
required prior knowledge to achieve effective resolution and local-
ization. Hence, super-resolution and super-localization are ulti-
mately enabled by the combination of 3D optical techniques and
prior knowledge. Furthermore, these two concepts can be linked in
that the increased structure of the DH-PSF contributes to the solu-
tion of the localization problem. While the task of correctly pairing
lobes of overlapping DH-PSFs might be thought of as an inherent
disadvantage of the PSF, the lobes have a particular shape and sepa-
ration that can help discern the underlying emitter locations.

An important difference between the methods in this paper and
other sparse reconstruction schemes27 is that our goal is not to gen-
erate a reconstruction of each image. Although a reconstruction
image is obtained, the desired information is actually in the indices
of the large coefficients in the sparse reconstruction. Each dictionary
element has a physical meaning: the presence of a large coefficient in
the solution means there is an emitter at the corresponding location.

Figure 5 | Large-scale experimental implementation. A standard fluorescence image is shown in (a). The 3D super-resolution image (b) of labeled

tubulin in PtK1 cells demonstrates that the method can be applied to localization-based super-resolution imaging with a wide field of view. The small box

on the right side of (b) indicates the region that is used for subsequent detailed analysis. Scale bar: 1 mm.

www.nature.com/scientificreports
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In conclusion, the method presented here has the capability to
resolve dense clusters of molecules (or other emitters) from a single
image in three dimensions while maintaining the high 3D local-
ization precision. Therefore, higher labeling density and significant
decreases in data collection time for 3D super-resolution microscopy
experiments are now possible. Because the technique enables super-
resolution imaging with far fewer image frames, hence reducing the
data required to reconstruct a nanoscale resolution image, the
method can be classified as a compressive imaging technique.

Methods
In this section, we provide algorithmic details on our methods. Specifically, the
following section details the design choices necessary for generating a dictionary, and
how to use such a dictionary to estimate the locations of molecules using Matching
Pursuit (MP) or Convex Optimization (CO). A description of the experimental
methods can be found in the Supplementary Information. Furthermore, the sample
preparation is described in Ref. 22.

Dictionary Generation. For the dictionaries used in the methods discussed in this
paper, there are a few important guidelines to follow. The topics relevant to dictionary
generation that are discussed in this section are: transverse step size, axial step size,
amplitude scaling of dictionary elements, and the use of Look-Up Tables (LUTs) in
localization.

All methods discussed in this paper utilize a dictionary that consists of the 2D
cross-sections of the 3D PSF corresponding to lateral and axial shifted locations of the
point source. If the system is shift-invariant, for a given depth, all 2D PSFs are equal
except for a transverse shift. The dictionaries are generated by first selecting a 3D
window size and making a list of discrete 3D locations to fill this volume. A model is
then used to generate the corresponding image for each point source location in the
dictionary. The model may be either an ideal PSF, or it may be the result of calibration
data. The step size of the locations in the dictionary determines the localization

precision, so the natural tendency is to make the step size very fine. A wise choice
would be to relate the step size to the limit of localization precision achievable in a
given system, as calculated by the Cramer-Rao Lower Bound (CRLB)28. The effective
pixel size (physical pixel size divided by magnification) in single-molecule detection
systems is typically designed to sample the PSF at approximately Nyquist sampling,
which results in effective pixel sizes on the order of 160 nm in our experiments. The
CRLB, on the other hand, can be significantly lower (typically 10 to 20 nm). As a
result, the dictionary requires sub-pixel shifts. Additionally, since the extent of the
PSF is significantly larger than the step size, there is a high degree of similarity
between adjacent dictionary elements. Hence, by definition, the dictionary is coher-
ent29. Thus, finding the solution for the representation of a scene using such a dic-
tionary is a more difficult problem than if we were to use an orthonormal basis.

Furthermore, the requirement for 3D information necessitates many dictionary
elements at the same transverse location. The DH-PSF enables an extended depth of
field (DOF) as compared to a standard aperture by approximately a factor of two. In
our experiments using a 1.45 NA objective, the DOF with a DH-PSF is approximately
2 mm. However, since the CRLB is larger in the axial dimension than in the transverse
dimensions, the axial step size can be also slightly larger than the transverse step size.

Because the dictionary contains discrete locations, the results will have a quant-
ization error. Even if the localization algorithm returns the correct dictionary element
for every emitter in a scene, there will still be a distribution of errors spanning a range
between 2d/2 to 1d/2, where d is the step size. The standard deviation of a uniform
distribution with a range of d is d=

ffiffiffiffiffi

12
p

. We choose to use standard deviation to
characterize the error because it can be directly compared to the square root of the
CRLB. For consistency, we also use standard deviation to quantify the magnitude of
the error in simulations.

The important output of our sparsity-based algorithms is not the reconstructed
image, but the indices of the significant coefficients that make up the reconstruction.
A high coefficient for a particular dictionary element means there is a bright emitter at
that location. Each dictionary carries with it a LUT to convert the index of a dictionary
element to a physical location in (x, y, z) coordinates. The LUT is a Dx3 matrix, where
D is the number of dictionary elements. There are three columns because the solution
space is 3D. Each row contains the (x, y, z) values describing the location of an emitter
that would generate the PSF in the corresponding index of the dictionary. The LUT is

Figure 6 | Measurement of the 3D cylindrical structure of an antibody labeled microtubule. A small region of the data containing a straight segment of a

microtubule is shown in (a). In the context of the large image in Fig. 5, this region is indicated with a small white box on the right side of the image.

These points are fit to a line in 3D space, and the distance from each point to the fit line is shown in (b); this can also be thought of as a view of the

microtubule from the perspective of the microtubule axis. The same plot is converted to cylindrical coordinates and displayed in (c). Plots (d)–(f) all show

histograms of the radial distance of the points to the fit line; (d) shows all points, and (e) and (f) show the points classified as transverse and axial points,

respectively. From these histograms, it is apparent that we are observing emitters that are attached to a cylindrical object. Simulations presented in the

Supplementary Information verify that the distributions observed here are consistent with a mirotubule having a 35 nm radius.

www.nature.com/scientificreports
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easily generated alongside the dictionary, and provides a simple way to obtain a
physical interpretation of the coefficients in the solution.

Each element of the dictionary is normalized such that its L2 norm is unity. As a
result, the product of the coefficient and the dictionary element matches the intensity
of that component in the image. The corresponding number of photons is calculated
by multiplying the coefficient with the L1 norm of that particular basis element. The
photon count calculation is correct only after the data has been converted from
camera counts to photons. A matrix containing the L1 norms for each dictionary
element is calculated beforehand and stored with the dictionary for fast conversion
from coefficient values to photon counts. When implementing MP, it is necessary to
calculate photon counts frequently, since one of the stopping criteria for the iterative
method requires knowledge of the number of photons (stopping criteria are discussed
in the following section).

Estimation. If the dictionary were an orthonormal basis set, the coefficients for
representing the image could be found very easily: they would be the inner product of
the image and each individual dictionary element. However, the use of small sub-pixel
shifts means adjacent dictionary elements have a high degree of similarity; they are
not orthogonal. Therefore, the coefficients must be found in a different manner. The
two methods we propose to solve the estimation problem are Matching Pursuit (MP)
and Convex Optimization (CO). These two approaches are described in this section.

Conceptually, MP is similar to finding coefficients for an orthonormal dictionary.
In one iteration of MP, the image is projected onto the dictionary, just as if the
dictionary were orthonormal. However, instead of keeping all the resulting coeffi-
cients, only the largest coefficient is stored as part of the solution. Next, that element is
subtracted from the image20. Iterations continue until a stopping criterion is met, as
described below.

Our implementation of the Matching Pursuit (MP) algorithm uses three different
stopping criteria. The first stopping criterion limits the number of iterations (i.e. the
maximum number of emitters the algorithm will return for a given scene).
Simulations indicate the reliability of the algorithms decreases as the emitter density
increases. Therefore we do not record results that are likely to be erroneous. Not only
is a limit placed on the maximum number of iterations, but the order in which results
are subtracted from the scene is also recorded. With this information, we can observe
the performance of the iterative algorithm as the density increases in an experimental
setting.

Another stopping criterion is the minimum estimated number of photons from
an emitter. Even when all the emitters in a scene have been accounted for and
subtracted, the remainder will still have positive values due to noise (particularly
background noise). This could lead to spurious emitters in the reconstruction. To
avoid this, MP ends iterations if the photon count of the strongest remaining
component is below a threshold. The threshold can be determined beforehand
based on the emitters used in the experiment, or decided after the experiment
based on the data set. In the latter case, a preliminary threshold must be set to a
very low value. Once MP is complete, the threshold is raised and the weakest
emitters are excluded from the results.

The final criterion involves placing a limit on the value of pixels in the remainder
image. As above, when all actual emitters in a scene are accounted for and subtracted,
there will still be a remainder due to noise. Once the maximum pixel value in the
remainder image drops below the expected value of background in the data set, the
subsequent localizations are most likely the result of noise. Therefore, the iterations
are stopped when the maximum of the remainder image drops below a threshold.
Typical background levels can be predicted accurately from examining statistics of the
whole data set. Furthermore, the threshold is usually set slightly below the back-
ground level (by perhaps 75%) to avoid false negatives. This criterion was found to
terminate iterations more frequently than the photon counts criterion, while sig-
nificantly speeding up the computation time. The reason for the speed increase is
because this criterion is evaluated before the remainder image is projected onto the
dictionary, whereas the minimum photon number criterion is evaluated after a
projection. The speed increase is simply due to a reduced number of computed
projections.

Implementations of MP (or other iterative algorithms) in other fields employ a
stopping criterion that compares the reconstructed image to the raw data20. Iterations
stop when the error between the two has reached an acceptable level. Such a stopping
criterion is less applicable here because the goal is not to produce an accurate
reconstruction of each frame. Rather, the goal is to estimate the locations of emitters.
A limit on the error between the reconstruction and the original data would be
meaningless in the case of a scene that contains no emitters. In fact, such a stopping
criterion would often be at odds with the previous two criteria, and therefore it cannot
be seamlessly combined with the other stopping criteria.

Estimation using CO, on the other hand, attempts to arrive at a solution for the
significant coefficients in parallel. Although the estimation method is quite different,
the use of the algorithm is similar—the inputs are a window of data and a dictionary,
and the output is a list of coefficients that describe the data. The reconstruction
problem is formulated as a convex problem in which the variable to be optimized is
the sparsity of the coefficient vector (quantified as the L1 norm). This can be phrased
mathematically as:

minimize xk k1subject to Ax{bk k2ƒe, ð1Þ

where x is the set of coefficients, A is the dictionary, and e is an error bound related to
the total intensity in the image9. In this formalism, the image b has been folded into a

column vector. In our implementation, we use CVX, a MATLAB package for solving
convex problems21.
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