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Abstract 

A dv ancements in mass spectrometry (MS)-based proteomics ha v e greatly f acilitated the large-scale quantification of proteins and micropro- 
teins, thereb y re v ealing altered signalling pathw a y s across many different cancer types. Ho w e v er, specializ ed and comprehensiv e resources 
are lacking for cancer proteomics. Here, we describe CancerProteome ( http:// bio-bigdata.hrbmu.edu.cn/ CancerProteome ), which functionally 
deciphers and visualizes the proteome landscape in cancer. We manually curated and re-analyzed publicly a v ailable MS-based quantification and 
post-translational modification (PTM) proteomes, including 7406 samples from 21 different cancer types, and also examined protein abundances 
and PTM le v els in 31 120 proteins and 41 1 1 microproteins. Six major analytical modules w ere de v eloped with a vie w to describe protein contribu- 
tions to carcinogenesis using proteome analysis, including conventional analyses of quantitative and the PTM proteome, functional enrichment, 
protein–protein associations by integrating known interactions with co-expression signat ures, dr ug sensitivity and clinical relevance analyses. 
Moreo v er, protein abundances, which correlated with corresponding transcript or PTM le v els, w ere e v aluated. CancerP roteome is con v enient 
as it allows users to access specific proteins / microproteins of interest using quick searches or query options to generate multiple visualization 
results. In summary, CancerProteome is an important resource, which functionally deciphers the cancer proteome landscape and provides a 
no v el insight for the identification of tumor protein markers in cancer. 
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recision medicine depends on the recognition of specific
olecular alterations from which patients are stratified and

ffective therapeutic options selected. In recent years, both ge-
omics and transcriptomics have become systematic in the ex-
loration of cancer vulnerability ( 1 ,2 ), however, the intricate
ature of cancer suggests that genomics alone cannot suffi-
iently guide the clinical treatment of cancer patients ( 3 ). 
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recent studies have revealed that the protein-coding capac-
ity of the human genome has been largely under-reported
( 5–7 ), with an increasing number of novel functional micro-
proteins encoded from non-coding regions ( 8 ) and character-
ized as either oncogenic drivers or tumor suppressors in can-
cer ( 9 ). Thus, comprehensive analyses of proteomic datasets
have allowed the identification of new cancer biomarkers
and potentially improved diagnostic and treatment choices
for clinicians and patients. However, high-quality pro-
teomic datasets have been lagged behind RNA expression
profiling approaches. 

Recent improvements in mass spectrometry (MS)-based
proteomics have facilitated the measurement of global pro-
tein and microprotein abundance, and also post-translational
modifications (PTMs) ( 10 ). Thousands of cell lines and clinical
samples derived from tumor tissue biopsies have undergone
standardized quantification procedures. Several proteome
databases have been developed to highlight dynamics / changes
of protein abundances in normal or disease states, or iden-
tify correlations with drugs, including the Human Protein At-
las ( 11 ), ProteomicsDB ( 12 ), TCRD and Pharos ( 13 ) and Ex-
pression Atlas ( 14 ). Human Protein Atlas (HPA) is a spa-
tial map of the human proteome, which has constituted
a tool for researchers studying the location and expres-
sion of proteins in human tissues and cells ( 11 ). TCRD
and Pharos have produced two major releases, which in-
corporated human and viral-human protein–protein interac-
tions (PPIs), protein–disease and protein–phenotype associa-
tions ( 13 ). Additionally, qPTM ( 15 ), dbPTM ( 16 ) and VPT-
Mdb ( 17 ) have been introduced to specifically quantify the
PTM events under different conditions or explore associa-
tions with molecular features. In particular, dbPTM database
has integrated experimentally validated PTMs and also pro-
vides PTMdisease associations based on non-synonymous sin-
gle nucleotide polymorphisms ( 16 ). VPTMdb is constructed
for collecting systematic information of PTMs in human
viruses and infected host cells ( 17 ). Despite the valuable
information these data resources provide, they were pri-
marily constructed for general purposes, while a specialized
and comprehensive cancer proteome resource remains to be
developed. 

Here, we describe the CancerProteome database ( http://
bio-bigdata.hrbmu.edu.cn/CancerProteome ), which function-
ally deciphers or visualizes the proteome landscape in can-
cer. Proteins and microproteins (or (micro-)protein, hereafter)
expression and PTM levels were measured by re-analyzing
raw MS datasets against canonical proteins and our in-
tegrated microprotein theory library. CancerProteome pro-
vided not only dysregulation information on (micro-)protein
activities across cancer types, but also provided multiple
insights toward carcinogenesis. (Micro-)proteins with dif-
ferential expression / modifications in different cancer types
were comprehensively identified, and functional enrichment
analyses performed. We also investigated correlations be-
tween (micro-)protein abundances and corresponding tran-
script levels using RNA sequencing (RNA-seq) integrative
data analyses and PTMs regulatory relationships with (micro-
)protein abundances. Moreover, functional associations be-
tween (micro-)proteins were identified by integrating co-
expression information in different cancers with known PPIs.
Finally, we identified (micro-)proteins related to drug sensitiv-
ity and clinical relevance. 
Materials and methods 

Collection of MS data 

We collected all available clinical samples and cell lines pro- 
teome datasets from seven widely used proteome resources,
such as CPTAC ( https://pdc.cancer.gov ), PRIDE ( 18 ), Mas- 
sIVE.quant ( 19 ), PeptideAtlas ( 20 ), jPOST ( 21 ), Panorama 
( 22 ) and iProX ( 23 ). Raw data and clinically related infor- 
mation were downloaded for in-depth analyses. In total, we 
collected 102 datasets, including 7406 samples across 21 dif- 
ferent cancer types (Supplementary Table S1). Both quanti- 
tative and PTM proteomes across 21 cancer types were re- 
analyzed. Additionally, we acquired transcriptome datasets of 
corresponding patients from 10 cancer types, including 1560 

tumor and 368 control samples. 

Known cancer genes 

To identify correlations between known cancer genes and 

proteins from multi-omics data, CancerProteome compiled 

known cancer genes from several databases, including COS- 
MIC ( 24 ), Lnc2cancer 3.0 ( 25 ) and OncoKB ( 26 ). In total,
3749 known cancer genes were collected. Also, genes encod- 
ing proteins that overlapped with known cancer genes were 
similarly collected and stored in CancerProteome. 

Drug-related information 

To uncover all pairwise associations between (micro-)proteins 
and drug sensitivity in cancer cell lines ( 4 ), CancerProteome 
retrieved half-maximal inhibitory concentration (IC 50 ) mea- 
surements for each drug across all cell lines from the DepMap 

Portal ( https:// depmap.org/ portal/ ). In total, 413 unique drugs 
were included in CancerProteome and the natural log of raw 

IC 50 data, was used for subsequent analyses. 

Constructing a (micro-)proteins theory library 

We integrated all ribo-seq-supported open reading frames 
(ORFs) from RPFdb ( 27 ), nuORFdb ( 28 ), TransLnc ( 29 ), and 

IEAtlas ( 30 ), along with their basic annotations. All ORFs 
with ‘NTG’ start codons and ‘T AA / TGA / T AG’ stop codons 
were included in our analyses. Based on ORF genome coordi- 
nates and corresponding annotation files, we generated ORF 

sequences using the ‘getblast’ function in the R ‘bedtoolsr’ 
package using default parameters. Only ORFs that generated 

peptides ≥8 amino acids (aa) but ≤100 aa were retained 

and defined as microproteins according to previous studies 
( 31 ,32 ). Those microproteins whose sequences were entirely 
contained within other (micro-)proteins were removed. After 
integration with protein information from the human UniProt 
database ( 33 ), a benchmarked protein and microprotein the- 
ory library was constructed for further analysis. 

Database searches for MS data 

CancerProteome re-analyzed MS-based proteomic data us- 
ing MaxQuant (v.2.1.0.0) ( 34 ), referencing the benchmarked 

protein and microprotein theory library. Variable modifica- 
tions were set at oxidized methionine, protein N-terminal 
acetylation and asparagine and glutamine deamidation. Car- 
bamidomethyl cysteine was searched for as a fixed modifi- 
cation ( 10 ,35 ). For the phosphoproteome dataset, variable 
modifications included serine, threonine, and tyrosine phos- 
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tein PTMs across the different cancers. 
horylation ( 36 ). For the glycopeptide enriched data anal-
ses, asparagine (Asn) deamidation in H 2 

18 O ( 18 O tag of
sn, +2.9890 Da) was set as an additional variable modifica-

ion ( 37 ). For acetylproteome and ubiquitylproteome datasets,
earches were completed using acetylation and diglycine of ly-
ine residues as variable modifications, respectively ( 36 ,38 ). 

ata normalization and missing value imputation 

or each identified (micro-)protein, expression abundance
as considered as the protein intensity after performing log 2 

ransformation and normalization steps. A median centering
ethod was used to normalize MS data by label-free tech-
ologies, while reference channel intensity was used for MS
ata assayed by labeling technologies, and normalized ratios
ere calculated as the subtraction between log 2 report ion in-

ensities and log 2 reference intensity. Final expression abun-
ance as assayed by labeling technologies was calculated as
he sum of normalized ratios and log 2 -transformed mean ref-
rence intensity ( 39 ). To ensure samples had sufficient data for
mputation, we retained proteins and modification sites hav-
ng ≤50% missing data. Based on the ‘impute.knn’ function
n the R package, missing values were imputed in the cancer
roteome. 

ifferential expression analysis 

e used the eBayes method in the ‘limma’ R package to imple-
ent differential expression analyses across tumor and con-

rol samples of quantitative and PTM proteomes, and the
ranscriptome ( 40 ). The false discovery rate (FDR) threshold
as set to 0.05 and expression / PTM changes required 1.5-

old changes. Differential analyses were also performed based
n clinical features in datasets without normal samples, such
s pre- and post-treatment, pre- and on-treatment, responsive
nd unresponsive to drugs, classic and desmo, squamous and
ranslational. 

orrelation analysis 

e obtained the transcriptome data from the supplementary
ables of associated publications. If the transcriptome data
as not normalized, we normalized the expression across

amples by absolute deviations from the median within each
ancer type and dataset. A rich body of researches demon-
trate that the mRNA and protein abundances frequently
ave a poorer correlation than expected, a consequence of
oth translational and post-translational regulation. Spear-
an’s correlation analysis was used to measure correlations
etween protein abundance and corresponding transcript ex-
ression of a given protein, or to measure correlations be-
ween protein abundance and drug IC 50 values. Additionally,
he ‘lm’ method in R was used to assess correlations between
rotein abundance and modification levels at sites. 

rotein–protein association analysis 

rotein co-expression and PPIs were used to evaluate protein–
rotein associations in different cancers. First, significant co-
xpressed (micro-)protein pairs were identified in the spe-
ific cancer using Spearman’s correlation and aforementioned
hresholds. We also assembled and integrated known PPIs
rom STRING ( 41 ), MINT ( 42 ) and IntAct ( 43 ), and only
igh-confidence interactions were retained in STRING. 
Functional enrichment analysis 

To further analyze the molecular functions of quantitative and
PTM proteomes and the transcriptome, function enrichment
analyses were performed for (micro-)proteins with differential
expression / modifications using the ‘enricher’ method in the
clusterProfiler R package ( 44 ). 

Clinical relevance 

Clinical information of cancer patients was obtained from
the clinical proteomic tumor analysis consortium (CPTAC)
and supplementary tables of associated literature. The survival
time, tumor or normal, treatment information and response
to therapy were obtained. We next performed Cox regression
analyses and log-rank tests to identify survival-related (micro-
)proteins and PTM sites using univariate and multivariate Cox
regression analyses. Cancer patients were ranked based on the
abundance of a given protein or site, and survival differences
between high- and low-expression groups were evaluated us-
ing the Kaplan–Meier method. 

Database implementation 

The CancerProteome backed server was constructed and ac-
cessed based on Java Server Pages with the Tomcat container
(v.6.0). CancerProteome used the MySQL database (v.5.5.48)
for documenting and managing all metadata and the web
frontend was constituted with HTML, JavaScript and CSS
code, containing jQuery (v.3.3.1), Datatable (v.1.10.25) and
ECharts (v.5.5.1) plugins to visualize all analysis results and
multiple statistical tables. The R framework (v.3.6.3) was per-
formed for statistical analyses. CancerProteome was tested on
several popular web browsers, including Google Chrome (pre-
ferred), Firefox and Apple Safari browsers. 

Database content 

CancerProteome was used to curate and re-analyze publicly
available MS-based raw cancer datasets at the proteome level
(Figure 1 A and Supplementary Table S1). Quantitative pro-
teome data came from 2708 tumor samples and 1752 control
samples across 21 cancer types. The PTM proteome consisted
of 1632 tumor samples and 1012 control samples across nine
cancer types, and 302 proteomes spanning 14 cancer types
in cell lines. Most cancers have thousands of samples (Figure
1 B), and thousands of proteins / PTM sites were quantified in
each cancer (Figure 1 C), in total including 84 257 PTM sites,
31 120 proteins and 4111 microproteins. We also observed
that a large number of microproteins were expressed in cancer
(Figure 1 D). Next, cancer-related (micro-)proteins were fur-
ther identified from three aspects, with 13 673 proteins and
742 microproteins. As shown in Figure 1 E, proteome contri-
butions were different across cancer types. In total, 20 737
differential PTMs were identified and differential distributions
across cancers were revealed (Figure 1 F). We found that PTM
sites on microproteins were also cancer-related and involved
in 16.6% microproteins. Furthermore, (micro-)protein abun-
dances correlations with corresponding transcript levels were
calculated using RNA-seq data integrative analysis, and 15
816 co-expressed pairs were identified. The underlying regu-
latory effects of PTMs on (micro-)protein abundances were
also estimated from 29 156 correlations, indicating wide pro-
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Figure 1 . Sc hematic sho wing the CancerP roteome design. (A) Data collection and w orkflo w sho wing the construction of the CancerP roteome 
resource. (B) Number of samples in the proteome, PTM and cell line proteomes. (C) Number of proteins detected in the proteome, PTM and cell line 
proteomes. (D) Number of microproteins identified in the proteome, PTM and cell line proteomes. (E) Number of cancer-related proteins across the 
different cancer types. (F) Number of cancer-related PTM sites across the different cancer types. 

 

 

 

 

 

 

 

 

To identify functional abnormalities caused by proteomic
abnormalities, we used differential (micro-)protein / PTM sites
to perform functional enrichment analysis in each cancer.
Considering that microprotein function associations were un-
known, co-expression and PPIs were analyzed in each cancer.
CancerProteome collected 54 146 014 co-expression signa-
tures in cancer, which were supported by known PPIs (Sup-
plementary Fig. S1A). Moreover, 12 437 drug–protein asso-
ciations were used to estimate potential (micro-)protein roles 
related to drug sensitivity (Supplementary Fig. S1B). 

W eb interf ace 

CancerProteome offers a user-friendly interface that allows 
users to search, browse, visualize and download data (Fig- 
ures 1 A and 2 ). The ‘Browse’ page allows users to explore 
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Figure 2. The CancerProteome user interface. (A) Search page for proteins, PTMs and cancers by genes or resource. (B) Global results for differential 
expression and functional analysis. (C) Differential PTM sites in cancer. (D) Differential expression analysis results. (E) Basic information on proteins 
identified in the cancer proteome. (F) Protein expression abundance and the associations with transcripts in cancer. (G) The modification levels of PTM 

sites derived from proteins and associations between protein expression and PTMs. (H) PPIs and drug associations. (I) The clinical relevance of protein 
expressions identified in CancerProteome. 
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differentially expressed proteins, differential PTM sites and
proteins that correlate with drugs across different cancers,
by clicking on different tabs (Figure 1 A). Multiple visu-
alization results show how proteins contribute to carcino-
genesis processes. Moreover, we developed six flexible tools
to retrieve and analyze CancerProteome data (Figure 1 A),
including conventional analyses of both quantitative and
PTM proteomes, functional enrichment analyses, protein–
protein associations by integrating known interactions
with co-expression, drug sensitivity and clinical relevance
analyses. 

CancerProteome also allows users to access each (micro-
)protein entry for the cancer of interest via browse, quick
search or query options. The ‘Search’ page provides three
query options (Figure 2 A) to search (micro-)proteins, PTM
sites or cancer. CancerProteome provides a full list of differen-
tially expressed (micro-)proteins when users search for a can-
cer of interest, as well as corresponding volcano figures that
visualize differential expression results (Figure 2 B). Enriched
molecular functions from four aspects are also provided (Fig-
ure 2 B). By searching for a (micro-)protein or PTM site of in-
terest using two query options, users can obtain corresponding
differential results across different cancers. We also highlight
information on protein type, PTM type, site information, dif-
ferential expression results and known cancer genes (Figure
2 C, D). 

Detailed (micro-)protein information (six types) is pro-
vided for users by clicking on relevant tabs (Figure 2 E–
I). CancerProteome provides basic information on (micro-
)proteins in a table (Figure 2 E) and identifies differen-
tially expressed / modified (micro-)proteins (Figure 2 F, G). Fur-
thermore, to investigate associations between proteins and
corresponding transcripts and PTM sites, (micro-)protein
expression correlations with corresponding transcript lev-
els from RNA-seq are explored (Figure 2 F), as well as
with PTM sites (Figure 2 G). To compare (micro-)proteins
expression / modification levels with corresponding PTM sites,
modification levels at all PTM sites derived from (micro-
)proteins in many cancers are also provided (Figure 2 F,
G). (Micro-)protein functional roles are further extrapolated
by integrating known PPIs with co-expression information
for each cancer, or from drug sensitivity perspectives (Fig-
ure 2 H). CancerProteome allows users to compare survival
differences between low and high-expression groups across
diverse cancer types (Figure 2 I). Multiple visualization re-
sults are provided to understand their roles in cancer. Dif-
ferential proteins / sites and basic information are also pro-
vided on the ‘Download’ page and a detailed tutorial is pro-
vided on the ‘Help’ page to allow users better understand
CancerProteome. 

Case study 

Studies have shown that GOLPH3 promotes metastasis and
tumorigenicity in non-small-cell lung cancer and is highly ex-
pressed in other cancers ( 45 ). When querying the proteins
encoded by GOLPH3 in CancerProteome using the ‘Search
Protein’ tab in all cancer types, we retrieved 35 entries from
15 cancer types (Figure 2 D). In particular, detailed infor-
mation for Golgi phosphoprotein 3 encoded by GOLPH3
was investigated, including basic information and functional
analyses (Figure 2 E–I). We found that the Golgi phospho-
protein 3 was significantly upregulated in the PDC000234
lung cancer dataset, and the corresponding GOLPH3 gene 
was consistently different in the transcriptome (Figure 2 F).
Moreover, lower Golgi phosphoprotein 3 expression was as- 
sociated with increased survival in cancer patients (Figure 
2 I), consistent with previous data ( 45 ). We also investigated 

the APOC1 gene, which has important roles in prolifera- 
tion and metastasis in several cancers ( 46 ). We identified the 
APOC1_odORF_MP_2 microprotein, which originated from 

APOC1 , and was differentially expressed in multiple cancer 
types, such as the LUNG PDC000234 dataset (Supplemen- 
tary Fig. S2). Different microprotein expression and poten- 
tial functional data were successfully retrieved by CancerPro- 
teome (Supplementary Fig. S2), suggesting important roles in 

cancer. 

Conclusions and future development 

MS-base proteome datasets offer an effective method to de- 
code the protein regulatory mechanism in human complex dis- 
eases. However, there is not yet a specialized, comprehensive 
resource for cancer proteome. By collecting and re-analyzing 
the publicly available MS-based raw datasets against canoni- 
cal protein and our integrated benchmarked-microprotein li- 
brary, CancerProteome provides a comprehensive proteome 
landscape to functionally decipher and visualize the (micro- 
)proteins across many different cancers. It is noteworthy 
that (micro-)proteins roles were further extrapolated by in- 
tegrating known PPIs with co-expression information in dif- 
ferent cancers, or by viewing drug sensitivity data. Cancer- 
Proteome also allows users to conduct comparative analy- 
sis between tumor and control samples, as well as within 

different types of cancer. This module enables the decod- 
ing of the functional implications associated with differen- 
tial (micro-)proteins. In the (micro-)proteins atlas in Cancer- 
Proteome, the biological function of several (micro-)proteins 
have been validated in previous studies, such as the canoni- 
cal protein Golgi phosphoprotein 3 derived from GOLPH3 

and the microproteins APOC1_odORF_MP_2 encoded by 
APOC1 . 

We will update and integrate more datasets into CancerPro- 
teome by (i) continuously mining datasets to expand the cur- 
rent (micro-)protein atlas; (ii) expanding available ribo-seq- 
supported-ORF regions by integrating newly generated ribo- 
seq datasets and (iii) incorporating information on experimen- 
tally defined (micro-)proteins. These additions will enhance 
CancerProteome efficiency, provide an important database to 

investigate (micro-)proteins in different cancers, and identify 
potential roles as therapeutic cancer vaccines. In summary,
CancerProteome is a valuable resource thatfunctionally de- 
ciphers the cancer proteome landscape, and provides novel 
insights for tumor protein marker-prioritization strategies in 

cancer. 

Data availability 

CancerProteome is an open resource which functionally deci- 
phers the proteome landscape in cancer. It is freely available 
via: http:// bio-bigdata.hrbmu.edu.cn/ CancerProteome . 

Supplementary data 

Supplementary Data are available at NAR Online. 

http://bio-bigdata.hrbmu.edu.cn/CancerProteome
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad824#supplementary-data
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