
Research Article

Ethanol-induced enhancement of
inhibitory synaptic transmission in
the rat spinal substantia gelatinosa
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Abstract

Recent studies have shown that ethanol produces a widespread modulation of neuronal activity in the central nervous

system. It is not fully understood, however, how ethanol changes nociceptive transmission. We investigated acute effects of

ethanol on synaptic transmission in the substantia gelatinosa (lamina II of the spinal dorsal horn) and mechanical responses in

the spinal dorsal horn. In substantia gelatinosa neurons, bath application of ethanol at low concentration (10 mM) did not

change the frequency and amplitude of spontaneous inhibitory postsynaptic currents. At medium to high concentrations

(20–100 mM), however, ethanol elicited a barrage of large amplitude spontaneous inhibitory postsynaptic currents. In the

presence of tetrodotoxin, such enhancement of spontaneous inhibitory postsynaptic currents was not detected. In addition,

ethanol (20–100 mM) increased the frequency of spontaneous discharge of vesicular GABA transporter-Venus-labeled

neurons and suppressed the mechanical nociceptive response in wide-dynamic range neurons in the spinal dorsal horn.

The present results suggest that ethanol may reduce nociceptive information transfer in the spinal dorsal horn by enhance-

ment of inhibitory GABAergic and glycinergic synaptic transmission.
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Introduction

Ethanol is commonly consumed, and elevated blood

concentrations of ethanol produces changes in mood,

cognition, locomotion and causes sedation and analge-

sia. Recent studies have shown that acute ethanol

administration exerts actions throughout the central

nervous system (CNS) including prefrontal cortex,

amygdala, hippocampus, ventral tegmental area, and

spinal ventral horn.1,2 As ethanol has hypofunctional

and sedative actions, one of the main actions of ethanol

is considered to be the inhibition of neuronal activities in

part through enhancement of inhibitory synaptic trans-

mission. In the prefrontal cortex, which is thought to be

important for mood and cognition, ethanol enhanced

the GABA-mediated Cl– current and reduced the neuro-

nal activities.3–5 It also enhanced GABAergic currents

evoked in CA1 pyramidal neurons in the hippocampus,6

which is implicated in learning and memory, and in the

amygdala,7,8 which is important for fear and stress.

In the cerebellum and the spinal ventral horn, which
are related to motor function, ethanol potentiated inhib-
itory synaptic transmission.9,10 An inhibitory action on
excitatory synaptic responses was also reported in the
prefrontal cortex11 and hippocampus.12 In addition to
synaptic ethanol actions, ethanol effects on neuronal
intrinsic excitability are also observed, but only in
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restricted groups of neurons in the CNS. Dopaminergic
neurons in the ventral tegmental area that innervate the
nucleus accumbens and are a critical component of
reward system are directly excited by ethanol to
increase their firing frequency.13,14 Ethanol increased
spontaneous firing of Cerebellar Golgi cells
(GABAergic neurons).10 The excitability of hippocam-
pal inhibitory interneurons was increased by ethanol.15

Thus, ethanol has modulatory actions on synaptic trans-
mission to suppress neuronal activities widely in the
CNS, but its excitatory actions on intrinsic neuronal
excitability are cell-type specific. Ethanol has been used
as an analgesic16 and therefore there has been a long-
standing interest in the analgesic properties of ethanol.
Although ethanol actions on neuronal activities in the
amygdala, which play a role in emotional aspects of
pain, are studied,7,8 it is not still understood how ethanol
induces its analgesic action.

The substantia gelatinosa (SG), in the spinal superfi-
cial dorsal horn (lamina II), plays an important role in
the transmission and modulation of nociceptive infor-
mation.17,18 SG neurons are second-order neurons
receiving input from nociceptive primary afferents and
also inhibitory interneurons which are mostly located in
lamina I-III.19–22 In this study, we used three protocols
to clarify the acute effects of ethanol on nociceptive
transmission in the spinal dorsal horn. First, we investi-
gated actions of ethanol on inhibitory and excitatory
synaptic transmission in the SG using the whole-cell
patch-clamp recording technique23 and found that etha-
nol preferentially enhanced inhibitory synaptic transmis-
sion. Then, we used a transgenic rat expressing the
fluorescent protein Venus under the control of vesicular
GABA Transporter (VGAT)24–26 and examined how
ethanol acts on the VGAT-Venus-labeled neurons in
the spinal dorsal horn. Finally, we assessed whether
ethanol-modulated spinal sensory responses evoked by
cutaneous mechanical stimulation in anesthetized rats.

Material and methods

Animals

Male Sprague-Dawley (SD) rats (SLC, Hamamatsu,
Japan) and VGAT-Venus Wister rats were used in this
study. Animals were housed in cages with food and
water available ad libitum. The room was maintained
with 12-h light/dark cycle and kept at 20�C. All animal
studies were reviewed and approved by the Institutional
Animal Care and Use Committee of Hyogo College of
Medicine and National Institutes of Natural Sciences in
Japan and were performed in accordance with the insti-
tutional guidelines for animal experiments and were con-
sistent with the ethical guidelines of the International
Association for the Study of Pain. Every effort was

made to reduce the number of animals. At the end of

the study, the animals were killed with supplemental

injection of urethane (2–4 g/kg, i.p.) or by exsanguina-

tion under the urethane anesthesia (1.2–1.5 g/kg, i.p.)

Spinal cord slice preparations

The method for obtaining spinal cord slices has been

described previously.23,27 Briefly, two- to four-week-old

SD and VGAT-Venus rats were deeply anesthetized with

urethane (1.2–1.5 g/kg, i.p.), and then thoracolumbar

laminectomy was performed. The lumbosacral spinal

cord was removed and placed in a pre-oxygenated cold

Krebs solution containing (in mM): 117 NaCl, 3.6 KCl,
2.5 CaCl2, 1.2 MgCl2, 1.2 NaH2PO4, 25 NaHCO3, and

11 glucose at 1�C to 3�C. The pia-arachnoid membrane

was removed after cutting all of the ventral and dorsal

roots. The spinal cord was mounted on a vibratome, and

a 500-mm (for blind whole-cell recordings) or 300-mm
(for recordings from VGAT-Venus-labeled cells)-thick

transverse slice was cut. The slice was placed in the

recording chamber and then perfused with Krebs solu-

tion saturated with 95% O2 and 5% CO2 at 36�C at a
flow rate of 10 ml/min.

Whole-cell patch-clamp recordings

For blind whole-cell recordings, the SG was easily dis-

cernible with transmitted illumination as a relatively

translucent band across the dorsal horn in the transverse

slice preparation. Blind whole-cell patch-clamp record-

ings were made from SG neurons.23 The patch pipettes
were filled with a solution containing (mM): potassium

solution (K-gluconate 135, CaCl2 0.5, MgCl2 2, KCl 5,

EGTA 5, 5 Mg-ATP, and HEPES 5; pH: 7.2) for record-

ings of excitatory postsynaptic currents (EPSCs) and

membrane potentials, or cesium solution (Cs2SO4 110,

TEA-Cl 5, CaCl2 0.5, MgCl2 2, EGTA 5, ATP-Mg 5,

and HEPES-CsOH 5; pH: 7.2) for recordings of inhibi-

tory postsynaptic currents (IPSCs). EPSCs and IPSCs
were recorded under voltage-clamp conditions at a hold-

ing potential of –70 mV and 0 mV, respectively.

Membrane potentials and action potentials (APs) were

recorded under current-clamp conditions. The passive

membrane and active properties were examined by pass-

ing hyperpolarizing and depolarizing current pulses

through the recording electrode from a membrane

potential of –60 mV. The firing frequency was calculated

from the firings in response to 1 s depolarizing current
pulse with an amplitude of 1.5 to 2 times higher than the

threshold. Input membrane resistance was calculated

from the hyperpolarized membrane potentials ranging

from –60 to –80 mV. VGAT-Venus-labeled neurons in

the slice preparation were visualized using an upright

microscope (BX51WI; Olympus Optical Tokyo, Japan)
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equipped with infrared differential interference contrast
Nomarski with a fluorescence filter (U-MWIGA3;
Olympus). Signals were amplified with a patch-clamp
amplifier (Axopatch 200B; Molecular Devices,
Sunnyvale, CA, USA), and data were low-pass filtered

at 5 kHz, digitized with a analog-to-digital converter
(Digidata 1322; Molecular Devices), and stored on a per-
sonal computer at 10 to 20 kHz using a data acquisition
program (pCLAMP version 12.3; Molecular Devices).
Ethanol and tetrodotoxin (TTX) were dissolved in
Krebs solution. Synaptic events were analyzed using a
program (Minianalysis version 6.0.7; Synaptosoft, Fort
Lee, NJ, USA). We a priori defined neurons as being

sensitive to ethanol when the frequency of synaptic
responses was altered by more than �50% of control.

Extracellular recording from spinal dorsal horn

neurons in vivo

The methods for making in vivo preparation were similar
to those in our previous studies.20,28,29 Briefly, six-week-
old SD rats were anesthetized with urethane (1.2–1.5 g/
kg, i.p.) and placed on a warm plate. A thoracolumbar
laminectomy at table13-1744806918817969-L2 levels
was performed to expose the dorsal surface of the
lumber enlargement of spinal cord at L3-L5 levels. The
rat was then placed in a stereotaxic apparatus (ST-7;

Narishige, Tokyo, Japan). The dura matter was
removed, and the pia-arachnoid membrane was cut,
making a small window to insert a tungsten electrode
with an impedance of 10 MX (FHC, Bowdoin, ME,
USA) using a micromanipulator (MHW-4-1; Narishige)
at a fixed angle. The electrode was placed into the spinal
dorsal horn, and multiunit neuronal firing was amplified
with a differential extracellular amplifier (EX1; Dagan,

Minneapolis, MN, USA).30,31 The signal was bandpass-
filtered at 300–3 kHz and sampled at 25 kHz. Recorded
signals were spike-sorted with a software (Spike2 version
6; Cambridge Electronic Design, Cambridge, UK). As
shown previously,32,33 neurons were classified as a wide
dynamic range (WDR) neuron if they elicited firing in
response to light touch (brushing or tapping the ipsilateral
hind paw) and displayed increased firing to pinching
with toothed forceps (11022-14; Fine Science Tools,

Heidelberg, Germany). Mechanical noxious stimulation
was applied with using a von Frey filament (60 g) which
induced a withdrawal reflex in awake rats. The surface of
the exposed spinal cord was irrigated with Krebs solution,
and ethanol dissolved in Krebs solution was applied by
the superfusion.29,34

Statistical analysis

All numerical data are shown as mean�SEM.
Statistical significance was determined as p< 0.05 using

student’s paired and unpaired t test. The Kolmogorov–
Smirnov test was used to compare the cumulative distri-
butions of synaptic responses. In all cases, n refers to the
number of neurons studied.

Results

Ethanol increased spontaneous but not miniature
IPSCs in SG neurons

First, we examined effects of acute ethanol on inhibitory
synaptic transmission and used three rages of ethanol
concentrations at 10, 20 to 50, and 100 mM defined as
low, medium, and high concentrations, respectively.2 SG
neurons tested exhibited sIPSCs with a frequency and
amplitude of 5.4� 1.2 Hz and 39.3� 6.3 pA (n¼ 24),
respectively. During stable recording of sIPSCs, ethanol
was applied by bath application. Low-concentration eth-
anol did not change the frequency and amplitude of
sIPSCs (frequency: 105.9� 9.8% of control; amplitude:
101.3� 9.8% of control; n¼ 8; p> 0.05). As shown in
Figure 1(a), however, medium-concentration ethanol
elicited a barrage of sIPSCs. The amplitude distribu-
tion of sIPSCs shows that ethanol increases the pro-
portion of events having the same amplitudes detected
in control, and further that of large events (>25 pA)
(Figure 1(b)). The actions of medium- to high-
concentration ethanol on the frequency and amplitude
of sIPSCs in all SG neurons tested are shown in
Figure 1(d) and (e). Enhancement of sIPSCs by
medium-concentration ethanol (frequency increase to
more than 150%) was detected in 6 out of 21
(28.6%) SG neurons (20 mM, 2 out of 7; 30 mM, 3
out of 10; 50 mM, one out of four) (Figure 1(c)), and
in the neurons sensitive to ethanol, the frequency and
amplitude of sIPSCs were 227.5� 38.8% and 129.6
� 17.9% of control (n¼ 6), respectively. In remaining
neurons (n¼ 15), medium concentration of ethanol did
not change the frequency and amplitude (107.1� 6.2%
and 101.9� 5.6% of control). High-concentration eth-
anol also increased sIPSCs in 56.5% (13 out of 23) of
SG neurons tested (Figure 1(c)), and the frequency
and amplitude of sIPSCs were 254.0� 40.1% and
116.6� 12.0% of control, respectively (n¼ 13). In
remaining neurons (n¼ 10), high concentration of eth-
anol did not change the frequency and amplitude
(106.4� 12.0% and 107.5� 11.6% of control). SG
neurons elicit GABAergic and glycinergic IPSCs
which are sensitive to either strychnine or bicuculline.
We first examined action of high-concentration etha-
nol on sIPSCs. In SG neurons sensitive to the ethanol
(n¼ 10), ethanol was then applied in the presence
of either 3 mm strychnine or 10 mm bicuculline.
As shown in Figure 2, in the presence of strychnine,
the frequency of strychnine-insensitive (GABAergic)

Yamada et al. 3



sIPSCs was increased by high-concentration ethanol

(control: 1.1� 0.4 Hz; ethanol: 2.3� 0.5 Hz; n¼ 5).

In the presence of bicuculline, ethanol also increased

the frequency of bicuculline-insensitive (glycinergic)

sIPSCs (control: 1.8� 0.4 Hz; ethanol: 3.3� 0.7 Hz;

n¼ 5). These results suggest that ethanol enhances

inhibitory synaptic transmission in a subset of

SG neurons by reversibly evoking a barrage

of GABAergic and glycinergic sIPSCs with

large amplitudes.
We next examined ethanol action on miniature inhib-

itory postsynaptic events. The sodium channel blocker,

TTX (1 mm) was used to eliminate AP-dependent inhib-

itory synaptic responses. SG neurons exhibited

Figure 1. Effects of ethanol on spontaneous IPSCs in the SG of the spinal dorsal horn. (a) An example trace showing that a medium
concentration of ethanol (50 mM) elicited a barrage of sIPSCs in SG neurons under voltage-clamp at a holding potential of 0 mV. Lower
three traces in control and in the presence of ethanol are shown on an expanded timescale. (b) Histograms of the amplitude distribution of
sIPSCs in control and with ethanol (50 mM). Insets showed an averaged sIPSC from control and under the action of ethanol (average of 30
events, normalized for amplitude). (c) The percentage of cells sensitive to ethanol at low (10 mM), medium (20, 30, and 50 mM), and high
(100 mM) concentrations. (d) and (e) Summary showing effect of low to high concentrations (low: 10 mM; medium: 20, 30, and 50 mM;
high: 100 mM) of ethanol on the frequency and amplitude of sIPSCs.
IPSCs: inhibitory postsynaptic currents.
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miniature IPSCs (mIPSCs) with a frequency and ampli-
tude of 1.9� 0.5 Hz and 23.5� 2.6 pA, respectively
(n¼ 16). No SG neurons showed a change in mIPSCs
in response to ethanol. Even high-concentration ethanol

did not change mIPSCs (Figure 3). The frequency and
amplitude in the presence of high-concentration
ethanol were 111.1� 9.3% of control and 98.5� 3.9%
of control (n¼ 6).

Figure 2. Effect of ethanol on spontaneous strychnine- and bicuculline-insensitive (GABAergic and glycinergic) IPSCs. (a) An example
trace showing that high concentration of ethanol (100 mM) increased sIPSCs in the presence of strychnine (3 mm) under voltage-clamp
conditions at a holding potential of 0 mV. Lower three traces in control and under the action of ethanol are shown on an expanded
timescale. (b) An example trace showing that high concentration of ethanol (100 mM) enhanced sIPSCs in the presence of bicuculline
(10 mm). Lower two traces in control and under the action of ethanol are shown on an expanded timescale. (c) Summary showing the
relative change of high concentrations (100 mM) of ethanol actions on the frequency of sIPSCs. IPSCs: inhibitory postsynaptic currents.
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Ethanol did not affect the spontaneous EPSCs

SG neurons tested exhibited spontaneous EPSCs (sEPSCs)
with a frequency and amplitude of 9.2� 2.4 Hz and
23.7� 5.9 pA, respectively (n¼ 14). Three neurons out
of seven neurons were sensitive to high-concentration

ethanol, but high-concentration ethanol did not exert

any typical effects on sEPSCs (an increase in the sEPSC

frequency in two of them; a decrease in that in one of

them) (Figure 4). These data indicate that ethanol does

not induce any consistent influence on sEPSCs.

Figure 3. Lack of effect of ethanol on miniature IPSCs. (a) Example of mIPSCs recorded in SG neurons in the presence of TTX (1 mm)
under voltage-clamp conditions at a holding potential of 0 mV. Ethanol (30 mM) had no visible effect. Lower three traces in control and
under the action of ethanol are shown on an expanded timescale. (b,c) Cumulative histograms of the inter-event interval and amplitude of
mIPSCs in control and ethanol obtained from the trace shown in (a). Ethanol did not shift the curves (p¼ 0.56 for inter-event interval;
p¼ 0.35 for amplitude). (d,e) Summary showing the relative change of high concentration (100 mM) of ethanol actions on the frequency
and amplitude of mIPSCs.
IPSCs: inhibitory postsynaptic currents.
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Ethanol-evoked APs in VGAT-Venus-labeled neurons

As noted above, ethanol facilitated inhibitory synaptic

transmission by increasing the incidence of large

amplitude IPSCs in slice preparations, suggesting that

ethanol might generate APs in spinal inhibitory inter-

neurons. We therefore addressed ethanol action on

inhibitory interneurons by using a transgenic VGAT-

Venus rat, which expresses the fluorescent protein

Venus under the promotor for VGAT.24–26 Using an

infrared differential interference contrast fluorescence

microscope, we identified VGAT-Venus expressing

neurons in spinal cord slices and performed whole-

cell patch-clamp recordings from the Venus-labeled

neurons (Figure 5(a) and (b)). In current clamp

mode, the VGAT-Venus-labeled neurons fired sponta-

neous APs with a frequency of 0.7� 0.4 Hz (n¼ 7). As

shown in Figure 5(c) and (d), medium concentrations

(30 mM) of ethanol elicited a number of APs. Under

the action of ethanol, the AP frequency was increased

to 308.8� 132.8% of control (p< 0.05, n¼ 7).

However, the frequency of APs elicited by current

injection through the recording electrode was not

changed by ethanol (control: 21.3� 4.8 Hz; ethanol:

21.6� 5.0 Hz; p> 0.05, n¼ 7) (Figure 5(e)). The

input membrane resistance was not also altered by

ethanol (control: 0.8� 0.2 MX; ethanol: 0.7� 0.2

MX; p> 0.05, n¼ 7). These results suggest that ethanol

increased spontaneous firing of inhibitory interneurons

in the spinal dorsal horn.

Figure 4. Effects of ethanol on spontaneous EPSCs. (a) An example of effects of ethanol (30 mM) on sEPSCs recorded in SG neuron
under voltage-clamp conditions at a holding potential of –70 mV. Lower three traces in control and ethanol are shown on an expanded
timescale. (b,c) Summary showing the relative change by high concentration (100 mM) of ethanol on the frequency and amplitude of
spontaneous EPSCs.
IPSCs: inhibitory postsynaptic currents.
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Ethanol suppressed mechanical sensory responses of

spinal dorsal horn neurons in vivo

So far, we found that ethanol evoked large amplitude of

sIPSCs in the SG and increased the firing frequency of

spinal inhibitory interneurons. Finally, we examined

whether ethanol can suppress spinal nociceptive trans-

mission. In our previous studies using in vivo prepara-

tions, drugs applied to the surface of the spinal cord had

significant action within a depth of 250 mm in which

inhibitory interneurons are located.20,29 Therefore, we

applied high concentration of ethanol to the surface of
the spinal cord. In WDR neurons in the spinal dorsal
horn, mechanical noxious responses were elicited by a
von Frey filament (60 g) applied to the skin. High-
concentration ethanol applied to the surface of the
spinal cord did not have any inhibitory actions on the
responses during the mechanical noxious stimulation.
However, we found that ethanol suppressed the after
discharge that followed mechanical stimulation. As
shown in Figure 6(a) and (b), application of a series of
different concentrations of ethanol (10, 30, and 100 mM)

Figure 5. Ethanol-evoked action potentials in VGAT-Venus-labeled neurons. (a) An example of recording from the same neuron observed
with a differential interference contrast optics (left) and labeled with VGAT-Venus fluorescent protein (right). (b) An example of firing
properties of Venus-labeled neurons. In response to current injections from the recording pipette, Venus-labeled neuron showed a tonic
firing. (c) VGAT-Venus neurons exhibited spontaneous APs and a medium concentration of ethanol (30 mM) increased the frequency of
discharge. (d) Summary data showing the effect of ethanol on the frequency of APs. Ethanol (30 mM) increased the spontaneous firing
frequency (n¼ 7, *p< 0.05). (e) An example of active membrane property of VGAT-Venus neurons in control and in the presence of
ethanol (30 mM) showing that it had no action on the firings.
DIC: differential interference contrast; VGAT: vesicular GABA transporter.
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incrementally suppressed the after discharge. High-
concentration ethanol significantly reduced the after dis-
charge firing frequency at 0 to 3 and 3 to 6 s after ces-
sation of the mechanical stimulation (0–3 s, 76.0� 4.2%

of control, n¼ 13; 3–6 s, 67.0� 10.8%, n¼ 12; p< 0.05)
(Figure 6(c)). High-concentration ethanol also shortened
the duration of after discharged APs (control: 25.6
� 4.6 s; ethanol: 14.6� 2.6 s, n¼ 5; p< 0.05).

Figure 6. Ethanol suppressed spinal nociceptive responses evoked by cutaneous mechanical stimuli in vivo. (a) A continuous recording
showing actions of increasing concentrations of ethanol on APs elicited by mechanical stimulation in a wide-dynamic range neuron (top
trace). A von Frey filament (60 g) stimulation was repeatedly applied to the ipsilateral hind paw at an interval of 20 s. Lower three traces
show the mechanical nociceptive responses on an expanded timescale in control and in the presence of 30 mM and 100 mM ethanol
indicated by a, b, and c, respectively. Note that typical after-discharges were elicited following each mechanical stimulation and suppressed
by 30 and 100 mM ethanol. Gray shows after discharge responses at 3 to 6 s after the stimulation. (b) The time-course of averaged after-
discharge frequency at 3 to 6 s after the mechanical stimulation in control and ethanol (10, 30, and 100 mM) obtained from the same
neuron shown in (a). The frequency was gradually decreased by ethanol. (c) Normalized AP frequency of nociceptive responses during the
stimulation, 0 to 3 and 3 to 6 s after the stimulation under the action of high concentration of ethanol (100 mM, n¼ 14).
APs: action potentials.

Yamada et al. 9



Discussion

Recent studies have shown that acute ethanol modulates
neuronal activities widely in the CNS. In this study, we
revealed for the first time a direct spinal action of acute
ethanol on synaptic activity in the SG of spinal cord
slices and on single neuronal mechanical nociceptive
responses elicited in the spinal dorsal horn of rats in
vivo. Our major findings are as follows: (1) ethanol at

medium to high but not low concentrations enhanced
spontaneous inhibitory (GABAergic and glycinergic)
synaptic transmission in the SG, eliciting large amplitude
synaptic currents; (2) VGAT-Venus-labeled neurons
showed an ethanol-induced increase in their spontane-
ous firing; and (3) after discharges following to cutane-
ous mechanical stimuli in spinal WDR neurons were
suppressed by ethanol. The present results suggest that
acute ethanol exerts an analgesic action in the spinal
dorsal horn by a preferential excitation of inhibitory

interneurons.

Ethanol concentrations and their actions on behavior

and inhibitory synaptic transmission in the SG

The degree of acute intoxication and behavioral changes
induced by ethanol is dependent on blood ethanol con-
centrations.1,35,36 In general, ethanol concentrations of
�10 mM produces anxiolytic and euphoric effects.
Higher ethanol levels (more than 15 mM, defined here
as medium concentration) induce a degree of sedation
and motor incoordination. At concentrations more than
50 mM defined as high concentration, ethanol induces
locomotor disruption and marked cognitive impairments
associated with increasing sedation. A large number of
behavioral studies using animals have shown equivalent

ethanol-induced behavioral changes including an anal-
gesic action.37–40 Tail-flick latency provoked by noxious
heat stimulation is increased in rats after intraperitoneal
administration of ethanol at doses of more than 2 g/kg.37

This dose would be predicted to increase blood ethanol
concentration for more than 2 h to approximately 20 to
30 mM based on a previous study of blood ethanol
concentration profiles in rodents after intraperitoneal
administration.41

In this study, we showed a direct action of ethanol at
different concentrations on synaptic activity in the SG of
superficial dorsal horn in slice preparations. Low con-
centration of ethanol (10 mM) did not have any detect-
able actions on spontaneous inhibitory or excitatory
synaptic transmission. However, concentrations of etha-

nol above 20 mM produced enhancement of spontane-
ous inhibitory but not excitatory synaptic transmission;
consistent with the blood ethanol concentration showing
an analgesic action on tail-flick latencies in the previous
study.37 However, it is hard to assess analgesic action of

high dose (blood concentration) of ethanol in behaving
animals, there is a confound of ethanol-induced sedation
as these concentrations of ethanol can induce sleep.42

Our results obtained from spinal cord slice preparations
clearly demonstrated that facilitatory action of ethanol
on spontaneous inhibitory synaptic transmission in the
SG was still detected at high concentrations of ethanol.
Indeed, the enhancement of sIPSCs was concentration
dependent (percentage of SG neurons sensitive to etha-
nol, 28.6% for medium ethanol vs. 41.6% for high-
concentration ethanol; averaged increase in sIPSC fre-
quency, 227% of control for medium ethanol vs. 338%
of control for high ethanol).

Ethanol does not have pre- or postsynaptic actions on
inhibitory synaptic transmission in the SG but excites
spinal inhibitory interneurons

Ethanol is reported to potentiate GABAA receptor-
mediated currents.43 Enhancement of the postsynaptic
currents of inhibitory synaptic transmission was also
observed in the amygdala, hippocampus, and spinal ven-
tral horn.8,44,45 In the present study, ethanol did not
have any actions on the frequency and amplitude of
mIPSCs elicited in SG neurons in the presence of
TTX, suggesting that ethanol has no pre- or postsynap-
tic actions on inhibitory synaptic transmission. In the
hippocampus, ethanol prolonged the decay time con-
stant of IPSCs.44 Such ethanol-induced changes in the
decay of IPSCs were not observed in this study (see an
example of sIPSC kinetics of control and in the presence
of ethanol in the inset of Figure 1(b)). The ethanol-
induced barrage of large amplitude sIPSCs (see
Figure 1(a) and (b)) was not detected in the presence
of TTX. We therefore propose that ethanol may
induce IPSCs directly by an increase in the intrinsic
excitability of spinal inhibitory interneurons. As pre-
dicted, recordings from VGAT, VGAT-Venus neurons
demonstrated that ethanol increased their spontaneous
firing frequency. A similar action of ethanol on intrinsic
excitability was seen in dopamine neurons in the ventral
tegmental area13,14 and GABAergic Cerebellar Golgi
cells.10 This raises the question of how ethanol can mod-
ulate intrinsic excitability? Previous studies have sug-
gested that a putative molecular target of ethanol is
the large-conductance calcium-activated potassium
channel (BK channel). The BK channel is known to
inhibit and excite neurons and is thought to be potenti-
ated by ethanol.46–48 In the spinal dorsal horn, the BK
channel was only expressed in a small population of
dorsal horn neurons.49 G protein-coupled receptor
inwardly rectifying Kþ channel is also reported to be
one of the possible direct molecular targets.50,51

Although ethanol enhancements of inhibitory synaptic
transmitter release were also observed in the CNS as

10 Molecular Pain



described above, the underlying mechanism for the eth-
anol enhancement are also not well-understood.
However, in mice lacking protein kinase A or protein
kinase C epsilon, ethanol enhancement of GABA release
was prevented.52–54 These suggest that ethanol interacts
with intercellular signaling molecules. The firing proper-
ties of the VGAT-Venus neurons in response to current
injections were not changed by ethanol in the present
study. However, further experiments are needed to elu-
cidate how ethanol could excite spinal inhibitory inter-
neurons to increase the synaptic release.

Ethanol suppresses the after discharge response of
WDR neurons to noxious mechanical stimuli

To test whether ethanol could inhibit nociceptive trans-
mission, we examined the effects of ethanol on sensory
responses in the spinal dorsal horn. Ethanol at medium
concentration applied to the surface of the spinal cord
suppressed the after discharge elicited in WDR neurons
by mechanical stimulation (see Figure 6), suggesting that
ethanol has a spinal analgesic action on mechanical noci-
ceptive transmission. Given that ethanol elicited a bar-
rage of large amplitude IPSCs, and inhibitory
postsynaptic responses are known to modulate spinal
nociceptive transmission by shunting excitatory cur-
rents.55,56 It is known that firing in response to mechan-
ical stimulation in WDR neurons is attenuated by
inhibitory synaptic transmission.57,58 Taken together
with the current and previous studies, an increase in
the frequency of spontaneous IPSCs by excitation of
spinal inhibitory interneurons may account for the sup-
pression of the after discharges of WDR neurons.
However, the firings of WDR neurons during the
mechanical stimulation were not inhibited (Figure 6
(c)), suggesting that ethanol-induced IPSCs does not
have such a strong suppressive effect. One possible
reason for this could be due to differences between the
excitatory currents evoked in WDR neurons during the
stimulation and in the period of the after discharge.
During mechanical stimulation, fast excitatory mono-
and polysynaptic currents with large amplitudes are
mainly evoked through the activation of afferent
fibers.20,59,60 In contrast, after discharges of WDR are
elicited by an intrinsic plateau potential.61 To effectively
inhibit an EPSP, there needs to be tight temporal syn-
chronicity of the inhibitory synaptic events to produce
summation to counter the excitatory drive.62 Ethanol
induced a barrage of IPSCs in an episodic manner,
and summated sIPSCs were not detected (see an example
of IPSC traces under the action of ethanol on an expand-
ed timescale in Figure 1(a)). The average event-interval
of sIPSCs under the ethanol action was 83.0� 3.4 ms
which was longer than the half decay time (� 40 ms)
for inhibitory postsynaptic potentials evoked in SG

neurons shown in previous study.56 These suggest that
the ethanol-induced IPSC facilitation does not produce

any summating outward currents. Thus, ethanol may
have induced inhibitory postsynaptic responses sufficient
to shunt the plateau potentials in WDR neurons spon-

taneously, to decrease the number of after discharge fir-
ings. We postulate that this may be sufficient to account
for the analgesic effect of acute ethanol consumption

where it “takes the edge off the pain” without being
able to completely suppress pain altogether.
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