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SUMMARY

Electrochemical oxygen reduction reaction (ORR) is an important energy-related
process requiring alternative catalysts to expensive platinum-based ones.
Although recently some advancements in carbon catalysts have been reported,
there is still a lack of understanding which surface features might enhance their
efficiency for ORR. Through a detailed study of oxygen adsorption on carbon mo-
lecular sieves and using inelastic neutron scattering, we demonstrated here that
the extent of oxygen adsorption/interactions with surface is an important param-
eter affecting ORR. It was found that both the strength of O2 physical adsorption
in small pores and its specific interactions with surface ether functionalities in the
proximity of pores positively influence the ORR efficiency. We have shown that
ultramicropores and hydrophobic surface rich in ether-based groups and/or elec-
trons enhance ORR on carbon electrocatalysts and the performance parameters
are similar to those measured on Pt/C with the number of electron transfer equal
to 4.

INTRODUCTION

Oxygen reduction reaction (ORR) is a strategically important energy-related application of carbon-based

electrocatalysts (Chen et al., 2020; Liu and Dai, 2016; Ma et al., 2019; Shao et al., 2016; Tang and Zhang,

2017; Yan et al., 2018; Yang et al., 2013; Yu et al., 2011; Zhang et al., 2015). Even though the heteroat-

om-doped carbons (Chen et al., 2020; Choi et al., 2012; Ma et al., 2019; Shao et al., 2016; Tang and Zhang,

2017; Yan et al., 2018; Yu et al., 2011) gained the most attention owing to the specificity of N-, P-, S-, and B-

based catalytic centers, some activity was also linked to the structural defects of disturbed graphene sheet

edges (Greco et al., 2019; Jiang et al., 2015; Li et al., 2018; Xue et al., 2018), effects of oxygen groups (Zhang

et al., 2018), porosity (Eisenberg et al., 2016; Ferrero et al., 2016; Gabe et al., 2019; Morais et al., 2019), or

even pore sizes (Barrera et al., 2019a, 2019b; Encalada et al., 2017; Florent et al., 2019; Gabe et al., 2019;

Seredych et al., 2016).

An explanation of the effect of porosity on the performance of electrocatalyst poses a challenge to tradi-

tional electrocatalysis concepts, and there are only few reports pointing out the role of this feature. One of

the first reports addressing the possible effect of porosity on the efficiency of ORR was published by Tam-

meveski and coworkers (Kruusenberg et al., 2010). Then various articles on N-doped carbons suggested

the importance of large transport pores/mesopores (Eisenberg et al., 2016; Ferrero et al., 2016; Mos-

tazo-López et al., 2019; Quı́lez-Bermejo et al., 2017). Nevertheless, the first direct reports linking the effects

of pore sizes to the ORR efficiency were published by our research group (Barrera et al., 2019a, 2019b; En-

calada et al., 2017; Florent et al., 2019; Seredych et al., 2016). We have suggested that the reduction process

might be driven by oxygen adsorption and that ultramicropores work as pseudocatalytic centers for ORR by

promoting strong O2 adsorption, which in turn helps with O=O bond splitting and thus promotes a 4 e�
reduction path (Barrera et al., 2019b). Even though water can adsorb in carbonmicropores, even hydropho-

bic, it was suggested that its adsorption occurs upon the formation of clusters with sizes of�0.5 nm (Iiyama

et al., 2000). Those clusters are not expected to enter the smallest pores accessible to oxygen, and their

heat of adsorption at a low surface coverage is smaller than that of oxygen (Park et al., 2019; Phillips

et al., 1998; Salame and Bandosz, 2000). Moreover, this favorable energetics of oxygen adsorption might

result in replacement of water by oxygen in ultramicropores. It has been also suggested that carbon with a
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high surface area can show unusual ferromagnetism (Kaneko, 1996b) and oxygen, owing to its paramag-

netic properties, can be strongly attracted to carbon on its surface. It can also exhibit strong spin-spin in-

teractions (Kaneko, 1996a). Recently, the dependence of the ORR performance of carbons on the porosity

has been also addressed by Ribeiro Pereira and coworkers (Morais et al., 2019), who found the dependence

of the current density on the Brunauer–Emmett–Teller surface area. A direct effect of microporosity on the

mechanism of ORR has been investigated by Cazorla-Amoros and co-workers (Gabe et al., 2019). Their

mathematical model considered mass transfer rates, two reduction reactions, and different activity of ultra-

micropores and supermicropores (narrow and widemicropores). The results suggested that the adsorption

potentials and mass transfer between two types of pores are linked to the high activity of H2O2 reduction in

narrow micropores.

Based on the above-addressed finding, and the need to refer to the observed phenomena/trends in more

depth, in this article we evaluate very homogeneous porous carbon molecular sieves (CMS) as ORR cata-

lysts, with an emphasis on their affinity to adsorb oxygen and/or interact with it. We hypothesize that

adsorption of oxygen in small pores, both nonspecific and specific, contributes to the observed trends

in the oxygen electroreduction efficiency. The engagement of inelastic neutron scattering (INS) technique

permits us to investigate in situ changes in oxygen environment upon O2 adsorption in carbon pores. To

broaden the range of surface features, the CMS were oxidized to various degrees either in hot air or in nitric

acid. Detailed analysis of their surfaces combined with O2 adsorption and the ORR performance enables us

to provide a direct proof of the effects of pore sizes and their affinity to attract oxygen via adsorption forces

and that of surface hydrophobicity/chemistry on the efficiency of the ORR process. To the best of our

knowledge, it is the first report attempting to link the ORR activity to the direct interactions of oxygen

with porous carbons, both physical and chemical in nature.

RESULTS AND DISCUSSION

Porosity evaluation

Based on the shapes of the N2 adsorption isotherms (Figure S1), the CS series of carbons are predominantly

microporous. The pore size distributions (PSDs) (Figure 1) indicate the same sizes of small pores (0.57 and

1.27 nm) in both CMS; however, CS shows more homogeneity. CX has also a marked volume in pores be-

tween 4 and 40 nm, and its oxidation decreased the volume of micropores with a gradual appearance of

mesopores. Air oxidation of CS did not affect its PSD, but for CS-Acid a dramatic change in PSD was found.

The volume of pore smaller than 1 nm (ultramicropores) markedly decreased, which was accompanied by a

decrease in size of supermicropores (1 nm < w < 2 nm). This indicates the collapse of the small pore walls

due to the oxidative effect of acid on the carbon matrix.

The parameters of the pore structure calculated from N2 adsorption isotherms are collected in Table 1.

Because the calculated PSDs of most of our carbons show a minimum at about 1 nm, we have arbitrarily

chosen this value as an upper size of ultramicropores. The surface area of CS is about 35% bigger than

that of CX, and it is linked to its 38% higher volume of micropores, especially those between 1 and

2 nm. CS is predominantly microporous (Vmic/Vt = 0.98), whereas CX has a micro/meso nature (Vmic/Vt =

0.49). Acid oxidation of CS decreased its surface area by about 40% with almost 50% decrease in the micro-

pore volume.

Electrocatalytic oxygen reduction

CV curves measured in O2-saturated electrolytes (Figure S2) show well-pronounced oxygen reduction

humps between 0.6 and 0.8 V versus RHE. Linear sweep voltammetry (LSV) curves measured inO2-saturated

electrolyte (Figures 2A and 2B) are typical for porous carbon catalysts with a sharp increase in current den-

sity below 0.8 V versus RHE. Two distinct ORR processes (Gabe et al., 2019) are clearly visible only for the CX

series. CS-Air exhibits the highest current density of 3.4 mA cm�2, and the lowest (2.5 mA cm �2) is

measured on CX and CX-Acid. For both series, oxidation increased the current density.

From a kinetic limiting current (Figure S3A) a kinetic current density (Figure 2C) was calculated using the

geometrical surface areas of the electrodes. CS-Air and CX-Air have the highest current density at more

negative potential (11 mA cm�2), whereas at more positive potential CX outperforms CX-Air. The values

measured on our CMSs are comparable to those reported in the literature on other carbon electrocatalysts

(Chen et al., 2010; Eisenberg et al., 2016; Ferrero et al., 2016; Jorge et al., 2020; Qu et al., 2010). To account

for the effect of SBET and that of the electrochemically active surface area (36.81, 54.78, 21.03, 35.88, 57.81,
2 iScience 24, 102216, March 19, 2021



Figure 1. Porosity evaluation

(A) PSDs of CX series calculated from N2 adsorption isotherms.

(B) PSDs of CS series calculated from N2 adsorption isotherms.

(C) Comparison of PSDs calculated from N2 and O2 adsorption isotherms (denoted as N2 and O2, respectively) for the

initial carbons.

(D) Comparison of PSDs calculated from N2 and O2 adsorption isotherms (denoted as N2 and O2, respectively) for the

acid-oxidized carbons.
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and 45.27 cm2 for CX, CX-Air, CX-Acid, CS, CS-Air, and CS-Acid, respectively), the current density was

normalized for these values (Figures S3B and S3C, respectively in the supplemental information). In these

categories, the best performing samples are CS-Acid and CX-Acid, respectively.

In terms of the number of electron transfer and the amount of peroxide produced in the ORR process (Fig-

ures 2D and 2E, respectively) the best performing is CX on which n is very stable and almost 4 (3.98) (com-

parable to that on Pt/C [Florent et al., 2019]). The n values on other catalysts tested are also high (3.45–3.88),

and they show the following decreasing trend: CS-Air > CS > CS-Acid > CX-Acid > CX-Air. The amount of

peroxide produced is consistent with the number of electron transfer, and oxidized samples, with an excep-

tion of CS-Air, showed an increase in the % H2O2 formed.
Table 1. Comparison of the parameters of the pore structure calculated from N2 and O2 adsorption isotherms.

SBET
m2 g�1

N2 O2

SDFT
m2 g�1

V<1 nm

cm3 g�1

Vmic

cm3 g�1

Vt

cm3 g�1

V<1 nm

cm3 g�1

Vmic

cm3 g�1

Vt

cm3 g�1

CX 920 1,133 0.300 0.350 0.715 0.309 0.361 0.678

CX-Air 915 1,157 0.297 0.346 0.738 0.302 0.353 0.684

CX-Acid 860 1,136 0.282 0.316 0.814 0.287 0.330 0.654

CS 1,210 1,348 0.351 0.485 0.496 0.357 0.500 0.516

CS-Air 1,195 1,195 0.346 0.491 0.505 0.351 0.507 0.530

CS-Acid 740 735 0.127 0.294 0.351 0.195 0.385 0.387
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Figure 2. Electrocatalytic oxygen reduction

(A) LSV curves of all samples in O2-saturated 0.1 M KOH at 2,000 rpm.

(B) LSV curve of Pt/C.

(C) Kinetic current density normalized per the geometrical surface area of the electrode.

(D) Number of electron transfer.

(E) Amount of peroxide formed.

(F) Onset potentials.

(G) Tafel plots.

(H) Tolerance to methanol.

(I) Stability of the catalysts.
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The onset potential (Figure 2F) is the most positive on CS-Air (0.815 V versus RHE). Interestingly, on CX only

0.743 V versus RHE was measured. All other samples had similar onset potential values. As in the case of n,

CX outstands other samples, but in this case in its low onset potential value.

Tafel plot slopes (Figure 2G) are in the range 43–66mV dec�1, and the best performing sample (the smallest

slope) in this category is CS-Air and the worst one is CX. It is important to mention, the slopes measured on

our catalysts are smaller than the slope for Pt/C indicating a fast kinetics of the electron transfer. All CMS

catalysts are also better than Pt/C in terms of the tolerance tomethanol crossover (Figure 2H), and when the

stability (Figure 2I) is considered, CS-Acid and CS-Air show similar performance as Pt/C.

Surface chemistry analyses

The thermal analysis (TA) results (Figures 3A and 3B) show CX as very thermally stable carbon, whereas CS

undergoes a significant weight loss (�13%) in a broad temperature range. That complex weight loss trend

is linked to a broad range of oxygen functionalities such as quinone, ether, carbonyl, and phenol (Figueir-

edo et al., 1999). On the contrary, species present on the surface of CX are chemically homogeneous, and

their high decomposition temperature suggests their ether nature (Petrescu et al., 2020). Oxidation of CS,

especially with HNO3, increased the population of surface oxygen groups, especially those decomposing
4 iScience 24, 102216, March 19, 2021



Figure 3. Surface chemistry analyses

(A) Thermogravimetric (TG) curves of the initial and oxidized samples.

(B) TG derivatives of the initial and oxidized samples.

(C) Proton-binding curves of the initial and oxidized samples
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at a high temperature. On the other hand, carboxylic acids and lactones were introduced to CX-Acid (in-

crease in weight loss at a low temperature [Bandosz and Ania, 2006; Figueiredo et al., 1999]). As a common

feature, all samples show a weight loss at about 900�C, although of different extents.

Proton-binding curves and pH values (Figure 3C, Table 2) show CX as the only basic sample (proton con-

sumption), and after oxidation some acidic groups were introduced (release of protons). On the other

hand, oxidation of CS resulted in rather small changes in its acid-base properties. The pKa distributions

(Figures S4A and S4B) indicate that the CS series is more chemically heterogeneous than is the CX series.

For the latter, acid oxidation increased the number of groups with pKa < 5.5, associated with carboxylic

acids (Jagiełło et al., 1994), and this is consistent with the trend in the thermal analysis results. The discrep-

ancy with the TA data in terms of the extent of changes is only apparent because the thermally stable

groups formed as a result of oxidation, as, for instance, quinones or ethers, do not exhibit an acid-base

character in our pH experimental window. CX stands out among all other samples in its basic character,

which, contrary to carbon acidity (Bandosz and Ania, 2006), is not well-defined, and many reports link it

to Lewis sites associated with p electron-rich regions within the basal planes of graphitic microcrystals

located away from the edges (Leon y Leon et al., 1992; Menéndez et al., 1997). The same number of disso-

ciating groups on the surface of this carbon as that on CX-Air, in spite of a significant difference in their

surface pH, suggests its electron-rich nature.

Interestingly, the X-ray photoelectron spectroscopy (XPS) results and their deconvolutions (Smith et al.,

2016) (Table 3 and Figure S5) showed that oxidation of CMS did not change significantly the overall content

of elements on the surface. Oxidation of CS with air affected the distribution of carbon-oxygen bonds very

slightly. On the other hand, its oxidation with acid increased the contribution of C-O bonds, as estimated

from both C 1s and O 1s spectra, and slightly decreased the overall oxygen content.
Identification of sites advancing ORR

As the potentiometric titration showed no marked changes in the numbers of dissociating groups, we

linked the species containing C-O bonds to ethers (Nisola et al., 2020). CS-Acid is the only carbon sample

that showed the higher contribution of C-O bonds than that of C=O. Thus, their presence might increase
Table 2. Surface pH and number of groups on the surface of the materials in mmol/g

Sample pH

Strongly acidic

3 < pKa < 5

Neutral

5 < pKa < 8

Weakly acidic

8 < pKa < 11 All

CS 4.8 0.17 0.08 0.21 0.46

CS-Air 4.6 0.19 0.09 0.18 0.46

CS-Acid 4.1 0.23 0.08 0.16 0.47

CX 8.1 0.02 0.10 0.25 0.37

CX-Air 5.7 0.04 0.07 0.20 0.31

CX-Acid 5.2 0.43 0.07 0.20 0.70

iScience 24, 102216, March 19, 2021 5



Table 3. Surface composition of CMS evaluated by XPS (in the % contribution). The atomic % of C and O on the

surface is expressed in bold letters.

Binding energy

eV Bond assignment CS CS-Air CS-Acid CX CX-Air CX-Acid

C 1s 84.5 87.2 88.6 88.4 91.0 89.2

284.7–284.8 C–C sp2 72.3 80.1 69.0 62.3 77.3 81.5

285.7–286.5 C–O (phenol, alcohol,

ether, C-O-C)

15.4 11.2 17.9 26.8 11.6 9.9

287.2–287.5 C=O (carbonyl, quinone) 5.4 4.0 6.4 4.6 4.7 3.7

288.7–289.0 O=C–O (carboxyl) 4.4 3.2 4.5 6.1 4.0 3.0

289.5–290.5 p-p* satellite 2.5 1.5 2.2 0.1 2.4 1.9

O 1s 15.5 12.8 11.4 11.6 9.0 10.8

531.9–532.2 C=O 59.5 68.0 30.2 51.1 59.0 72.1

533–533.9 C–O, C-O-C 40.5 32.0 69.8 48.9 41.0 27.9
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both the oxygen withdrawal from the electrolyte, its adsorption on the surface (via hydrophobicity), and its

reduction to peroxide, which might be the first reduction step. As a result, CS-Acid shows relatively good

overall performance in ORR in spite of its smallest volume of ultramicropores that we consider as the main

factor governing the ORR reduction on microporous carbons. Moreover, the oxygen-containing groups,

either ethers or those of acid-base properties, exist rather in larger pores and/or are incorporated to the

edges of pore walls, and the very small surface area of CS and its relatively small degree of microporosity

suggest the high density of ethers on its surface. They have hydrophobic character and thus attract oxygen

(Ensing et al., 2019; Menger and Chlebowski, 2005), and by continuously providing that oxygen to pores,

where reduction occurs, they might contribute to the continuous increase in the current, as measured by

LSV.

On the other hand, the CX is very active owing to its basic/electron-rich surface, which adds to the efficiency

of the cathodic reduction. Moreover, its surface also contains ethers (a high contribution of C-O bonds) and

is hydrophobic (lack of acidic group). The deconvolution of O 1s core energy level of CX-Acid clearly shows

the majority of oxygen in the C=O configurations (Figure S5), which is consistent with the presence of car-

boxylic acids contributing to the acidic character of its surface. This marked decrease in the population of

electrons on the surface as a result of oxidation led to a decrease in the ORR efficiency in terms of n.

Linking ORR to interaction of oxygen with the CMS surface

The interpretation of ORR on our CMS is not very straightforward. We hypothesize that the availability of

small pores for oxygen along with its nonspecific and specific interactions with the carbon surface plays

an important role in the reduction process. The results discussed above suggest that ethers affect/increase

O2 adsorption not only by providing hydrophobicity (Ensing et al., 2019; Menger and Chlebowski, 2005).

However, the predominant feature of CMS is a high volume of ultramicropores, and it should govern

both the penetration of surface by electrolyte with dissolved oxygen and adsorption of that oxygen. As

N2 and O2 molecules are similar when measured in equilibrium (Salame and Bandosz, 2000), and therefore

the porous structure seen by them should be similar (Jagiello and Kenvin, 2019), the comparison of the

extent of oxygen adsorption on the surface, especially in the small pores, with that of nitrogen might

help us to better understand the behavior of CMS as the ORR catalyst. Here we need to clarify that even

though CMS were tested and used for O2/N2 separation, which might falsely suggest differences in their

pore accessibility, those approaches are usually based on the difference in the kinetics of the adsorption

(Andrade et al., 2020; Nabais et al., 2006). The adsorption of N2 and O2 on CMS was studied in detail by

Bae and Lee (2005), and it was found that even though the amounts adsorbed of both molecules at equi-

librium on CMS were very similar, the kinetics markedly differed, and O2, owing to its paramagnetic prop-

erties (Kaneko, 1996b), exhibited a much higher sorption rate than did N2. In the approach used here the

adsorption equilibrium is reached and all fluid-surface parameters have been taken into consideration to

calculate PSDs (Jagiello and Kenvin, 2019).

PSDs calculated from O2 adsorption isotherms using non-local density functional theory (NLDFT) (Jagiello

and Kenvin, 2019) (see Figures S6–S8) are compared in Figures 1C and 1D with those calculated from N2
6 iScience 24, 102216, March 19, 2021



Figure 4. Inelastic neutron scattering

(A) The comparison of INS spectra for blank CX, CX-Air, and CS.

(B) Difference between the INS spectra exposed to oxygen and blank for CX and CX-Air.

(C) Difference between the INS spectra of the samples exposed to water and oxygen and those exposed to water before

oxygen exposure, for CX and CX-Air.
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adsorption isotherms. The volumes of the specific pore sizes, V<1 nm, Vmic, and Vt, calculated either from N2

or O2 adsorption isotherms are summarized in Table 1. The sizes of ultramicropores detected by O2 and N2

are similar for CS and CX. The differences are visible for larger micropores, >� 1 nm, where consistently

oxygen shows slightly smaller pores of higher heterogeneity, especially for CX and CS-Acid, than does ni-

trogen. As the combined surface chemistry analyses (Ania et al., 2020) suggest the marked contribution of

ethers on the surface of these CMS, this pattern might reflect an oxygen engagement, in specific interac-

tions with those groups. For all CMS but CS-Acid the amount of oxygen adsorbed in micropores (presented

as a pore volume, Vmic) is slightly (2%–4%) greater than that of N2. It might be related to its paramagnetic

properties and affinity to carbons surface, whereas nitrogen is known to form dimers (Bae and Lee, 2005;

Kaneko, 1996a, 1996b). Interestingly, the total amount of oxygen adsorbed on CX is smaller than that of

N2, especially for CX-Acid where 20% less oxygen is adsorbed than nitrogen. A reason for this might be

in different electronic properties of CX than those of CS that affect the ferromagnetism of a carbon surface

and thus interactions of oxygen with carbon atoms and also in spin-spin interactions between oxygen mol-

ecules (Kaneko, 1996a, 1996b). Therefore, the marked number of acidic groups of this carbon might hinder

accessibility of the electrolyte with dissolved oxygen to the hydrophobic carbon surface, and this effect

combined with a decrease in the pore volume might decrease the ORR activity of this carbon. For the

CS series the amount of oxygen adsorbed on the surface is between 5% and 10% higher than that of N2,

which suggests the contribution of specific interactions. In CS-Acid the volumes of ultramicropores andmi-

cropores seen by O2 are 50% and 30% higher, respectively, than those detected by N2. This supports our

hypothesis that oxygen groups of these carbons, and particularly ethers, by attracting oxygen enhance the

withdrawal from the electrolyte advance oxygen reduction.

To further investigate the O2-carbon surface environment, inelastic neutron scattering (INS) spectra were

measured on selected CMS, exposed to oxygen, and exposed to water with dissolved oxygen. As blank

measurements CX and CX-Air and CS spectra in vacuum (Figure 4A) show mainly C-H bonds (Li et al.,

2017) (e.g., C-H stretching at 3,100 cm�1, C-H bending near 1,000 cm�1) and the high intensity of the CX

spectrum confirms its electron-rich nature.

The change of the spectra due to oxygen exposure of CX and CX-Air is negligible (within error/uncertainty)

(Figure 4B), indicating the lack of any redox reaction and hydrogen transfer in the absence of water. On the

other hand, the exposure to both water and oxygen altered the spectra (Figure S9) and on CX-Air much

more water was adsorbed than on CX. The negligible amount of water retained on the surface of CX is a

direct support of its hydrophobicity. This water on CX-Air is present as both bulk ice (the sharp edge be-

tween 500 and 600 cm�1 in Figure S9) and in a less confined form (the broad band between 400 and

1,000 cm�1) (Hood et al., 2020). The differences in INS spectra (between H2O +O2 and H2O exposure) (Fig-

ure 4C) show new OH species formed on CX-Air as a result of oxygen reduction, as indicated by the peak

between 400 and 1,000 cm�1. This peak cannot be due to H2O for the lack of the translational peaks below

300 cm�1 (Hood et al., 2020). No apparent evidence of the OH formation on CX (the small features around

1,000 cm�1 are due to a minor mis-subtraction of the background spectrum, see Figure S9), which is not

surprising as the sample is very hydrophobic and absorbed a negligible amount of water at our experi-

mental conditions with a rather short equilibration time used.
iScience 24, 102216, March 19, 2021 7



Figure 5. Visualization of ORR on CMS

(A) Withdrawal of oxygen from an electrolyte by the hydrophobic surface of small pores and their high adsorption

potential; attraction of oxygen to ethers.

(B) Splitting of O2 molecule due to strong adsorption forces from both pore walls followed by its reduction.

(C) With the help of cathodic current the reduction of oxygen in pores takes place accompanied by its protonation owing

to the proximity of water; OH� is formed and released to water owing to its affinity to the water phase.

(D) Oxygen accumulated on ethers enters pores to be further reduced.
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As a summary of our findings, Figure 5 presents the processes advancing the efficiency of ORR on CMS of

distinct microporosity and of hydrophobic surface linked to the very small pore sizes, electron-rich carbon

surface, and presence of ethers.

In conclusion, we have shown that the specific types of interactions of oxygen with carbon electrocatalyst

surfaces are the factors strongly affecting the efficiency of the ORR process. For this study we have chosen

CMS of a very defined pore structure and of surface chemistry governed only by the various engagement of

oxygen groups (no other heteroatoms). Although the ultramicroporosity was the predominant structural

feature, the carbons differed in surface acid-base properties and in the population of ethers. The results

indicated that besides the porosity, the electron-rich surface (basic) and engagement of oxygen in surface

ethers enhanced ORR. The electron-rich carbon matrix, by providing abundance of electrons apparently

advanced the cathodic reduction process. Ethers attracted oxygen and concentrated it at the pore en-

trances, enhancing the efficiency of the further electron transfer in the pores with adsorbed oxygen.

Both the electron-rich surface and ethers provided hydrophobicity of pores needed to withdraw molecular

oxygen from the electrolyte, which, upon its adsorption in small pores, underwent the bond splitting and

the efficient four-electron transfer. This process involves also simultaneous protonation, and even though

oxygen is isolated from water in the pores due to the strong adsorption potential, this water as a proton

source is in very close proximity, at the pore entrance. Adsorption of molecular oxygen showed the sensi-

tivity of the carbon surface to O2 with either ethers and/or electron providing/governing the specific inter-

actions. INS results supported our hypothesis that the reduction of oxygen and its protonation on the car-

bon surface takes place, even without an applied potential. This process can be only further enhanced

when electroreduction in the presence of an electrolyte is involved. Therefore, the results of this research

show new directions to modify carbon surface toward an increased efficiency of ORR. They might markedly

contribute to ongoing efforts on replacing noble metal-based catalysts in energy-related applications. We

would like to emphasize that the objective of our work was presenting an alternative view of the ORR on

porous carbons and not the best performing metal-free catalysts.
Limitations of the study

The carbons studied do not exhibit an exceptionally high performance as ORR electrocatalysts, although

they are on par with some other metal-free electrocatalysts reported in the literature. They were chosen

owing to their relatively homogeneous pore structure and small pore sizes with an intention to support

our hypothesis on the role of small pores as ORR pseudocatalytic centers. Even though the complex
8 iScience 24, 102216, March 19, 2021
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process discussed in this study involves ethers, carbon surface hydrophobicity, basicity, and physical

adsorption, our analysis should be considered as simplified because other sites on carbons, including de-

fects, must also affect the ORR. The results discussed are limited to ORR in basic electrolytes.
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Transparent Methods 

Materials: Polymer-based Carbosieve S-II and Carboxen 572 CMSs were obtained from Millipore 

and used as received or oxidized. They are referred to as CS and CX, respectively. CS and CX 

were oxidized by heating them for 3 h at 350 °C in air, and the carbons obtained in this process are 

referred to by adding the suffix –Air. To impose more pronounced changes in surface chemistry, 

CS and CX were stirred in concentrated nitric acid at 80 °C for 45 minutes. Then, the resulting 

samples were filtered and washed in a Soxhlet apparatus until a constant pH. The samples were 

dried at 60°C in air. The oxidized materials were referred to as CS-Acid and CX-Acid. 

Surface characterization: Adsorption isotherms of N2 and O2 were measured at -197 °C using the 

high-resolution Micromeritics 3Flex instrument equipped with a high-vacuum system, three 

micropore ports, and three 0.1 Torr pressure transducers. The samples were degassed under 

vacuum at 120 oC overnight prior to the adsorption measurements. The pore size distribution (PSD) 

calculations are performed using molecular models based on the two-dimensional version of the 

nonlocal density functional theory (2D-NLDFT) (Jagiello and Olivier, 2013). The 2D-NLDFT 

models take into account the surface heterogeneity and roughness of the carbon surface. It was 

demonstrated (Jagiello and Kenvin, 2019; Jagiello and Olivier, 2013) that the PSD results derived 

using these models are free from typical artifacts observed when the standard one-dimensional 

NLDFT models were used (Jagiello and Olivier, 2013; Ustinov et al., 2006). In addition to N2 data, 

O2 isotherms are used for the PSD calculations. The advantage of using O2 is in its smaller 

quadrupole moment compared to nitrogen (Jagiello and Kenvin, 2019; Jagiello et al., 2020). 

Thermogravimetric analysis (TGA) was carried out with an SDT Q600 (TA instruments) thermal 

analyzer by heating the samples up to 1000 °C at a rate of 10 °C/min in an Argon flow (100 

mL/min).  



 3 

The potentiometric titration measurements were performed using an 888 Titrando automatic 

titrator (Metrohm). Suspensions of the sample in NaNO3 (0.1M) were titrated with NaOH (0.1 M) 

starting from pH ~ 3.2 (HCl 0.1M was added to adjust the pH if necessary) up to pH ~ 10. The 

proton binding curve, Q, was derived from the titration data and pKa distribution f(pKa) (Jagiełło 

et al., 1994) was obtained using a SAIEUS procedure (Jagiello, 1994). The experimental 

titration/pH measurement error is 2% for the surface pH measurement and about 10% for the total 

number of surface group assuming that the same mass of carbon was used for the analysis. 

The XPS analysis was performed on a 200 μm diameter analysis area with a Physical Electronics 

PHI 5000 VersaProbe II spectrometer using an Al Kα X-ray radiation (50 W, 15 kV, 1486.6 eV) 

source with a take-off angle of 45° and a pass energy of 29.35 eV. 

Inelastic neutron scattering (INS): INS experiments were performed at the VISION beamline, 

Spallation Neutron Source, Oak Ridge National Laboratory. About the same amount (1.5g) of each 

sample (CX, CX-Air, and CS) was loaded in an aluminum sample holder. The samples were first 

degassed under vacuum at 120 oC, and then measured at -268 oC to collect the INS spectra. The 

samples were then exposed to 2 bars of pure oxygen at room temperature for two hours, after which 

they were cooled back to -268 oC again to collect INS spectra. The samples were further degassed 

under vacuum at 120 oC, and then 350 μL of water was added. After equilibrating at 100 oC, the 

samples were then measured at -268 oC for INS spectra. The hydrated samples were exposed to 

oxygen again under the same conditions, before the final INS measurement at -268 oC.  

Electrochemical oxygen reduction reaction (ORR): The electrochemical analyses were conducted 

with a computer-controlled WaveDriver 40 bipotentiostat (Pine Research Instrumentation). 5 mg 

of the carbon powder was dispersed in 1 ml of ethanol and 0.5 ml of 1 wt.% of a Nafion solution 

and sonicated for at least 60 minutes to obtain a catalyst ink. A three-electrode system was used 
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for electrochemical tests. A rotating glassy carbon electrode with a gold ring was used as a working 

electrode. The glassy carbon was loaded with 10 µL of the catalyst ink.  The surface area of the 

electrode was equal to 0.196 cm2 and typically 0.03 mg of carbon were deposited on the electrode. 

A reference electrode was Ag/AgCl (all results are recalculated to RHE for easy comparison), and 

a counter electrode - a graphite rod. The three electrodes were immersed in 60 ml of a 0.1 M KOH 

electrolyte for overnight before the beginning of the experiment.  

Cyclic voltammograms (CV) were measured in N2/O2 at 100 (only in the case of N2) and 5 mV s-

1 on the disk.  Linear scan voltammetry (LSV) tests were performed from 1.17 to 0.18 V vs RHE 

between 400 to 2000 rpm. A ring potential was set at 1.07 V vs RHE. From the LSV data, the 

number of electron transfer (n) and percentage of peroxide generated were calculated from 

equations 1 and 2, respectively.  

𝑛 =
4𝐼𝑑

𝐼𝑑+
𝐼𝑑
𝑁

   (1) 

 %𝐻2𝑂2 =
200

𝐼𝑟
𝑁

𝐼𝑑+
𝐼𝑟
𝑁

  (2) 

In the equations above, Id and Ir are the disk and ring currents measured with RRDE, respectively.  

Kinetic current curves were derived using the Koutecky-Levich equation: 

1

𝐼𝑑
=  

1

𝐼𝑘
+

1

𝐼𝑙
=  

1

𝐵𝑤1/2
+

1

𝐼𝑘
  (3) 

where Ik is a kinetic current and Il is a diffusion limited current.  

The electrochemically active surface area (ECSA) was calculated from a double layer capacitance, 

measured by recording CV’s in the non-faradaic region at various scan rates, (5 to 750 mV s-1). 

A double layer capacitance CDL was obtained from equation 4: 
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𝐶𝐷𝐿 =
𝑖𝑐+𝑖𝑎

2𝑣
    (4) 

where ia and ic are the anodic and cathodic currents, respectively. 

ECSA were derived from CDL, using equation 5: 

 𝐸𝐶𝑆𝐴 =
𝐶𝐷𝐿

𝐶𝑆
    (5) 

where CS is the specific capacitance of carbon black and it equals to 27.5 µF cm-2.  

The stability of the catalyst was investigated analyzing the trend of the current at the potential (set 

at the maximum of the ORR reduction hump) with a constant O2 flow through the electrolyte. 

Methanol tolerance experiments were conducted by adding 2.5 mL of methanol into the 60 ml of 

electrolyte solution (methanol concentration in the electrolyte solution ~1M). The onset potential 

was calculated by using the SODDM method (de Falco et al., 2020). The Tafel slope was evaluated 

by plotting the potential as a function of log(|jk|) where jk is a kinetic current density obtaining by 

the following equation: 

𝑗𝑘 =
𝑗 𝑗𝑙

𝑗𝑘−𝑗
     (6) 

jk is the kinetic current density obtained by correcting the LSV current density, j, for the diffusion 

limiting current density jl (Nunes et al., 2015). The Tafel plot was calculated in the most active 

region of the potential (near the onset potential region) (Guidelli et al., 2014). 
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Supplemental Figures 

 
Figure 1S. Measured nitrogen adsorption isotherms (Related to Fig.1). 

 

 

 

 



 8 

 

Figure 2S. CV curves of all the investigated samples measured in 0.1 M KOH saturated with 

N2 and O2 (related to Fig.2). 

 
 

Figure 3S. Kinetic current (related to Fig.2) 

A) kinetic limiting current  

B) kinetic current density normalized by SBET  

C) kinetic current density normalized by ECSA  
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Figure 4S. pKa distributions (related to Fig 3 and Table 2). 

A)CS series  

B)CX series   

 

 
 

Figure 5S. Deconvolution of the C1 s and O 1s core energy level spectra of the sample 

studied (related to Table 3) 
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Figure 6S.  Oxygen adsorption isotherms (related to Fig 1). 

(A, B) in logarithmic scale  

(C, D) in linear scale  

 

 
 

Figure 7S. Pore size distributions calculated from O2 adsorption isotherms (related to Fig 1). 
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A) CX series samples  

B) CS series of samples  

 

 
 
Figure 8S. Results of fitting the 2D-NLDFT models to experimental N2 and O2 isotherms 

measured on samples under study (related to Fig 1). 
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Figure 9S. INS spectra  

CX and CX-Air spectra after exposure to water (denoted with H2O) and exposure to water and 

oxygen (denoted with H2O+O2). The reference spectrum from ice-1h is also shown, in which two 

features are particularly relevant: the sharp edge between 500 and 600 cm-1 due to H2O vibration, 

and the strong peaks below 300 cm-1 due to translational motions of H2O. The minor features 

around 1000 cm-1 in the CX H2O spectrum is due to a mis-subtraction of the C-H bending peaks 

when removing the signal from the blank CX sample (related to Fig 4).  
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